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Abstract. In this paper, we propose the use of a Video-surveillance
Ontology and a rule-based approach to detect an event. The scene is de-
scribed using the concepts presented in the ontology. Then, the blobs are
extracted from the video stream and are represented using the bounding
boxes that enclose them. Finally, a set of rules have been proposed and
have been applied to videos selected from PETS 2012 challenge that con-
tain multiple objects events (e.g. Group walking, Group splitting, etc.).

Keywords: Ontology, Video surveillance, blobs, rules

1 Introduction

Nowadays, a growing amount of videos are available. This large amount of data
that needs to be stored and indexed should be processed using efficient content
based methods. Some of the existing works in video indexing use low-level fea-
tures like color or motion for indexing video clips [5, 7]. Other approaches have
their indexing system based on high-level features such as human interpretation
using meta-data and keywords [15, 20]. These latter systems suffer from the ex-
haustive manual operations, and the semantic inconsistencies caused by different
subjective interpretations made by people.

The semantic gap that exists between the low-level and the high-level fea-
tures for an event could be solved by combining both levels using an ontology
[8]. The use of ontologies for prior knowledge representation and scene under-
standing of video data is popular in many applications [12, 21, 22]. Gruber [9]
defines the ontology as the representation of the semantic terms and their rela-
tionships. It consists of the representation of the concepts, their properties, and
the relationship between concepts expressed in linguistic terms. The most im-
portant property is the derivation of an implicit knowledge through automated
inference. It provides a formal framework to define domain knowledge [2].

We propose to use the concepts of a video surveillance ontology to derive rules
that allows events detection from video sequences. The Ontology Web Language
(OWL) [17] has been used to represent our ontology and the Semantic Web Rule
Language (SWRL) [13] to generate the inference rules.
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The remainder of this paper is organized as follows. Section 2 reviews some
related work in the field of video processing using ontologies. In Section 3, we
describe the architecture of our ontology of the video surveillance domain. We
describe the methodology used to derive the rules based on the video surveillance
domain ontology in Section 4 using the PETS 2012 dataset as a case of study.
Finally, we give concluding remarks and potential future work in Section 5.

2 Related work and background

Several works based on an ontology have been proposed to overcome the semantic
gap between low-level and high-level features. Bagdanov et al. [1] present a
system to solve the semantic gap between the high-level concepts and the low-
level descriptors using a multimedia ontology. It contains visual prototypes that
represent each cluster and act as a bridge between the domain ontology and
the video structure ontology. Dasiopoulou et al. [8] have used color homogeneity
as descriptor. The visual objects have been included in the ontology and the
semantic concepts have been derived from color clustering and reasoning. Bertini
et al. [3] have used both generic and domain specific descriptors to identify visual
prototypes that represent elements of visual concepts. New instances of visual
concepts are then added to the ontology through an updating mechanism of the
existing concepts. Finally, the prototypes are used to classify the events and the
objects that are observed in video sequences.

In video surveillance applications, some specific events like abnormal events
have to be detected from streams provided generally by stationary cameras. An
ontology can be used to support the indexing process. Xue et al. [21] proposed
an ontology-based surveillance video archive and retrieval system. Lee et al. [10]
implement a framework called Video Ontology System (VOS) to classify and
index video surveillance streams. Snidaro et al. [18] have used a set of rules in
SWRL language for event detection in video surveillance domain. In order to
overcome the problem of the manual rules creation by human experts, Bertini
et al. [4] proposed an adaptation of the First Order Inductive Learner technique
(FOIL) for Semantic Web Rule Language (SWRL) named FOILS.

Most of the previous works in the surveillance domain have used the ontology
tool and demonstrate its efficiency to help and manage the indexing and retrieval
process. They consider events such as abandoned object, stolen object, a person
who is walking from right to left, an airplane that is flying, etc. SanMiguel et
al. [11] have proposed an ontology for representing the prior knowledge related
to a video event analysis. It is composed of two types of knowledge related to
the application domain and the analysis system. Domain knowledge involves all
the high level semantic concepts (objects, events, context, etc.) while system
knowledge involves the abilities of the analysis system (algorithms, reactions to
events, etc.). However, this ontology determines only the best visual analysis
framework (or processing scheme) without any inference reasoning for objects
tracking and events detection or analysis.
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Events detection using a video-surveillance Ontology 3

In this paper, we propose to use an ontology based-approach to detect sin-
gle/multiple objects events through a set of SWRL rules. It allows the transition
from the blobs extracted using visual analysis module to the detection of an
event.

