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Before deriving the score functions, we first formulate the MAP inference
problem in binary Markov networks as an Integer Linear Program (ILP) follow-
ing the work of Globerson and Jaakkola [1]. The integer variables in the ILP are
then relaxed to continuous values giving us a relaxed linear program. We then
obtain the dual of this relaxed linear program and show a block co-ordinate de-
scent strategy that can be used to solve the dual through a “message passing
algorithm”. However we do not solve the the inference problem in the dual space.
We only use the message update equations for the dual variables to obtain our
score functions.

Sontag et al. [2] use these message update equations to rank clusters of vari-
ables in their cluster pursuit algorithm which incrementally adds clusters of vari-
ables to the objective function and solves the MAP problem in the dual space.
They rank the clusters using a score function that measures the decrease in the
dual value of the objective function when a cluster is added. We also derive our
score functions similar to their approach by using the message update equations.

While the derivations in [2,3] are provided for pairwise graphical models, we
derive them for general networks of any order.

1 Linear Programming Relaxation of the MAP problem

Let x = {x1, x2, . . . , xn} be a set of binary variables and C = {c : c ⊂ (1, 2, . . . n)}
be a set of clusters. Consider a function Φ(x;θ) defined as a sum of the functions
θc(xc) defined over the clusters1 of variables. The goal of Maximum A Posteriori
assignment (MAP) is to find an assignment that maximizes the function Φ(x;θ).

arg max
x

Φ(x;θ) = arg max
x

∑
c∈C

θc(xc) (1)

Let S = {c ∩ c′ : c, c′ ∈ C, c ∩ c′ 6= ∅} be the set of intersections between clusters
and S(c) = {s ∈ S : s ⊆ c} be the set of overlap sets for cluster c. The above
problem can be reformulated as an integer program by introducing indicator
variables µc(xc) for each cluster, µs(xs) for each intersection set between clusters

1 The analysis does not require an underlying graph and hence the clusters need not
correspond to cliques.
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and µi(xi) for each variable.

maximize
µ

∑
c∈C

∑
xc

µc(xc)θc(xc) (2)

subject to µc(xc) ∈ {0, 1} ∀c ∈ C (3)∑
xi

µi(xi) = 1 ∀i ∈ {1, . . . , n} (4)∑
xs\i

µs(xs) = µi(xi) ∀s ∈ S, i ∈ s (5)

∑
xc\s

µc(xc) = µs(xs) ∀c ∈ C, s ∈ S(c) (6)

The constraint in Equation (6) enforces that the cluster indicator variables must
be consistent with the intersection set indicator variable and the constraint in
Equation (5) enforces the consistency of an individual variable with all the in-
tersection sets that it is part of. The set of constraints on µ denoted as ML(C)
is known as the marginal polytope. This problem is completely equivalent to
the original problem 1 and is hence as hard as the original problem. In many
cases, this is NP-Hard and hence we obtain a linear programming relaxation by
allowing the indicator variables to take on non-integer values i.e. replace the con-
straints as µc(xc) ∈ [0, 1]. The optimum of the relaxed problem gives an upper
bound on the MAP value.

We will now find the dual problem of the relaxed linear program. Let λcs(xs)
and λsi(xi) be the dual variables corresponding to each of the constraints in
Equation (6) and Equation (5) respectively. The constraint in Equation (4) will
be kept implicit and used to simplify the Lagrangian later.

The Lagrangian is given by

L(µ,λ) =
∑
c∈C

∑
xc

µc(xc)θc(xc) +
∑
c∈C

∑
s∈S(c)

∑
xs

λcs(xs)

µs(xs)−
∑
xc\s

µc(xc)


+
∑
s∈S

∑
i∈s

∑
xi

λsi(xi)

µi(xi)−
∑
xs\i

µs(xs)

 (7)

After rearranging the terms to group by common indicator variables, we get

L(µ,λ) =
∑
c∈C

∑
xc

µc(xc)

θc(xc)− ∑
s∈S(c)

λcs(xs)


+
∑
s∈S

∑
xs

µs(xs)

