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Abstract. In this paper we introduce Multi-Entity Bayesian Networks
(MEBNs) as the means to combine first-order logic with probabilistic
inference and facilitate the semantic analysis of Intangible Cultural Her-
itage (ICH) content. First, we mention the need to capture and maintain
ICH manifestations for the safeguarding of cultural treasures. Second,
we present the MEBN models and stress their key features that can be
used as a powerful tool for the aforementioned cause. Third, we present
the methodology followed to build a MEBN model for the analysis of a
traditional dance. Finally, we compare the efficiency of our MEBN model
with that of a simple Bayesian network and demonstrate its superiority
in cases that demand for situation-specific treatment.

Keywords: semantic analysis, intangible cultural heritage, multi-entity
bayesian networks

1 Introduction

By the age of six, humans recognize more than 104 semantic concepts [1] and
keep learning more throughout their life. Can a computer program learn how to
recognize semantic concepts in multimedia content the way a human does? In
adressing this question, divergent approaches have been proposed, relying either
on the use of explicit knowledge or the abundant availability of data. Advocating
the former, [2], [3] are two notable cases where a small number of examples
used during learning are able to provide models with sufficient generalization
ability. The authors rely on the hypothesis that once a few visual categories have
been learned with significant cost, some information may be abstracted from
the process to make learning further categories more efficient. Taking a different
perspective, the authors of [4] claim that with the availability of overwhelming
amounts of data many problems can be solved without the need for complex
parametric algorithms. The authors index a large dataset of 79 million images
and using nearest neighbor matching for image annotation, they claim that given
the excessive volume of the indexed images it is reasonable to assume that almost
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every “unseen” image will be close enough to a ‘’seen” image. These examples
demonstrate the debate around the mechanism of building perceptual models
and the discussion on how much of the knowledge should come in an explicit form
and how much can be obtained implicitly from the available training samples.
Although moving towards the one or the other extreme of the debate may still
produce non-trivial recognition models, higher levels of efficiency can only be
achieved if explicit and implicit knowledge are effectively combined.

The aim of this work is to verify the aforementioned statement in the special-
ized domain of Intangible Cultural Heritage (ICH). The term intangible cultural
heritage (ICH) (UNESCO, 2013) refers to valuable traditional art forms and
creative practices, such as singing, dancing, craftsmanship, etc. Preserving this
knowledge is considered particularly important and the use of technology to
achieve this objective has become a popular research topic. In this paper, we
advocate the use of Multi-Entity Bayesian Networks (MEBNs) [5] as an efficient
scheme to facilitate the analysis of ICH content, mainly due to their ability in
combining first-order logic with probability theory. The remaining of this paper
is organized as follows: Section 2 describes the particularities of the ICH domain
and motivates the use of MEBNs. Section 4 provides some background for the
constituent elements of MEBNs. In Section 5 we describe the most important
characteristics of MEBNs and argue about their appropriateness to address the
particularities of ICH domain. Section 6 offers some details about the methodol-
ogy adopted to implement and apply MEBNs for analyzing ICH content. Finally,
Section 7 explains the results of our preliminary experimental study, while Sec-
tion 8 summarizes our concluding remarks.

2 Semantic analysis in the ICH domain

The semantic analysis of digital heritage resources is considered a particularly
important prerequisite for their preservation. This is even more evident in the
domain of ICH. Indeed, given that during the preservation of intangible heritage
the significance of heritage artifacts is implied in their context, the scope of dig-
ital preservation extends to the preservation of the background knowledge that
puts them in proper perspective. For example, Mangalacharan [6] is an invoca-
tion dance in Indian Odissi dance form, which is specified in terms of specific
and predefined dance actions and it is accompanied by a specific kind of music.
The dance actions entail the movement of human body parts and interaction
with object and the accompanying music has features that fit to the dance.
Moreover, high-level concepts are manifested in the dance that are composed of
basic body actions, which are related to the music features. Tsamiko dance is
another example of traditional dance that shares some common features (e.g, a
predefined sequence basic body actions) with Mangalacharan. Thus, generalizing
by these examples, the preservation of heritage resources requires a solution to
the problem of: (a) recognizing media patterns that correspond to elementary
domain concepts like objects, postures, actions, audio tempos, etc, and (b) con-
sider these elementary domain concepts as evidence that act in favor or against
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Multi-entity bayesian networks for knowledge-driven analysis of ICH content 3

a hypothesis stating that the analyzed media item manifests a certain high-level
concept.

