
Feedback Loop between High Level Semantics
and Low Level Vision

Varun K. Nagaraja Vlad I. Morariu Larry S. Davis
{varun,morariu,lsd}@umiacs.umd.edu

University of Maryland, College Park, MD, USA.

Abstract. High level semantic analysis typically involves constructing
a Markov network over detections from low level detectors to encode
context and model relationships between them. In complex higher order
networks (e.g. Markov Logic Networks), each detection can be part of
many factors and the network size grows rapidly as a function of the
number of detections. Hence to keep the network size small, a threshold
is applied on the confidence measures of the detections to discard the less
likely detections. A practical challenge is to decide what thresholds to
use to discard noisy detections. A high threshold will lead to a high false
dismissal rate. A low threshold can result in many detections including
mostly noisy ones which leads to a large network size and increased
computational requirements. We propose a feedback based incremental
technique to keep the network size small. We initialize the network with
detections above a high confidence threshold and then based on the high
level semantics in the initial network, we incrementally select the relevant
detections from the remaining ones that are below the threshold. We
show three different ways of selecting detections which are based on
three scoring functions that bound the increase in the optimal value of
the objective function of network, with varying degrees of accuracy and
computational cost. We perform experiments with an event recognition
task in one-on-one basketball videos that uses Markov Logic Networks.

1 Introduction

Computer vision systems are generally designed as feed-forward systems where
low level detectors are cascaded with high level semantic analysis. Low level de-
tectors for objects, tracks or short activities usually produce a confidence mea-
sure along with the detections. The confidence measures can sometimes be noisy
and hence a multitude of false detections are fed in to subsequent analysis stages.
To avoid these false detections, it is common practice to discard some detections
that are below a particular confidence threshold. Unfortunately, it is difficult to
reliably select a threshold a priori given a particular task. The threshold is gen-
erally selected to achieve a “reasonable” trade-off between detector precision and
recall, since it is generally not possible to find all true detections (high recall)
without also hallucinating false alarms (low precision).

High level analysis integrates multiple low level detections together using
semantics to discard false detections rather than simply thresholding detector

2 Varun K. Nagaraja, Vlad I. Morariu, Larry S. Davis

scores. For example, in an event recognition system for basketball, the low level
detections like shot missed and rebound events are related by high level rules of
the game which say that a shot missed event is followed by a rebound event. The
analysis of high level interactions between detections can improve the confidence
in the detections.

High level analysis typically involves constructing a Markov network over the
detections, where contextual relationships corresponding to high level knowledge
about the image or video are encoded as factors over combinations of detec-
tions [1–5]. A detection usually corresponds to one or more nodes in the network
and relationships between detections correspond to a factor. In Markov networks
of high order, each detection can be part of exponentially many instantiations
of a factor and the network size grows rapidly as a function of the number of
detections. The problem is further exacerbated by the inference process, whose
computational cost is related exponentially to the network complexity. When
many detections are hypothesized at low precision, the size of the Markov net-
work becomes unnecessarily high since the inference process sets most of the
detections to false.

We tackle the problem of keeping the network size small by incrementally
adding only those detections that are most likely to be inferred as true while the
rest of them are kept false. We achieve this by adding a feedback loop between
the high level and low level stages, where the high level semantics guides the
selection of relevant low level detections. There are several advantages to this
feedback loop. First, it can locally adjust the thresholds for low level detectors
based on the neighboring context. Second, it keeps the network size small and
the inference procedure tractable. And third, we can potentially save computa-
tion by selectively running the low level procedures like feature extraction and
classification only when needed.

The goal of our feedback based incremental technique is to perform infer-
ence and obtain the optimal solution of the objective function corresponding
to the full network (the network obtained when we include all the detections)
by unclamping only the relevant detections. We start with detections above a
high confidence threshold and clamp the remaining detections to false based on
the closed world assumption, the assumption that what is not known to be true
is false. We then incrementally select from the remaining detections below the
threshold to add to the network. Our proposed feedback loop involves a prin-
cipled mechanism by which we identify the detections that are most likely to
improve the objective function. Motivated by cluster pursuit algorithms [6] for
inference, we derive three scoring functions that bound the increase in the objec-
tive function with varying degrees of accuracy and computational cost. The first
score function yields the exact increase in the objective function, but it requires
that the detector has been run everywhere and that inference can be performed
exactly; the second bounds the change in the objective function, relaxing the
inference requirements; the third provides an even looser bound, but it is least
computationally intensive and does not require the low level detector to have
processed the candidate detections (which is why we call it the Blind Score).