3 The architecture of the Ontology

The ontology approach is an effective way to support various processes for events
detection in video surveillance domain. The scene is described using the concepts
presented in the ontology and a video analysis module extracts the blobs from
the streams using some low level property such as color, position, size, etc. The
ontology considers these blobs as an input through the bounding boxes that
enclose them and instantiate their features for creating the different DataType
Property in the ontology. Then, the reasoner of our ontology classifies, in the
first step, the different bounding boxes in their respective semantic meaning
(Group Of Person/ Person) using a set of SWRL rules [13] and associates, in
a second step, this video sequence, using another set of SWRL rules, to the
appropriate video event class regarding the behavior of its objects.

Fig. 1. Video Objects class hierarchy sample.
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In order to have an efficient representation of the video surveillance domain,
we preserved the same organization proposed by SanMiguel et al. [11] and com-
plete it by adding new concepts. We organize our ontology in four categories,
ranging from high-level concepts to low-level features : Video Events (gather all
events that can happen in the video surveillance domain), Video Objects (repre-
sents a set of objects that can appear in a video sequence), Video Sequences (all
the video sequences that could be indexed by our Ontology) and Bounding boxes
(all the bounding boxes that enclose the blobs detected by the video analysis
module in a video sequence with their low level features). The Figure 1 depicts
a sample of the Video Objects class hierarchy.

4 The rule based approach

In this section, we propose to use the PETS 2012 dataset as a case of study
to depicts our rule based approach that allows to handle a video surveillance
ontology for events detection in video streams.

4.1 PETS 2012 dataset

A set of events selected from PETS 2012 challenge [6] are used to experiment the
efficiency of the proposed rules. This dataset contains different crowd activities
and the task is to provide a probabilistic estimation of some events and to identify
the start and the end of the events as well as transitions between them.

4.2 Scene representation

In order to determine the best configuration of the processing schemes for detect-
ing the events, we describe the scene in terms of concepts of our ontology. The
Figure 2 shows an ideal and very precise segmentation of two scenes extracted
from PETS 2012 challenge. Although some automatic techniques might be use
for segmentation, we have started from a manual segmentation of the scene as the
scene contains static elements that will not change over time (building, grass,
electric pole, road, trees, car parks, restrictive roads). These elements have a
strong semantic meaning, that can enhance the reasoning process and interpret
the events resulting from other (volatile) elements (service car) that are subject
to movements within the scene setting. For instance, special attention should
be raised if moving objects are present in the Restrictive Road and deep anal-
ysis should be run to see if the moving objects are pedestrian or cars. Changes
in appearances of studied objects can also be relevant in extracting meaningful
events (a tree going reddish, might be a strong feature in detecting an abnormal
event). Although, we are more focusing on movement reasoning, both kinds of
changes (movement and appearance) result in the presence of regions yielding
similar characteristics in terms of appearance and/or motion commonly called
blobs.
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Events detection using a video-surveillance Ontology 5

Fig. 2. Scene Representation from PETS 2012 challenge camera views.

4.3 Blobs extraction

We propose an event detection approach based on blob regions. Blobs have
proven to be a better feature cue than points, corners or edges as they usually
have a larger coverage area and total occlusion of the subject is more unlikely
to happen. So, we should identify all the major blobs in the scene. A major blob
is defined as a blob that shows potential area size to be considered [19, 16]. This
is an essential step towards determining potential person/group.

In order to collect these blobs, several algorithms could be used. A back-
ground subtraction algorithm will classify the pixels of the input image into
foreground and background. Then the blobs are extracted by groping together
the foreground pixels belonging to a single connected component. We can also
use optical flow by extracting the characteristics of each pixel in each motion
image. These flows are then grouped into blobs that have coherent motion and
are modeled by a mixture of multivariate Gaussians. The optical flow is useful to
characterize each moving pixel according to certain features of the flow vector.

The Figure 3 highlights the bounding boxes that enclose the detected blobs
in different situations like Group walking, Group running, Group Splitting, etc.
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Fig. 3. Events from PETS 2012 challenge: Group walking, Group running, Group
merging and Group splitting.

A pre-processing stage is often applied to select the major blobs. It is done
by applying some anthropomorphic assumptions and morphological operations.
The following morphological operations are performed:

– Closing: Morphological closing smoothness sections of contours, fuse together
narrow breaks and long gulfs.

– Fill holes: A flood-fill operation is performed to close up the remaining small
holes.

– Removal of motion at boundary: Pixels of the motion region that are located
along the boundary are eliminated to avoid ambiguity of the region belonging
to a possible moving object.

At this stage each blob can represent either an entire object, an object sub-
part or can be generated by noise. It is identified by a label and the surrounding
bounding box. These bounding boxes are then used as input for the rule stage.
The aim of this rules is to ensure the identification of semantically significant
objects by analysing detected blobs over consecutives frames.