 ∑
c:s∈S(c)

λcs(xs)−
∑
i∈s

λsi(xi)


+
∑
i

∑
xi

µi(xi)

[∑
s:i∈s

λsi(xi)

]
(8)
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We can now analytically maximize with respect to µ ≥ 0 and the implicit
constraint in Equation (4) to obtain the dual objective function,

J(λ) = max
µ

L(µ,λ)

=
∑
c∈C

max
xc

θc(xc)− ∑
s∈S(c)

λcs(xs)


+
∑
s∈S

max
xs

 ∑
c:s∈S(c)

λcs(xs)−
∑
i∈s

λsi(xi)

+
∑
i

max
xi

[∑
s:i∈s

λsi(xi)

]
(9)

The unconstrained dual program is now just

minimize
λ

J(λ) (10)

The above dual formulation is a simple extension of the technique adopted
by D. Sontag [4] where they derive the dual of the LP relaxation for pairwise
potentials. Another dual formulation, with constraints, can also be obtained by
following the method of Globerson and Jaakkola [1].

2 Block Coordinate Descent in the Dual

A block coordinate descent strategy can be used to minimize the dual objective.
At every iteration, the dual variables λcs(xs) are updated for one cluster while
the rest are kept fixed. Similarly the dual variables λsi(xi) are updated for one
intersection set at a time while the rest are kept fixed. The update messages for
the dual variables are given below.

From a cluster to one of its intersection sets:

λcs(xs) = −λ−cs (xs)−
∑
i∈s

λsi(xi)

+
1

|S(c)|
max
xc\s

θc(xc) +
∑

ŝ∈S(c)

λ−cŝ (xŝ)−
∑

ŝ∈S(c)

∑
i∈ŝ

λŝi(xi)

 (11)

where
λ−cs (xs) =

∑
ĉ6=c:s∈S(ĉ)

λĉs(xs) (12)

From an intersection set to one of its variables:

λsi(xi) = −λ−si (xi) +
1

|s|
max
xs\i

 ∑
c:s∈S(c)

λcs(xs) +
∑
î∈s

λ−s
î

(xî)

 (13)

where
λ−si (xi) =

∑
ŝ6=s:i∈ŝ

λŝi(xi) (14)

The derivation of the update messages can be found in Section 5.
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3 Upper Bound Score - Proof of Proposition 1

Proposition 1 (Upper Bound Score). An upper bound on the change in the
MAP value after adding a cluster is given by

∆Φ ≤ 1

|s|
∑
i∈s

max
xi

(
max
xcur\i

Φcur(xcur) + max
xnew\i

Φnew(xnew)

)
− maxΦcur(xcur)

(15)

where s is the set of nodes in the intersection of the sets xcur and xnew.

Proof. In the block coordinate descent algorithm, during each iteration of the
minimization procedure, the dual variables λcs(xs) are updated for one cluster
c and all its intersection sets s ∈ S(c) while the rest are kept fixed. Similarly the
dual variables λsi(xi) are updated for one intersection set s and all the variables
in this set (i ∈ s) while the rest are kept fixed.

We calculate the scores for one cluster at a time while setting the dual vari-
ables for other clusters to zero. Let θf (xf ) be the cluster of potential functions
of the current network and θg(xg) be the cluster of potential functions of the
new cluster. We start with all the dual variables set to zero. Since we con-
sider only two clusters f and g, the number of intersection sets is just one i.e.
|S(f)| = |S(g)| = 1. The first update (Equation 11) is performed to the dual
variable λfs(xs) while setting the rest of the dual variables to zero.