Feedback Loop between High Level Semantics and Low Level Vision 3

We perform experiments on an event recognition task using one-on-one bas-
ketball videos. Morariu and Davis [3] used Markov Logic Networks (MLNs) on
this dataset to detect events like Shot Made, Shot Missed, Rebound etc. The
inputs are a set of event intervals hypothesized from low level detectors like the
tracks of objects. Using the feedback loop technique we show that we can suc-
cessfully select the most relevant event intervals that were earlier discarded due
to thresholding. The experiments show that our score functions can reach the
optimal value in fewer iterations with smaller network sizes when compared with
using just the low level confidence measures.

2 Related Work

High level context plays an important role in many vision systems like scene
segmentation [7], object detection in 2D [4, 8] and 3D [5] and event recognition
[1–3]. Usually these systems hypothesize a set of candidate detections using low
level detectors and then feed them into the high level model which assigns a
label to the candidate detections based on the context. Since low level detectors
are not perfect, a multitude of false positives propagate from the low level to
the high level. So a high level system is faced with the choice of either dealing
with a large model size or having a threshold for the inputs so that model size
is contained, but only by discarding true detections that happen to have low
confidences.

While many inference techniques work in an incremental fashion to tackle
the complexity issues, they do not necessarily behave as a feedback loop and
hence do not present with the advantages mentioned earlier. We mention few
works here that iteratively add detections while performing inference. In a scene
segmentation task, Kumar and Koller [7] hypothesize a set of regions in an image
through multiple bottom-up over-segmentations and exploit the high level energy
function to iteratively select input regions that are relevant for the task. Zhu et
al. [9] use the greedy forward search technique of Desai et al. [10] for inference
in their event recognition system. The inference algorithm of Desai et al. first
sets the output label for the inputs to the background class. Each input is then
scored based on the change in the objective function if it were allowed to be
labelled as a non-background class. The top scoring inputs are then iteratively
added until convergence. Our feedback loop technique is based on the same idea
of greedily reaching the MAP value as quickly as possible but we provide a
principled mechanism to performing inference in higher order networks. Also we
do not use it just as an incremental technique, but extract more insight from the
high level semantics to save computation for the low level module. An interesting
characteristic of our feedback technique is that we can potentially run low level
processes only when required during the inference.

Apart from the advantages of keeping the inference tractable, a feedback loop
can also be useful in other ways. Sun et al. [8] apply a feedback loop for object
detection with geometrical context. They jointly infer about the location of an
object, the 3D layout of the scene and the geometrical relationships between the

4 Varun K. Nagaraja, Vlad I. Morariu, Larry S. Davis

object and the 3D layout. The speciality of their feedback loop is that the object
detector module adaptively improves its accuracy in the confidence measures of
detections based on the feedback from the scene layout.

The idea of incrementally building a network can be approached in principled
ways, including Cutting Plane Inference (CPI) and Cluster Pursuit Algorithms.
Many inference problems can be cast as an Integer Linear Program (ILP) which
is well suited for CPI. CPI employs an iterative process where the ILP is kept
small by adding only the most violated constraints. However, CPI cannot be used
for our feedback loop technique where we need to selectively set some detections
to false. Sontag et al. [6] propose a cluster pursuit algorithm, an alternative
formulation that incrementally adds cliques of variables (called clusters) and op-
timizes the dual function, an objective function obtained through Lagrangian
relaxation that is an upper bound on the original (or primal) objective function.
Their score function for clusters is an approximation to the decrease in the dual
value of the objective function after adding a cluster, which is derived from the
message passing updates of Globerson and Jaakkola [11]. We use this idea of clus-
ter pursuit algorithm and derive a feedback technique for higher order Markov
networks. Our scoring functions use the dual value to calculate approximations
for the increase in the primal MAP value after adding a particular cluster.