The knowledge regarding the ICH domain is diverse, vast and intricate. A
major difficulty in representing such knowledge is the inherent ambiguity and un-
certainty in concepts prevalent in this domain. In meeting this challenge, explic-
itly provided logic-based rules need to be combined with a probabilistic inference
framework in order to map low-level multimedia features to high-level concepts.
Initially, the domain concepts and their relations will have to be expressed in a
machine understandable format that should be also capable of encoding different
snapshots of the analysis environment (e.g., number of dance steps). Then, low-
level multimedia features that may incorporate visual, or other types of signals
will have to be analyzed to obtain elementary conceptual information, acting as
evidence. Finally, the framework used for probabilistic inference should inherit
the logic-based rules encoded in the first step and evaluate the extracted evi-
dence in the context of the domain knowledge. Thus, at the core of semantic
multimedia analysis lies the development of a theory that will not only manage
to effectively combine logic-based rules with probabilistic inference, but will also
offer the necessary flexibility to cope with an un-predictable and dynamically
changing environment.

3 Related work

A number of works have been presented in the literature that aim to represent
knowledge in a probabilistic manner. OOBN models [7] have been proposed as
an alternative to standard BN for overcoming the inherent inflexible structure of
BN. An OOBN object is a collection of domain attributes that extents regular
BN nodes, so as to become more flexible to situations that require customiza-
tion. Probabilistic relational models (PRMs) [8] extend Bayesian networks by
introducing the concept of properties, and relations between them. Like MEBNs,
PRMs provides a similar mechanism to built situation specific probabilistic mod-
els. However, OOBN and PRM expressivity is inferior to MEBN, mainly due to
the context limitations used to enforce logical constraints on the model variables.

Ontologies with probabilistic extensions have been also used for the seman-
tic analysis of ICH content. For example, in [6] the authors propose the use of
ontology-based mapping for linking cultural heritage content to ICH concepts.
More specifically, the ontology used in this framework includes the descriptions
of domain concepts that are formally given in terms of the related low-level
audio-visual features, appearing in the multimedia content. In this way, a con-
venient semantic interpretation of the multimedia data is enabled. In another
closely related work [9], a semi-automatic ontology construction methodology
is proposed for combining bayesian networks with probabilistic inference. The
goal of this work is to facilitate the semantic analysis of cultural Indian dances,
i.e. detection of specific dance styles and moves in multimedia with cultural con-
tent. Note however, that although the ontology is constructed using probabilistic
methods (i.e. as a BN of concepts and relations), the BN remains unchanged.
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This is a serious modeling shortcoming that motivates the use of MEBNs. In
the following, we provide the necessary background so as to advocate the use
of MEBNs as a potential solution to the problem of semantic analysis in the
domain of ICH.

4 Background

First-Order Logic [10] is a formal system that is used as a rigorous foundation
of knowledge representation schemes. A theory in first-order logic consists of the
axioms, expressed as sentences in the FOL language, in conjunction with the
sentences that are derived from the axioms according to the reasoning rules,
i.e., valid sentences. The main components of the FOL language are variables,
functions, predicates and rules. A set containing all instantiated components
of a FOL theory is called an interpretation. However, FOL does not provide
expressivity to model uncertain knowledge, which is a consequence of the fact
that each interpretation mentioned above shares equal validity with the others.
As we will see in Section 5, the key feature of MEBN is the assignment of a
probability to every interpretation.

Ontologies are a powerful tool able to express knowledge in different levels of
granularity [11]. The knowledge about a domain can be expressed by a struc-
ture that associates the domain concepts and defines relations using the allow-
able operators, such as “Description Logics” (DL) [12]. DL constitutes a set of
constructors (e.g. intersection, union, disjoint, complement, etc) that offer the
expressivity to define complex knowledge of a domain, however they lack the
ability to express knowledge with probabilistic terms. This has motivated the
development of probabilistic ontologies as a means to encode domain knowledge
and introduce uncertainty in ontology reasoning. For instance, in [13] the OWL
language is augmented to allow additional probabilistic markups and a set of
structural translation rules is used to convert an OWL ontology into a directed
acyclic graph of a BN. Probabilistic rules are used to cope with uncertainty and
ontologies combined with belief networks are employed to express and migrate
into a computationally enabled framework, the semantics originating from the
domain. Although dynamic, the inference potential supported by probabilistic
ontologies is still restricted by the encoded snapshot of the domain knowledge,
offering very limited flexibility in adapting to the situation at hand.