λfs(xs) = max
xf\s

[θf (xf )] (16)

This is followed by an update to the dual variable λgs(xs) given by

λgs(xs) = −λfs(xs) + max
xg\s

[θg(xg) + λfs(xs)] = max
xg\s

θg(xg) (17)

Finally we update (Equation 13) the dual variables λsi(xi)

λsi(xi) =
1

|s|
max
xs\i

[λfs(xs) + λgs(xs)] (18)

We now measure the value of the dual objective function before and after
updating the dual variables. The dual objective function (Equation 9) in our
case is given by

J = max
xf

[θf (xf )− λfs(xs)] + max
xg

[θg(xg)− λgs(xs)]

+ max
xs

[
λfs(xs) + λgs(xs)−

∑
i∈s

λsi(xi)

]
+
∑
i∈s

max
xi

[λsi(xi)] (19)
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When we initialize the dual variables to zero, the value of the dual objective
function is

J (0) = max
xf

θf (xf ) + max
xg

θg(xg) (20)

After performing one update for the dual variables λfs(xs) (Equation 16) and
λgs(xs) (Equation 17), we can see that

max
xf

[θf (xf )− λfs(xs)] = max
xf

[
θf (xf )−max

xf\s
[θf (xf )]

]
≤ 0 (21)

max
xg

[θg(xg)− λgs(xs)] = max
xg

[
θg(xg)−max

xg\s
[θg(xg)]

]
≤ 0 (22)

Also substituting for λsi(xi) from Equation (18) gives us

max
xs

[
λfs(xs) + λgs(xs)−

∑
i∈s

λsi(xi)

]

= max
xs

[
λfs(xs) + λgs(xs)−

∑
i∈s

1

|s|
max
xs\i

[λfs(xs) + λgs(xs)]

]
≤ 0 (23)

Hence the dual value after performing one update of the dual variables is

J (1) ≤
∑
i∈s

max
xi

[λsi(xi)] (24)

To avoid performing costly max-marginalization over the intersection set s
to calculate λfs(xs) and λgs(xs), we can approximate λsi(xi) as follows

λsi(xi) =
1

|s|
max
xs\i

[λfs(xs) + λgs(xs)] (25)

≤ 1

|s|

(
max
xs\i

λfs(xs) + max
xs\i

λgs(xs)

)
(26)

=
1

|s|

(
max
xf\i

θf (xf ) + max
xg\i

θg(xg)

)
(27)

We still need to perform max-marginalization, but only over one variable at a
time. This gives us a new upper bound on the dual value

J (1) ≤ 1

|s|
∑
i∈s

max
xi

[
max
xf\i

θf (xf ) + max
xg\i

θg(xg)

]
(28)

Since the dual value is an upper bound on the primal MAP value, we have

max
x

[θf (xf ) + θg(xg)] ≤ 1

|s|
∑
i∈s

max
xi

[
max
xf\i

θf (xf ) + max
xg\i

θg(xg)

]
(29)
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Substituting for cluster θf (xf ) as Φcur(xcur) and θg(xg) as Φnew(xnew) we
can write an upper bound for the change in the primal MAP value after adding
a cluster as

∆Φ ≤ 1

|s|
∑
i∈s

max
xi

(
max
xcur\i

Φcur(xcur) + max
xnew\i

Φnew(xnew)

)
− maxΦcur(xcur)

(30)

4 Blind Score - Proof of Proposition 2

Proposition 2 (Blind Score). A lower bound to the upper bound score (15)
is given by

score(g)upper ≥ score(g)blind (31)

=
−1

|s|
∑
i∈s

∣∣∣∣ max
xi=0,xcur\i

Φcur(xcur)− max
xi=1,xcur\i

Φcur(xcur)

∣∣∣∣ (32)

where s is the set of nodes in the intersection of the sets xcur and xnew.

Proof.

score(g)upper

=
1

|s|
∑
i∈s

max
xi

(
max
xcur\i

Φcur(xcur) + max
xnew\i

Φnew(xnew)

)
− maxΦcur(xcur) (33)

=
1

|s|
∑
i∈s

max

{(
maxxcur\i,xi=0 Φcur(xcur) + maxxnew\i,xi=0 Φnew(xnew)

)
,(

maxxcur\i,xi=1 Φcur(xcur) + maxxnew\i,xi=1 Φnew(xnew)
) }

− maxΦcur(xcur) (34)

=
1

|s|
∑
i∈s

δi (35)

where

δi = max

{(
max

xcur\i,xi=1
Φcur(xcur) + max

xnew\i,xi=1
Φnew(xnew)−maxΦcur(xcur)