3 Incremental Inference with Feedback Loop

We consider Markov networks defined over binary nodes x = {x1, . . . , xn} with
factors θc(xc) defined over cliques of nodes xc such that c1, . . . , ck ⊂ {1, . . . , n} .
The Maximum A Posteriori (MAP) problem is defined as finding an assignment
x∗ that maximizes the function

Φ(x;θ) =
∑
c∈C

θc(xc) (1)

The nodes xi are instantiated over candidate detections that are hypothesized
by low level detectors. For example, they can be object detections obtained from
running single-object detectors. The detector confidence scores output along with
the detections are used as unary factors for the nodes. The factors θc that involve
more than one detection represent the relationships between the detections. For
example, they can be spatial relationships like the placement of an object on top
of other objects. We obtain a MAP solution by performing inference, that will
ultimately label the hypothesized detections as true positives or false positives.

In Markov networks of high order, every newly added detection can be-
come combinatorially linked to other detections through the higher order factors.
When many detections are hypothesized at low precision, the size of the Markov
network becomes exponentially large and the inference process becomes compu-
tationally expensive even though many of the detections are going to be inferred
as false.

The goal of our incremental approach for inference is to maximize the func-
tion in (1) while keeping the network size small. We achieve this by unclamping

Feedback Loop between High Level Semantics and Low Level Vision 5

only those detections that are most likely to be labeled as true by the inference.
The rest of the detections are clamped to false, and while they always participate
in the objective function over the iterations, they are excluded from the network
during inference. We first perform inference with an initial network constructed
from high confidence detections while the rest are clamped to false. We then
calculate scores for the remaining detections based on the initial network. The
scores measure the change in the MAP value after adding a detection to the cur-
rent network. These scores are equivalent to locally adding an offset to the low
level detector confidences, based on the feedback, so that the detections appear
above the threshold. Another way to interpret this is that the thresholds get
locally modified to select the detections that are below the threshold. We then
unclamp a selected number of top detections and the process is repeated. When
the incremental procedure is stopped, the MAP solution to the current network
provides the true/false labels to the active detections and the remaining set of
detections are labeled as false.

3.1 Clusters under closed world assumption

We show that incrementally unclamping detections is equivalent to adding clus-
ters of factors. First we partition the Markov network into three clusters as
shown in Figure (1). Let f be the set of active detections that are currently in to
the network and xf be the nodes that are instantiated over only the detections
from f . The factor θf is defined over just the nodes xf . Let g be the set of one
or more detections that is to be unclamped in a given iteration and xg be the
nodes instantiated over at least one detection from g and any other detections
from f . The factor θg is defined over nodes xg and other nodes from xf that it
shares with θf . Let h be the remaining set of detections and xh be the nodes
that are grounded over at least one detection from h and any other detections
from f ∪ g. The factor θh is defined over xh and the other shared nodes with θf
and θg. The overall objective function expressed as a sum of these clusters is

Φ(x) = θf (xf1, xf2, xf3, xf4) + θg(xg1, xg2, xf2, xf3) (2)

+ θh(xh1, xg2, xf3, xf4)

Under the closed world assumption, any detection that is not included in
the Markov network due to thresholding is assumed to be false. To satisfy this
condition during the incremental process, we need to repartition the objective
function (2). During every iteration of the process, we have a Markov network
that includes a set f of active detections. The remaining detections from g and h
are not yet added and hence the nodes instantiated over these detections must be
clamped to false. The associated factors are projected on to the current network
after setting the nodes of the excluded detections to false. The resulting objective
function is

Φcur(xcur) = θf (xf1, xf2, xf3, xf4) + θg(xg1 = 0, xg2 = 0, xf2, xf3) (3)

+ θh(xh1 = 0, xg2 = 0, xf3, xf4)

6 Varun K. Nagaraja, Vlad I. Morariu, Larry S. Davis

xf1

xg1

xh1

xf2
xf3

xf4

xg2

θf

θg

θh

Fig. 1: The shared nodes between clusters in a partitioning of a Markov network.
The set f contains active detections that are currently in the network and xf

are the nodes that are instantiated over only the detections from f . The set of
factors θf (xf) is defined over the nodes xf . Similarly, g is the set of detections to
be unclamped at an iteration and h is the set of detections that are still clamped
to false.