Bayesian Networks (BN) are stochastic models that have been applied suc-
cessfully to problems where uncertainty is prevalent. BN are directed, acyclic
graphical (DAG) models [14] that consists of random variables, represented by
nodes, along with their relations determining the structure of the DAG. A con-
ditional probability distribution is defined for each variable. Inference in BN
refers to the process of estimating the posterior distribution for a subset of the
random variables, given the observed values of another subset. The observations
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Multi-entity bayesian networks for knowledge-driven analysis of ICH content 5

are direct evidence that we obtain from the real world that we are trying to
model. Prior to inference there is also a training phase where the conditional
probability distributions of the BN are estimated. Typically, these distributions
are estimated using training data and a suitable training algorithm (e.g., max-
imum likelihood). The most serious drawback of BNs is that their structure is
kept fixed, once they are designed. They are insufficient to model problems in
dynamically changing environment since they lack the expressive power to rep-
resent entity types that can be instantiated as many times as required for the
situation at hand.

5 Multi-entity Bayesian Networks

MEBN logic is a formal system that unifies probability theory and classical
first-order logic (FOL). Thus, MEBNs are the outcome of the combination of
BN with FOL. From a Bayesian perspective, MEBNs are extended BNs by in-
corporating FOL. Their main advantage is in combining the capability of BN to
model uncertainty with the expressivity of FOL in representing knowledge. The
key feature of MEBNs is the ability to build situation specific BNs (SSBN) that
are customized according to the snapshot of the environment being modeled in
an arbitrary situation. In this way, MEBNs overcome the inflexibilty of BNs to
adapt to the volatile environment being model, since they have a fixed structure
and conditional probability for each node.

Technically, a MEBN is a collection of MEBN fragments (MFrags). An MFrag
includes (among others) resident node(s), for each of which a local conditional
distribution and a set of parent nodes (if any) are defined. The MFrag of a
resident node is called its home MFrag. Also, in an MFrag, there are input nodes
that are resident nodes in other MFrags. The parents of a resident node can be
either resident, input nodes or both. The resident nodes are, in a sense, templates
that are used to construct the nodes of the SSBN, i.e., the name of the nodes,
the dependencies with other nodes and the conditional probability distribution.
The local conditional distribution of a resident node in an MFrag is a function
that produces the conditional probabilities of the SSBN nodes produced by the
resident node. This function takes as input the structure of SSBN and produces
a conditional probability for the related node accordingly.

Another component of an MFrag is the logical variables, placed as arguments
in resident and input nodes, and logical constraint nodes, imposing constraints
on the logical variables participating in the MFrag. Logical variables and their
constraints are the manifestation of the FOL into MEBN modeling. The struc-
ture of an SSBN is determined by the logical variables and the admissible by
the constraints values to which they can be instantiated, according to the situ-
ation of the environment being modeled (e.g., number of nodes a resident node,
acting as a template, replicate). In other words, logical variables and their con-
straints drive the construction of the SSBNs based on the evidence collected by
the environment, translated as potential values of the logical variables.



225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

ECCV

#***
ECCV

#***

6 Authors Suppressed Due to Excessive Length

The ultimate goal of modeling with MEBN is inference, which provides us
with the ability to analyze the environment being modeled (e.g., a stochastic
process or a static snapshot of a closed system), based on evidence. Inference is
performed on the SSBN, which results based on evidence. There are two steps
in SSBN construction. In the first step, the logical variables are instantiated to
values determined by the environment and according to logical constraints. The
resulting nodes in the SSBN have a defined set of parent nodes and a conditional
distribution. In the second step, a subset of the SSBN random variables (i.e. the
observed variables) are considered known (observed) and instantiated to their
observed (measured) values. Then, Bayesian inference provides the posterior
probability distribution of the unknown random variables we want to estimate.