)
,(

max
xcur\i,xi=0

Φcur(xcur) + max
xnew\i,xi=0

Φnew(xnew)−maxΦcur(xcur)

)}
(36)

Let us assume that the assignment to some xi = 1 in maxΦcur(xcur). Then
δi becomes

δi = max

{
max

xnew\i,xi=1
Φnew(xnew),(

max
xcur\i,xi=0

Φcur(xcur) + max
xnew\i,xi=0

Φnew(xnew)− max
xcur\i,xi=1

Φcur(xcur)

)}
(37)
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We now assume that maxxnew\i,xi=0 Φnew(xnew) ≥ 0, which can be enforced by
adding a positive offset to Φnew(xnew). A lower bound for δi is then

δi ≥
(

max
xcur\i,xi=0

Φcur(xcur)− max
xcur\i,xi=1

Φcur(xcur)

)
(38)

Since the maximizing assignment to Φcur(xcur) had xi = 1, any other assignment
with xi = 0 must be less than the maxima. Hence,

δi ≥ −
∣∣∣∣ max
xcur\i,xi=0

Φcur(xcur)− max
xcur\i,xi=1

Φcur(xcur)

∣∣∣∣ (39)

A similar argument can be made if the assignment to an xi = 0. Hence we
can put all the δi together to obtain a lower bound on the upper bound score

score(g)upper =
1

|s|
∑
i∈s

δi (40)

≥ −1

|s|
∑
i∈s

∣∣∣∣ max
xcur\i,xi=0

Φcur(xcur)− max
xcur\i,xi=1

Φcur(xcur)

∣∣∣∣ (41)

5 Message Update Equations

Theorem 1. The message update in Equation (11) for the dual variable λcs(xs)
corresponds to block co-ordinate descent on the dual objective J(λ).

Proof. The proof follows from the ideas in the derivation of the optimality of the
MPLP update from [3]. It shows that the value of the dual objective function
reaches the minima in the variable λcs after performing a single update to it.

Consider fixing all λcs(xs) except for one cluster c. The part of the objective
function that is dependent on the free variables is given by

J̄(λ) = max
xc

θc(xc)− ∑
s∈S(c)

λcs(xs)


+
∑

s∈S(c)

max
xs

 ∑
c:s∈S(c)

λcs(xs)−
∑
i∈s

λsi(xi)

 (42)

Let

λ−cs (xs) =
∑

ĉ6=c:s∈S(ĉ)

λĉs(xs) (43)
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then J̄(λ) can be rewritten as

J̄(λ) = max
xc

θc(xc)− ∑
s∈S(c)

λcs(xs)


+
∑

s∈S(c)

max
xs

[
λcs(xs) + λ−cs (xs)−

∑
i∈s

λsi(xi)

]
(44)

= Ac(xc) +
∑

s∈S(c)

As(xs) (45)

The lower bound on J̄(λ) is given by

J̄(λ) ≥ max
xc

θc(xc)− ∑
s∈S(c)

λcs(xs)


+

∑
s∈S(c)

[
λcs(xs) + λ−cs (xs)−

∑
i∈s

λsi(xi)

] (46)

= max
xc

θc(xc) +
∑

s∈S(c)

λ−cs (xs)−
∑

s∈S(c)

∑
i∈s

λsi(xi)

 = B (47)

If we apply the update messages in Equation (11) to Ac(xc), we get

Ac(xc) = max
xc

θc(xc)− ∑
s∈S(c)

λcs(xs)

 (48)

= max
xc

θc(xc) +
∑

s∈S(c)

λ−cs (xs) +
∑

s∈S(c)

∑
i∈s

λsi(xi)

− 1

|S(c)|
∑

s∈S(c)

max
xc\s

θc(xc) +
∑

ŝ∈S(c)

λ−cŝ (xŝ)−
∑

ŝ∈S(c)

∑
i∈ŝ

λŝi(xi)

 (49)

≤ max
xc

θc(xc) +
∑

s∈S(c)