To calculate a score for the set of detections in g, we need the objective
function to include these detections in the active set while all other remaining
detections from h are still clamped to false. This gives rise to the objective
function

Φ′(x) = θf (xf1, xf2, xf3, xf4) + θg(xg1, xg2, xf2, xf3) (4)

+ θh(xh1 = 0, xg2, xf3, xf4)

Hence, the cluster of factors that need to be added to the current network during
an iteration is given by

Φnew(xnew) = Φ′ − Φcur(xcur) (5)

= θg(xg1, xg2, xf2, xf3)− θg(xg1 = 0, xg2 = 0, xf2, xf3) (6)

− θh(xh1 = 0, xg2 = 0, xf3, xf4) + θh(xh1 = 0, xg2, xf3, xf4)

We now propose three score functions that measure the change in the MAP
value after adding the cluster Φnew(xnew) to Φcur(xcur), with varying degrees of
accuracy and computational cost.

3.2 Detection scoring function

We define the score for a detection based on the change in the MAP value after
adding the detection to the current network. If we are adding the detection in
g, the score is given by

score(g)exact = ∆Φ = max [Φcur(xcur) + Φnew(xnew)]−max [Φcur(xcur)] (7)

We also propose an upper bound to the exact score - score(g)upper, that
is derived based on the ideas of cluster pursuit algorithm of Sontag et al. [6].
We first obtain a dual of the MAP problem through Lagrangian relaxation.

Feedback Loop between High Level Semantics and Low Level Vision 7

The MAP problem is now equivalent to minimizing the dual objective function
since the dual value is an upper bound on the primal MAP value. We then use
the message passing algorithm of Globerson et al. [11] to obtain the message
update equations for the dual variables. Similar to Sontag et al. [6], we obtain
an approximation to the new dual value after adding a cluster to the current
network, by performing one iteration of message passing. Since the dual value is
an upper bound on the primal MAP value, the new decreased dual value gives
an upper bound for the exact score.

Proposition 1 (Upper Bound Score). An upper bound on the change in the
MAP value (7) after adding a cluster is given by

∆Φ ≤ score(g)upper (8)

=
1

|s|
∑
i∈s

max
xi

(
max
xcur\i

Φcur(xcur) + max
xnew\i

Φnew(xnew)

)
− maxΦcur(xcur) (9)

where s is the set of nodes in the intersection of the sets xcur and xnew.

The proof can be found in the supplementary material. The first term in the up-
per bound score is equivalent to averaging the MAP values obtained by enforcing
same assignment for one shared node at a time. The upper bound score can be
calculated efficiently using an inference algorithm that calculates max-marginals
with only a little computation overhead (eg. dynamic graph cuts [12]) and hence
can avoid performing repeated inference to calculate the exact score.

We derive another approximation to the score function called the Blind Score
since it is dependent only on the max-marginals of the current network and does
not involve the max-marginals of the new cluster to be added. It is obtained as
a lower bound to the upper bound score (not the exact score).

Proposition 2 (Blind Score). A lower bound to the upper bound score (9) is
given by

score(g)upper ≥ score(g)blind (10)

=
−1

|s|
∑
i∈s

∣∣∣∣ max
xi=0,xcur\i

Φcur(xcur)− max
xi=1,xcur\i

Φcur(xcur)

∣∣∣∣ (11)

where s is the set of nodes in the intersection of the sets xcur and xnew.

The proof can be found in the supplementary material. This score measures
the average of the difference in max-marginals of the shared nodes. It indicates
the susceptibility of the shared nodes in the current network to change their
values when a new cluster is added. The score is low if the absolute difference
in the max-marginals of the shared variables is high. This indicates that the
current network has low uncertainty (or strong belief) in the assigned values
to the shared variables. Similarly the score is high if the absolute difference in
the max-marginals is low. This indicates that the network has high uncertainty
in the assignments to the shared variables and that is where we need more
evidence/observations.