6 Applying MEBN theory in the domain of ICH

In order to validate our assumptions in a real world problem, we have used
MEBNs as a knowledge representation and analysis tool for recognizing the
different styles of a traditional greek dance. There are two main reasons moti-
vating the use of MEBNs for this specific task, namely, uncertainty modeling and
situation-specific analysis. Uncertainty in this case is manifested in two cases. In
the first, a dancer may unexpectedly deviate from the dance pattern (e.g., skips
a dance step). In the second, the step detector may fail to detect a step and/or
correctly recognize its features. MEBNs are capable to model both the volatility
of the step number and the uncertainty (randomness) aspects of each perfor-
mance. Also, the situation specific analysis capability is useful due to the fact
that, usually, the number of steps is not a priori known. SSBN can be proven
very beneficial for the dynamic modeling of such situations. In our work, the
role of the MEBN is to adapt in each performance and model in a probabilistic
Bayesian framework the uncertainty aspects of the dance. Based on that, the
ultimate goal is to detect the dance style through probabilistic inference.

The first step in employing MEBNs is to consult the experts in order to
elicit and formally encode the domain knowledge. Thus, a methodology for the
ontology specification and engineering will have to be employed. Subsequently,
the knowledge encoded in this ontology will act as the basis for constructing the
corresponding MFrags. Then, the observations extracted from the analysis of
sensor signals will be injected to the framework so as to generate the SSBN and
perform probabilistic inference. Finally, decisions about the different dance styles
can be made based on the posterior probability distribution of the network.

6.1 Ontology specification & engineering

Most state-of-the-art methodologies for ontology engineering incorporate the
requirements specification activity. The communication tool that is used during
this activity is a set of competency questions (CQs) that are posed to the experts.
The CQs are answered by the experts in natural language. The terms used in
these answers are subsequently analyzed with respect to their frequency and
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Multi-entity bayesian networks for knowledge-driven analysis of ICH content 7

semantic affinity, so as to extract the terminology (names, adjectives and verbs)
that will be formally represented in the ontology by means of concepts, attributes
and relations. In accordance with this practice, we have followed the methodology
of [15] in order to specify and engineer the ontology presented in Figure 1.

Fig. 1. Tsamiko ontology graph. Some nodes were colored for brevity of demonstration,
black: right foot steps, orange: left foot steps. The TsamikoSixStep and TsamikoTen-
Step are high-foot steps when the dance style is male. Also, grey areas illustrate the
’hasDouble(Right/Left)Step’ relation.

The style of Tsamiko dance is characterized as “double” or “single” and as
“male” or “female”. Thus, there are four different characterizations, and, hence,
Tsamiko dance styles: (single, male), (double, male), (single, female) and (dou-
ble, female). In distinguishing between the different styles, the most important
elementary concept has to do with the type of steps. A Tsamiko dance consists
of multiple dance cycles, each one consisting of ten distinct steps. Each step is
characterized and distinguished from the other steps by its four attributes (i.e.
left or right direction, left or right foot, single or double step and foot is in high or
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low position) and its place in the sequence (i.e. 1st, 2nd,...,10th). The attributes
of some steps depend on the particular style of the dance being performed, while
other step attributes remain the same for all styles. More specifically, among the
step attributes that do not depend on the dance style, we identify the movement
direction (i.e., left or right), as well as the body place (i.e., whether it is the
right or the left foot). Particularly, the first six steps have a “right” direction
and the rest have a “left” direction. Also, 1st, 3rd, 5th, 8th, 10th are performed
with the right foot and the rest with the left foot. Another important attribute
that now depends on whether the style is “male” or “female”, has to do with
the foot lifting movement, which essentially differentiates between a step that is
performed with the foot in high position, or in a position close to the floor. More
specifically, the foot is high at the 6th and 10th step in a “male” dance while
it is always low for “female” style. Also, in a dance of “double” style, the 2nd,
4th and 8th standard step of the dance cycle are characterized by the “double”
attribute. On the other hand , all steps have the “single” attribute when the
style is “single”. Finally, the ontology of Figure 1 reveals also the importance
of sequence among the undertaken steps that has to be performed in a rather
strict order. Thus, it is evident that the detection of each step along with its
attributes is crucial for our analysis framework.