By comparing the bounding boxes found in two consecutive frames, our rule
based approach is able to assess for each blob of the previous frame if it has been
found or if undergoes a split or takes part in a merger. It consists in establishing
the associations between the objects found in the previous frame and the blobs
just extracted and grouped within the bounding boxes. We describe now our
strategy according to the blobs that have been detected in the current frame:

- Straightforward tracking: this is the simplest case and it corresponds to two
blobs without neighboring ones which are detected approximately in the same
position in two successive frames and there are no splits nor merges (blob size is
preserved or slightly varies). The concept of approximately in the same position
is implemented trough the definition of a threshold on a distance measurement
between the blobs.
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Events detection using a video-surveillance Ontology 7

- Splitting: a split is detected when a blob breaks in two distinct ones. We
validate every split as soon as it occurs, creating two new objects. However,
the original object identity is resumed if this fragmentation of the object into
two blobs is temporary which may be due, for example, to an error during the
detection phase.

- Merging: we detect a merging event when two objects having close past
trajectories and detected up to frame at time t-1 merge their bounding boxes
in the frame at time t. If these conditions are satisfied, the algorithm creates a
new object joining the trajectories of the two previous ones

Some events that could happen may introduce a confusion in this process
such as:

- Disappearance: an object detected in a frame at time t-1 is classified as lost
in the current frame if no blob is present in the neighbourhood of the expected
object position at time t. If an object is lost in proximity of an image border,
the algorithm assumes that the object has left the scene, else waits for the
appearance of the object in proximity of the place where it disappeared. Still,
we should ensure that no other blob belonging to another semantically significant
object was/is around, and takes the place of the previous.

- Occlusion: it is distinguished from merging/splitting events on the basis
of the direction of the past trajectories. When an occlusion occurs, we wait to
analyze the scene for a specific number of frames to find the correct association
between the objects found before and after the occlusion.

4.4 The rules construction

Different events from the PETS 2012 challenge could be used to depict the
efficiency of the proposed approach such as:

– Group running and walking events: it consists to estimate if the people form-
ing a group are walking or running. These events can be identified using the
motion magnitude in each image. High magnitude event means running while
a low magnitude means walking event. The detection is done either by defin-
ing an experimental threshold or using a classifier with feature such as the
average speed of movement.

– Group formation and splitting events: it consists in the detection and the
analysis of the position, the orientation and the speed of the groups.

We have used the Rule plugin of Protégé [14] to write the inference rules of
our engine in SWRL language. Our rules are divided into 3 categories:

– Distance rules: it consists on checking the distance between the detected
bounding boxes in the current frame. The bounding boxes that are close to
each other are grouped into a major bounding box.

– Tracking rules: it consists on tracking the major bounding boxes generated
by the previous category over the frames to detect the start/end position.

– Event rules: it consists in analyzing the behaviour of the groups identified
in the previous category in order to detect the appropriate event.
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The left side of the rule (before the arrow) is checked by the inference engine
and the reasoner infer or not the right side. The Figure 4 depicts the construction
of a distance rule. It checks if two bounding boxes could be grouped into a major
bounding box.

Fig. 4. A rule for grouping two bounding boxes into a major bounding box.

This rule presented above is constructed as follow: (i) The reasonner checks in
the current frame if the positions of the two bounding box (BB1, BB2) are close
in the X and Y axis. The Bounding boxes are then tested as BBx → BB2 and
as BBy → BB1 using the following conditions: (i) Top Right Point Y BB1 6
Top Left Point Y ofBB2 6 Bottom Right Point Y ofBB1, (ii) Top Left Point
XofBB2 6 Top Right Point XofBB1+20 and Top Right Point XofBB1 >
Top Left Point XofBB2 + 20. In this case, the reasoner will infer that both
bounding boxes belong to the same Major Bounding Box and updated it.
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Events detection using a video-surveillance Ontology 9

A large set of rules is proposed to model all the situations that could happen
in the scene according to the events handled by our ontology. The output of each
category could be used as input for another one. Indeed, an event is detected
using a rule that took as input the information inferred by a tracking rule that
has been applied to major bounding boxes identified using distance rules.

The inherent difficulty of writing down rules in SWRL or equivalent language
is the fact that the events are spanning over various time intervals. Various time
windows can be applied to the same event detection. A split event can occur in
a very short time-frame, if the groups are evolving at high speed or it could take
a long time-frame if the groups are evolving at low speed. However, we are using
a fixed time-window in order to simplify writing rules.

5 Conclusion

Video Surveillance systems become popular in our daily life to ensure security
and safety and allows to study human behavior. In this paper, we have presented
our rule based approach that allows to handle a video surveillance ontology to
detect single or multiple objects events.

In our future work, we will extend our ontology to model new concepts and
improve our SWRL rules for handling different events that can occur in video
surveillance domain.
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