8 Varun K. Nagaraja, Vlad I. Morariu, Larry S. Davis

(a) A sequence of events which shows a shot being missed by Player1 and the
rebound received by Player2. When Player2 is clearing the ball, the track goes
missing for a while and hence the confidence measure for that clear event is low.

(b) Applying an initial threshold for Clear events does not include the highlighted
Clear event. However the corresponding Shot Missed event by Player1 is included
in the network. The absolute difference in the max-marginals represents certainty of
a node assignment and hence the negative of that difference represents uncertainty.
Here, darker colors indicate high uncertainty. When the Clear event is missing, the
network is highly uncertain right after the Shot Missed event.

(c) The node assignments become more certain after adding the missing Clear event.

Fig. 2: Visualization of the Feedback Loop

Since the blind score is independent of max-marginals of the new cluster,
it does not need the confidence score of a detection which is usually used as a
unary potential in the new cluster. This can save computation for the low level
detectors by avoiding expensive procedures like feature extraction and classifi-
cation throughout an image/video and instead run them only when it is needed
by the inference. However, the blind score needs to know the shared variables
(s) between the new cluster and the current network. This corresponds to de-
termining the locations where the detector would be run and these are usually
easy to obtain for sliding-window approaches. For example, to perform 3D object
detection, Lin et al. [5] first generate candidate cuboids without object class in-
formation which fixes the structure of their network and hence tells us the shared

Feedback Loop between High Level Semantics and Low Level Vision 9

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

ShotMade Hypotheses

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

ShotMissed Hypotheses

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

Rebound Hypotheses

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

Clear Hypotheses

Fig. 3: PR curves for the newly hypothesized events with continuous confidence
measures. The red star shows the operating point of Morariu et al. [3] in their
feed-forward approach.

variables for any cluster. They then extract features for generating unary poten-
tials and use it in a contextual model to assign class labels to the hypothesized
cuboids. If we use the blind score during the inference, we can potentially save
computation by not extracting features for cuboids that are likely to be labeled
as false. Figure (2) illustrates our feedback loop technique using an example from
the basketball dataset of Morariu et al. [3].

4 Experiments

4.1 One-on-One basketball dataset

The one-on-one basketball dataset used by Morariu et al. [3] contains tracks of
players and ball along with court annotations for seven basketball videos. The
are eight events of interest: Check, Out Of Bounds, Shot Made, Shot Missed,
Rebound, Clear, Dribble and Steal. They use a Markov Logic Network (MLN)
[13] to represent high level rules of the game which interrelates the various events.
The inputs to the MLN are candidate events hypothesized by low level detectors
which use the tracks of players and the ball.

4.2 Hypothesizing candidate events

In the MLN used by Morariu et al. [3], each event was hypothesized with just
two discrete confidence values. However, continuous confidence measures are
required for the events to better tie them to reality. We hypothesize a new

10 Varun K. Nagaraja, Vlad I. Morariu, Larry S. Davis

Morariu et al. [3] Ours
P R F1 P R F1

Check 0.84 0.89 0.87 0.86 0.90 0.90
Clear 0.86 0.61 0.71 0.81 0.82 0.82
Dribble 0.81 0.75 0.78 0.79 0.82 0.80
OutOfBounds 0.88 0.66 0.75 0.80 0.62 0.70
Rebound 0.62 0.72 0.67 0.82 0.84 0.83
ShotMade 0.64 0.86 0.73 0.87 0.87 0.87
ShotMissed 0.67 0.79 0.72 0.81 0.85 0.83
Steal 0.08 0.50 0.13 0.25 0.25 0.12
Overall 0.72 0.75 0.74 0.81 0.83 0.82

Table 1: Comparison of MLN Recognition Performance using all the hypothe-
sized intervals without thresholding. We can see that the continuous confidence
measures for input events play a significant role in improving the performance.

set of candidates with continuous confidence measures for the Shot Made, Shot
Missed, Rebound and Clear events and copied the other events (Check, Dribble,
Out Of Bounds, Steal) from their dataset. The confidences are obtained based
on observations like ball near a player, ball seen inside the hoop, player being
inside the two point area, etc. The PR curves of the event hypotheses is shown in
Figure (3). Since our modified observation model introduces higher uncertainty
in event interval endpoints, we also make few minor modifications to the original
MLN to make it robust to the overlapping endpoints of different event intervals.