6.2 Sensor signal analysis for elementary concept detection

In order to capture the performance of the dancers, we have used markerless
motion capture based on depth sensing technology. Microsoft Kinect sensors
were employed, which are low-cost real-time depth sensing cameras that can
track the volume of a performer and produce skeletal data. Microsoft Kinect
SDK [16] has been used as a solution for skeletal tracking and acquisition. It
provides the ability to track the 3D positions of 20 predefined skeletal joints of a
human body at 30Hz rate. In order to solve occlusion and self-occlusion tracking
problems inherent in this type of motion capture and to increase the total area
of coverage, several Kinect sensors were placed in an array in front of the dancer
(Figure 2 Left). The captured data were combined following a fusion strategy
described in [17], leading to an increased robustness of skeletal tracking.

The elementary domain concepts, which are the steps and the way they
are executed, were extracted from the analysis of the joint position signals. The
analysis consists of two parts: segmentation and feature extraction. Segmentation
is performed on two levels of granularity. Initially, the dance periods are detected.
Tsamiko dance has a repeating pattern, with the dancer moving on a semi-circle
performing several steps to the right direction followed by several steps to the
left. This consists of a single period, which is easily detected by analyzing the
position of the waist of the dancer. Peak detection of a sub-sampled (to remove
noise) waist displacement along the horizontal axis reveals the time instants
when the dancer is at the end of the left/right movement (Figure 2 Right).
Subsequently, each period is further segmented into steps which we consider an
elementary domain concept. The detection of steps is based on the movement
of ankles along the horizontal axis relative to the movement of the root of the
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body. Once again, local maxima detection is employed for the detection of time
instants when the footstep is performed (when the foot touches the ground, the
relative horizontal displacement produces local maxima).

After the segmentation, each segment is analyzed to extract the features of
each step. The features extracted from each step are: the foot that is moving
(left foot or right foot), the direction of movement (left or right), raised foot and
double step. Those features are extracted from a rule based analysis of ankle and
knee joint position signals of the dancers’ legs. The double step is a sequence of
two small steps executed sequentially, which we consider as a single step during
the segmentation period, since the intermediate steps are small and executed
very quickly. The result of this analysis is a sequence of steps together with
properties assigned to each step which are used subsequently to infer the dance
style.

Fig. 2. (Left) Tsamiko performance captured by three depth cameras. Skeletal tracking
from each camera can be seen as well as the final fused skeleton tracking result. (Right)
Displacement of the waist of the dancer along the horizontal axis. Red and green dots
represent the peaks and valleys detected, segmenting the dance into periods.

6.3 MTheory and MFrags

Based on the ontology described in Section 6.1, we have developed the MEBN
of Figure 3. In this figure, a MEBN is presented consisting of two MFrags. The
TsamikoStepMFrag contains information about the step sequence for different
dance styles, along with the style distinguishing characteristics of the steps.
The TsamikoStyleMFrag contains the style related MEBN nodes, “genderstyle”
and “stepstyle” that can take the values male/female and single/double, re-
spectively. Each MFrag contains input nodes (colored in grey), resident nodes
(colored in yellow) and logical nodes (colored in green). The input nodes of the
TsamikoStepMFrag are resident nodes in the TsamikoStyleMFrag. The only ex-
ception is the node “step”, which is used to model a recursive process as described
below.

The “step” input node in TsamikoStepMFrag (colored in grey) models the
step sequence that comprise a dance cycle. It is very important to understand
the concept of recursion in MEBNs, which is manifested in this case by making
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the input (grey) node “step” the parent of the resident (yellow) node “step”
(both having the same name but different logical variables (t1 and t2) as argu-
ments). These variables are logical variables that are used to model the aspect
of time sequence in the detected steps. For example, if t2 is instantiated as
timeStepi, then, based on the constraints dictated by the logical (green) nodes,
t1 is instantiated as timeStepi−1. In this way, t1 is always the previous time
step of t2 enforcing the desired recursive process. In our example of Figure 3,
the resident (yellow) node “step” has a range set of ten values, TsamikoStep1, ...,
TsamikoStep10, each value denoting one of the ten distinct steps in a Tsamiko
dance cycle. Thus, with the recursive definition of the node “step” (i.e. both as
an input and a resident node) we enable the modeling of a dance step sequence
execution. Note that the number of cycles and the starting and ending step are
arbitrary.