λ−cs (xs) +
∑

s∈S(c)

∑
i∈s

λsi(xi)


− 1

|S(c)|
∑

s∈S(c)

max
xc

θc(xc) +
∑

ŝ∈S(c)

λ−cŝ (xŝ)−
∑

ŝ∈S(c)

∑
i∈ŝ

λŝi(xi)

 (50)

= 0 (51)
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Similarly by applying the update to Ax(xs), we get

As(xs) = max
xs

[
λ−cs (xs)−

∑
i∈s

λsi(xi) + λcs(xs)

]
(52)

= max
xs

[
λ−cs (xs)−

∑
i∈s

λsi(xi)− λ−cs (xs)−
∑
i∈s

λsi(xi)

+
1

|S(c)|
max
xc\s

θc(xc) +
∑

ŝ∈S(c)

λ−cŝ (xŝ)−
∑

ŝ∈S(c)

∑
i∈ŝ

λŝi(xi)

 (53)

=
1

|S(c)|
max
xc

θc(xc) +
∑

ŝ∈S(c)

λ−cŝ (xŝ)−
∑

ŝ∈S(c)

∑
i∈ŝ

λŝi(xi)

 (54)

=
B

|S(c)|
(55)

Therefore

J̄(λ) = Ac(xc) +
∑

s∈S(c)

As(xs) ≤ B (56)

whereas we earlier showed that B is the lower bound on J̄(λ). Hence J̄(λ) = B
which implies that the update equation does indeed minimize the dual objective
in the coordinates λcs(xs).

Theorem 2. The message update in Equation (13) for the dual variable λsi(xi)
corresponds to block co-ordinate descent on the dual objective J(λ).

Proof. Consider fixing all λsi(xi) except for one intersection set s. The part of
the objective function that is dependent on the free variables is given by

J̄(λ) = max
xs

 ∑
c:s∈S(c)

λcs(xs)−
∑
i∈s

λsi(xi)

+
∑
i∈s

max
xi

[∑
s:i∈s

λsi(xi)

]
(57)

= As(xs) +
∑
i∈s

Ai(xi) (58)

Let

λ−si (xi) =
∑

ŝ6=s:i∈ŝ

λŝi(xi) (59)

The lower bound on J̄(λ) is given by

J̄(λ) ≥ max
xs

 ∑
c:s∈S(c)

λcs(xs) +
∑
i∈s

λ−si (xi)

 = B (60)
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When we apply the update in Equation (13) to As(xs) we get,

As(xs) = max
xs

 ∑
c:s∈S(c)

λcs(xs)−
∑
i∈s

λsi(xi)

 (61)

= max
xs

 ∑
c:s∈S(c)

λcs(xs) +
∑
i∈s

λ−si (xi)

− 1

|s|
∑
i∈s

max
xs\i

 ∑
c:s∈S(c)

λcs(xs) +
∑
î∈s

λ−s
î

(xî)

 (62)

≤ max
xs

 ∑
c:s∈S(c)

λcs(xs) +
∑
i∈s

λ−si (xi)


− 1

|s|
∑
i∈s

max
xs

 ∑
c:s∈S(c)

λcs(xs) +
∑
î∈s

λ−s
î

(xî)

 (63)

= 0 (64)

Similarly by applying the update to Ai(xi), we get

Ai(xi) = max
xi

[
λsi(xi) + λ−si (xi)

]
(65)

= max
xi

 1

|s|
max
xs\i

 ∑
c:s∈S(c)

λcs(xs) +
∑
î∈s

λ−s
î

(xî)

 (66)

=
1

|s|
max
xs

 ∑
c:s∈S(c)

λcs(xs) +
∑
î∈s

λ−s
î

(xî)

 (67)

=
B

|s|
(68)

Therefore we get

J̄(λ) = As(xs) +
∑
i∈s

Ai(xi) ≤ B (69)

But we showed that J̄(λ) ≥ B. Hence J̄(λ) = B and the update equation
minimizes the dual objective in the coordinates λsi(xi).
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