We first test the importance of continuous confidences in the feed-forward
setting by feeding in all the hypothesized intervals to the MLN without thresh-
olding. The confidence measures are used as unary potentials for event predicates
in the MLN. Inference is then performed to obtain a MAP assignment for the
ground MLN, which labels the candidate events as true or false based on the high
level context of the game. The results are shown in Table (1). We see that the
confidence measures play a significant role in improving the event recognition
performance.

We have implemented our system as an extension of Alchemy [14], a software
package for probabilistic logic inference. The MAP problem for MLNs is framed
as an Integer Linear Program (ILP) [15] and we integrated our system with the
Gurobi ILP solver [16] for performing inference.

4.3 Incrementally adding events with feedback loop

We demonstrate the feedback loop technique by incrementally adding one type
of event, the Clear event. The confidence values for the Clear event are scaled
between 0.5 and 1. We initialize the network with all the event intervals except
for Clear which is thresholded at 0.75. We then run four iterations of the feed-
back loop and in each iteration, we add a certain number of top ranking Clear
events from the remaining set. There are five different kinds of scores that we
experiment with: score(g)exact, score(g)upper, score(g)blind, observation score
and random score. The observation and random scores are baseline approaches

Feedback Loop between High Level Semantics and Low Level Vision 11

21 28 35 42 49

Number of Clear Detections

6312

6314

6316

6318

6320
M
A
P
 V
a
lu
e

Video3

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

21 28 35 42 49

Number of Clear Detections

0.72

0.74

0.76

0.78

0.80

0.82

0.84

F1
 S
co
re

Video3

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

25 32 39 46 53

Number of Clear Detections

1

2

3

4

5

M
A
P
 V
a
lu
e

+9.021e3 Video4

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

25 32 39 46 53

Number of Clear Detections

0.74

0.76

0.78

0.80

F1
 S
co
re

Video4

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

29 37 45 53 61

Number of Clear Detections

1

2

3

4

5

M
A

P
 V

a
lu

e

+8.692e3 Video5

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

29 37 45 53 61

Number of Clear Detections

0.80

0.81

0.82

0.83

0.84

0.85

F1
 S
co
re

Video5

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

18 24 30 36 42

Number of Clear Detections

1

2

3

4

5

6

7

8

M
A

P
 V

a
lu

e

+5.844e3 Video6

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

18 24 30 36 42

Number of Clear Detections

0.70

0.72

0.74

0.76

0.78

0.80

F1
 S
co
re

Video6

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

Fig. 4: Feedback based scores achieve better solutions with fewer detections; We
apply an initial threshold on the Clear events and incrementally add the remain-
ing events using the feedback based scores. We measure the exact MAP value of
the Markov network along with the f1 score corresponding to the ground truth.
The plots start at the same initial value for all the five scoring methods since
the initial network contains the same set of events. Our feedback based scores
achieve better solutions with fewer detections than the baselines - observation
score and random score.