Besides “step”, there are four more resident nodes in the TsamikoStepM-
Frag as depicted in Figure 3: “hasDirection”, “foot”, “isFootHigh” and “isDou-
bleStep”, which are essentially the features that declare the execution method
of each step. The first node can take either the “leftDirection” or the “right-
Direction” value, while the second node can take the “leftFoot” or “rightFoot”
values. Both are not directly dependent to the dance style, as shown by the lack
of direct arrows between these nodes and the nodes “genderstyle” and “step-
style”. Instead, the impact of “hasDirection” and “foot” to the recognition of
the dance style goes through the “step” node that models the execution pattern
of the dance. On the other hand, the nodes “isFootHigh” and “isDoubleStep”
take boolean values and directly depend on the nodes “genderstyle” and “step-
style” that determine the dance style. These dependencies are better described
in the following paragraph that explains the TsamikoStyleMFrag.

According to the ontology presented in Section 6.1, the style of Tsamiko
dance can be characterized as male or female and as double or single. We have
decided to recognize the undertaken style on a per step-basis, meaning that steps
of the same sequence can be attributed to different styles. Nevertheless, there is
strong correlation between the style detected in stepi and the probability that
stepi+1 will follow the same style. Thus, as in the case of steps, there is an
inherent requirement for modeling a recursive relation between the variables de-
termining the style characteristics. To this end, the TsamikoStyleMFrag consists
of two variables “genderstyle” and “stylestep” that exist both as resident and in-
put nodes in the same MFrag, modeling the recursive relation between the styles
detected for each step. Similar to TsamikoStepMFrag, the TsamikoStyleMFrag
consists also of the exact same logical variables t1 and t2 that are instantiated
to time steps and are used to enforce the desired recursive process. Finally, we
should note that “genderstyle” and “stepstyle” are also used as input nodes in
the TsamikoStepMFrag and act as direct parents of “isFootHigh” and “isDou-
bleStep”.
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Fig. 3. MEBN developed to facilitate the analysis of greek tsamiko dance.

Table 1. Characteristics of the different performances used for the tsamiko dance.

performance length attributes performance length attributes

A1 48 single/female A9 201 double/male
A2 153 single/female A10 190 double/female
A3 194 single/male A11 198 double/female
A4 196 single/female A12 189 double/female
A5 189 single/female A13 202 double/male
A6 200 single/male E1 190 single/male
A7 202 single/male E2 100 double/female
A8 195 single/female E3 191 double/male
A9 201 double/male - - -

7 Preliminary Experimental Results

The goal of our experimental study is to verify the appropriateness of MEBNs in
recognizing the different dance styles based on the undertaken steps. Actually,
our interest is not in just classifying a step sequence to one of the existing dance
styles, which would constitute a trivial problem. Instead, our goal is to classify
each step to one of the existing dance styles and at the same time assess the pro-
ficiency level of the performer. In the first case we expect that the classification
accuracy of the MEBN-based framework will outperform a baseline approach
that relies on BNs but does not make any use of the situation specific capability
of MEBNs. In the second case, we expect that our MEBN-based analysis frame-
work will rank high the step sequences that have been performed flawlessly and
rank low the step sequences that contain one or more execution errors.

7.1 Dataset and evaluation metrics

In our experiments we have used 16 recorded performances of Tsamiko dance,
with the sequence length ranging from 50 to 200 steps. Out of the 16 recorded
performances 3 were executed by professional dancers (E1-E3) while the rest
was obtained from apprentice level dancers (A1-A13). All performances were
executed with the same musical piece and every performance was annotated
with its dance style, as depicted in Table 1.
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In order to assess the classification accuracy we apply a threshold on the con-
fidence score extracted for each step. More specifically, when we analyze a step
sequence that is annotated as “single” we consider as correctly classified all steps
that have caused the posterior probability (i.e. confidence degree) of the “step-
style” node to overcome the 0.5 threshold. Similar is the case when analyzing a
step sequence annotated with the other style types. Then, we divide this number
with the total number of steps so as to calculate the classification accuracy for
the entire performance. On the other hand, in order to assess the proficiency
level of each performance we use the average of the confidence degrees of all
steps in this performance. More specifically, the result of the analysis process
for each performnance is a two-dimensional table with its columns correspond-
ing to the different styles, its rows corresponding to the individual steps and its
values being the posterior probability of the SSBN random variables modeling
the dance style information. Thus, by performing column-wise averaging in this
table we obtain four scores (i.e. corresponding to the four dance styles) that
are suitable for assessing the proficiency level of the undertaken step sequence
(i.e. considering that the closer you get to a 100% score the closer you get to a
flawless performance).