12 Varun K. Nagaraja, Vlad I. Morariu, Larry S. Davis

28 55 82 109 136

Number of Clear and Rebound Detections

6295

6300

6305

6310

6315

6320
M
A
P
 V
a
lu
e

Video3

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

28 55 82 109 136

Number of Clear and Rebound Detections

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

F1
 S
co
re

Video3

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

37 72 107 142 177

Number of Clear and Rebound Detections

9005

9010

9015

9020

9025

M
A
P
 V
a
lu
e

Video4

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

37 72 107 142 177

Number of Clear and Rebound Detections

0.55

0.60

0.65

0.70

0.75

0.80

F1
 S
co
re

Video4

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

41 75 109 143 177

Number of Clear and Rebound Detections

8665

8670

8675

8680

8685

8690

8695

M
A
P
 V
a
lu
e

Video5

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

41 75 109 143 177

Number of Clear and Rebound Detections

0.4

0.5

0.6

0.7

0.8

F1
 S
co
re

Video5

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

21 46 71 96 121

Number of Clear and Rebound Detections

5825

5830

5835

5840

5845

5850

M
A
P
 V
a
lu
e

Video6

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

21 46 71 96 121

Number of Clear and Rebound Detections

0.4

0.5

0.6

0.7

0.8

F1
 S
co
re

Video6

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

Fig. 5: We apply threshold on both the Rebound and Clear events for initial
network and then incrementally add both events at every iteration. We still
see that the exact score and the upper bound score reach better solutions with
fewer detections than the observation score. However, the blind score falls slightly
below the observation score since it depends only on the current network and
the context in the current network is weak due to fewer events.

Feedback Loop between High Level Semantics and Low Level Vision 13

to incrementally adding constants without using a feedback loop. The observa-
tion score is the confidence measure that comes from the low level detectors. By
adding constants based on their observation score, we are effectively reducing
the threshold uniformly throughout the video. The random score is basically
selecting a certain number of Clear events randomly and adding them without
looking at either the confidence measures or the context in the main network.

The results are shown in Figure (4). Among the seven videos from the dataset,
four of the them are large enough to add intervals in an iterative manner. We
show the plots of MAP value and also the f1 scores against the number of Clear
detections in the current network. The plots start at the same initial value for
all the five scoring methods since the initial network contains the same set of
detections. The goal of our feedback technique is to reach the final MAP value
in few iterations by adding only the relevant detections while keeping the rest
of them false. The MAP values increase faster with all of our three feedback
based score functions when compared to the observation score. The exact score
is the quickest followed by the upper bound score and then the blind score. The
plots of f1 scores also show that we can reach the best possible value with fewer
detections using feedback based score functions implying that they select the
most relevant events from the missing ones. We observe that the blind score
performs well when compared with the observation score. This indicates that
the context in the main network has a huge impact on what needs to be added
to improve the MAP value.

We also experiment with jointly thresholding the Rebound event along with
the Clear event. The Rebound events are scaled between -0.25 to 0.1 and we
choose a threshold of 0 for the initial network. The Clear events are scaled
between 0.5 to 1 and we choose a threshold of 0.75. We then proceed to iteratively
add the remaining Rebound and Clear events. The results in Figure (5) show
that the exact score and upper bound score can reach the best possible MAP
value and f1 score by adding fewer detections. However the plot for blind score
falls below that of the observation score. By increasing the threshold on the
Rebound event, the strength of context in the main network is weakened and
hence the blind score which is dependent on just the current network starts to
perform poorly.

4.4 Effect of initial threshold

To observe the effect of initial threshold, we experimented with four different
initial thresholds for the Rebound event. Like before, the Rebound events are
scaled between -0.25 to 0.1 and the Clear events are scaled between 0.5 to 1.
We choose a threshold of 0.75 for Clear events and vary the initial threshold
for Rebound events starting from the lowest, which is -0.25 (includes all the
Rebound events) and increase up to the value 0 which is high enough to weaken
the context. As the initial threshold is increased for the Rebound events, the
initial network becomes sparse weakening the context in the initial network.
Figure (6a) shows that a higher threshold decreases the MAP value achieved in
the first iteration of adding events to initial network. The blind score is affected

14 Varun K. Nagaraja, Vlad I. Morariu, Larry S. Davis

-0.25 -0.2 -0.1 0

Initial threshold for Rebound

9010

9012

9014

9016

9018

9020

9022

9024

9026

M
A
P
 v
a
lu
e

Iteration 1

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

(a) First iteration of adding Re-
bound and Clear events

-0.25 -0.2 -0.1 0

Initial threshold for Rebound

9014

9016

9018

9020

9022

9024

9026

M
A
P
 v
a
lu
e

Iteration 2

Exact Score

UpperBound Score

Blind Score

Obs Score

Random Score

(b) Second iteration of adding Re-
bound and Clear events

Fig. 6: Effect of initial threshold for the Rebound event in video 4; The confidence
scores for the Clear events are scaled between 0.5 to 1 and the Rebound events
between -0.25 to 0.1. We fix the initial threshold for Clear event at 0.75 and vary
the threshold for Rebound from -0.25 to 0. We observe that a higher threshold for
Rebound event in the initial network decreases the MAP value that is achieved
in the first iteration of adding Rebound and Clear events to the initial network.
The blind score continues to perform poorly in later iterations at higher initial
threshold due to weak context in the initial network. However, the exact score
and the upper bound score are still stable with respect to the initial threshold.

the most since it is dependent only on the current network. It continues to
perform poorly in later iterations (Figure (6b)) at higher initial threshold for
the Rebound event. Hence, it is important to select a reasonably high threshold
that allows enough number of events in the initial network without increasing
the network size.

5 Conclusion

We propose a computational framework for a feedback loop between high level
semantics and low level detectors in a computer vision system, where we use
the information in the high level model to select relevant detections from a
set of candidate hypotheses. We start with high confidence detections and then
iteratively add only those detections to the model that are most likely to be
labeled as true by the high level model. This helps us keep the model size small
especially in the presence of many noisy detections. We develop the framework
for higher order Markov networks and propose three feedback based scoring
functions to rank the detections. We show through our experiments on an event
recognition system that the feedback loop can construct smaller networks with
fewer detections and still achieve the best possible performance.
Acknowledgement: This research was supported by contract N00014-13-C-0164 from

the Office of Naval Research through a subcontract from United Technologies Research

Center.

Feedback Loop between High Level Semantics and Low Level Vision 15

References

1. Tran, S., Davis, L.: Event Modeling and Recognition using Markov Logic Networks.
In: ECCV. (2008)

2. Brendel, W., Fern, A., Todorovic, S.: Probabilistic Event Logic for Interval-based
Event Recognition. In: CVPR. (2011)

3. Morariu, V., Davis, L.: Multi-agent Event Recognition in Structured Scenarios.
In: CVPR. (2011)

4. Choi, M., Torralba, A., Willsky, A.: A Tree-based Context Model for Object
Recognition. PAMI 34 (2012) 240–52

5. Lin, D., Fidler, S., Urtasun, R.: Holistic Scene Understanding for 3D Object
Detection with RGBD Cameras. In: ICCV. (2013)

6. Sontag, D., Meltzer, T., Globerson, A.: Tightening LP Relaxations for MAP using
Message Passing. In: UAI. (2008)

7. Kumar, M.P., Koller, D.: Efficiently Selecting Regions for Scene Understanding.
In: CVPR. (2010)

8. Sun, M., Bao, S.Y., Savarese, S.: Object Detection using Geometrical Context
Feedback. IJCV (August 2012)

9. Zhu, Y., Nayak, N., Chowdhury, A.R.: Context-Aware Activity Recognition and
Anomaly Detection in Video. In: CVPR. (2013)

10. Desai, C., Ramanan, D., Fowlkes, C.: Discriminative Models for Multi-Class Object
Layout. In: ICCV. (2009)

11. Globerson, A., Jaakkola, T.: Fixing Max-Product: Convergent Message Passing
Algorithms for MAP LP-Relaxations. In: NIPS. (2007)

12. Kohli, P., Torr, P.: Measuring Uncertainty in Graph Cut Solutions - Efficiently
Computing Min-Marginal Energies Using Dynamic Graph Cuts. In: ECCV. (2006)

13. Richardson, M., Domingos, P.: Markov Logic Networks. Machine Learning (Jan-
uary 2006)

14. Kok, S., Sumner, M., Richardson, M., Singla, P.: The Alchemy System for Statis-
tical Relational (2009)

15. Noessner, J., Niepert, M., Stuckenschmidt, H.: RockIt: Exploiting Parallelism and
Symmetry for MAP Inference in Statistical Relational Models. In: AAAI. (2013)

16. Gurobi-Optimization-Inc.: Gurobi Optimizer Reference Manual (2013)