7.2 Step classification accuracy

In order to verify the benefit of being able to adapt to the situation at hand, we
compare our MEBN-based model with a baseline approach that lacks this capa-
bility. More specifically, given that one of the auxiliary features offered by the
signal analysis module is the total number of steps composing the step sequence,
the baseline approach was designed to totally neglect this situation specific in-
formation. It is essentially implemented as a straightforward BN with a fixed
number of nodes representing steps (we have used 10 steps which is the standard
cycle in a tsamiko dance) and without any provision for the recursive relation be-
tween steps and dance cycles. Figure 4 demonstrates the classification accuracy
of both frameworks. We can see that the MEBN-based framework outperforms
the baseline approach in 28 out of the 32 cases. Given that both frameworks rely
on probabilistic inference and both frameworks have been designed based on the
same domain knowledge, it is reasonable to attribute the observed improvement
in the flexibility of the MEBN-based framework to adapt in the number of steps
composing each performance.

7.3 Proficiency level assessment

Figure 5 shows the proficiency level results for the 16 performances, grouped
based on the dance style and distinguishing between apprentices and experts.
Moreover, apart from the average score the standard deviation is also depicted.
The obtained results verify our expectation that in the majority of the examined
cases our MEBN-based analysis framework is able to distinguish between an
apprentice and an expert. This is evident in the case of “female” style where the
performance level of the expert is higher than all apprentices. Similar conclusions
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(a) single style (b) double style

(c) male style (d) female style

Fig. 4. The performance results are grouped based on the style. The bar diagrams
colored in black correspond to the MEBN-based framework, while the bar diagrams
colored in white correspond to the baseline.

(a) single style (b) double style

(c) male style (d) female style

Fig. 5. Proficiency level results for the 16 performances of our dataset, grouped based
on the dance style and distinguishing between apprentices and experts.
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can be also extracted for the cases of “single” and “double” where despite the
fact that the proficiency level of the experts does not supersede all apprentices
their superiority is evident in terms of average numbers. Finally, in the case
of “male” style we notice that the proficiency level of the experts is lower by
approximately 1.5% than the average score of all apprentices. This outcome can
be attributed to the low performance of our MEBN-based analysis framework
in effectively modeling one of the key-features characterizing the “male” style,
which is the detection of “isFootHigh”. Since the detection of this feature is
rather challenging for the signal analysis module, it seems that in this case
our MEBN-based model has failed to prevent the propagation of the first stage
analysis error to the final outcome. In our future work we plan to examine the
score of each step in correlation with the performance of the signal analysis
module so as to gain more insights.

8 Conclusions

In this paper we have shown how the theory of MEBNs can be used to combine
probabilistic analysis with first-order logic. The proposed framework was em-
ployed for the semantic analysis of Tsamiko traditional dances. The purpose of
semantic analysis was to recognize the specific style of the tsamiko dance based
on the special characteristics of the dance steps. The latter were extracted by
a motion analysis module relying on the body movements. Experiments demon-
strated that the classification efficiency of the proposed model is significantly
better than the standard Bayesian network case. Also, the model was evaluated
in terms of the ability to discriminate between expert and apprentice dancers,
giving encouraging results. In the future, we plan to augment the MEBN model
with information obtained from other than visual based modalities, such as
sound. Precisely, we expect that by exploiting the information from the mu-
sical piece accompanying the dance performances, we can improve the accuracy
of semantic analysis. However, the task of combining music and body movement
information is challenging, since it requires the identification of the musical fea-
tures that provide useful information (i.e., that have a semantic meaning for the
dance) and the detection of their dependency with the dance steps.
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