
MAP-Inference on Large Scale Higher-Order
Discrete Graphical Models by Fusion Moves

Jörg Hendrik Kappes*, Thorsten Beier* and Christoph Schnörr

Heidelberg Collaboratory for Image Processing, Heidelberg University

Abstract. Many computer vision problems can be cast into optimiza-
tion problems over discrete graphical models also known as Markov or
conditional random fields. Standard methods are able to solve those prob-
lems quite efficiently. However, problems with huge label spaces and or
higher-order structure remain challenging or intractable even for approx-
imate methods.
We reconsider the work of Lempitsky et al. 2010 on fusion moves and ap-
ply it to general discrete graphical models. We propose two alternatives
for calculating fusion moves that outperform the standard in several ap-
plications. Our generic software framework allows us to easily use differ-
ent proposal generators which spans a large class of inference algorithms
and thus makes exhaustive evaluation feasible.
Because these fusion algorithms can be applied to models with huge
label spaces and higher-order terms, they might stimulate and support
research of such models which may have not been possible so far due to
the lack of adequate inference methods.

1 Introduction

Many computer vision problems can be cast into optimization problems over
discrete graphical models also known as Markov or conditional random fields.
While standard methods are able to solve those problems quite efficiently, prob-
lems with huge label spaces and or higher-order structure are still challenging
and even approximate methods do not scale well.

Consequently, research has focused on models with moderate order and small
label spaces [1–3], models with huge but decomposable label spaces [4], or higher-
order models that can be reformulated into second order models with additional
auxiliary variables [5–7].

A more generic approach to deal with large label spaces has been suggested
by Lempitsky et al. [8]. Starting with an initial labeling, they generate an alter-
native proposal and search for a better labeling within the subspace of labeling
spanned by the current and the proposed labeling. This step is called move,
since the current labeling is moved within the subspace without increasing the
energy. Except for some special cases, e.g. [9], finding the optimal move for a
given proposal is NP-hard. The common way to calculate a move exploits that
the problem is binary and QPBO is used to calculate a labeling with a persis-
tency certificate [10, 11]. For all persistent variables we can change the current

* these authors contributed equally to this work

2 Jörg H. Kappes, Thorsten Beier and Christoph Schnörr

label to the persistent one and do not increase the energy. This procedure has
been generalized to higher-oder problems by reducing the higher-order binary
subproblems two second-order ones and additional auxiliary variables [12–14].

A complementary part of fusion algorithms that need to be specified is the
generation of proposal. Proposal generators can be generic or problem specific.
As discussed in [8] a good proposal should have a high quality and the proposals
should be diverse among each other to allow various moves.

Except for fusion with simple α-proposals in [1], fusion moves have not been
considered in recent benchmarks [2, 1, 15]. This might be caused by the lack of
a publicly available implementations and the option to choose any generator.
Likewise, in many applications fusion moves with less generic problem specific
proposal generators have been used.
Contribution: (1) The first publicly available generic implementation of fusion
moves. It supports user defined proposal generators and is embedded into the
OpenGM-Library [16]. (2) Two novel methods for calculation fusion moves that
outperform QPBO in several settings. (3) We show how improved any-time
performance of state-of-the-art methods can be obtained by embedding them
into the fusion framework. (4) A detailed evaluation of proposal generators and
fusion algorithms on recent published and new benchmark datasets.
Outline: We start in Sec. 2 with the mathematical formulation of the prob-
lem and fusion moves and present in Sec. 3 novel and state-of-the-art methods
to calculate them. In Sec. 4 we present some generic proposal generators. In
the experimental section 5 we evaluate the performance of fusion-methods and
proposal generators on recent benchmark datasets and conclude in Sec. 6.

2 Problem Formulation

We assume that our discrete energy minimization problem is specified on a factor
graph G = (V, F,E), a bipartite graph with finite sets of variable nodes V and
factors F , and a set of edges E ⊂ V × F that defines the relation between
those [17, 18]. The variable xa assigned to the variable node a ∈ V lives in a
discrete label-space Xa and notation XA, A ⊂ V , stands for a Cartesian product
⊗a∈AXa. Each factor f ∈ F has an associated function ϕf : Xne(f) → R, where
ne(f) := {v ∈ V : (v, f) ∈ E} defines the variable nodes connected to the
factor f . The functions ϕf will also be called potentials. We define the order of
a factor by its degree |ne(f)|, e.g. pairwise factors have order 2, and the order
of a model by the maximal degree among all factors. The energy function of the
discrete labeling problem is then given as

J(x) =
∑
f∈F

ϕf (xne(f)), (1)

where the assignment of the variable x is also known as the labeling. We consider
the problem to find a labeling with minimal energy, i.e.

x̂ ∈ arg minx∈XJ(x). (2)

MAP-Inference on Large Graphical Models by Fusion Moves 3

Algorithm 1 Fusion Based Algorithms

1: procedure Fusion-Based-Inference(GEN,FUSE,J ,X)
2: x0 ← initial state form X
3: n← 0 . Number of moves
4: m← 0 . Number of moves without progress
5: while m < mmax and n < nmax do
6: n← n + 1
7: x′ ← GEN(xn−1, J,X) . Generate proposal
8: if J(xn−1) ≤ J(x′) then
9: xn ← FUSE(xn−1, x′, J)

10: else
11: xn ← FUSE(x′, xn−1, J)
12: end if
13: if J(xn) ≤ J(xn−1) then
14: m← 0 . Reset counter
15: else
16: m← m + 1 . Increment counter
17: end if
18: end while
19: return xn

20: end procedure

This labeling is a maximum-a-posteriori (MAP) solution of a Gibbs distribu-
tion p(x) = exp{−J(x)}/Z defined by the energy J(x). Here, Z normalizes the
distribution.

To avoid the large labeling space X, fusion moves optimize only over the
subspace X ′ ⊂ X, which is defined as the set of labelings spanned by the current
xcur and proposed xpro labeling,

X ′(xcur, xpro) = {x ∈ X | ∀i : xi ∈ {xcur
i , xpro

i }} . (3)

The set of all feasible moves, i.e. that decrease the energy, is given by

XMOVE(xcur, xpro) = {x ∈ X ′ | J(x) ≤ J(xcur)} . (4)

Since finding the optimal move (optimal labeling in XMOVE) is NP-hard we
can not expect to find the optimal move in polynomial time. This is why we
define and consider fusion-operators FUSE(x, x′, J) which return an element of
XMOVE(x, x′).

Given a proposal generator GEN, a fusion-operator FUSE, an objective func-
tion J , and a state-space X we can define the class of Fusion-Algorithms, as
shown in Alg. 1. They all monotonically decrease the energy. As stopping con-
dition we will use the maximal number of moves nmax as well as the maximal
length of a sequence of non-improving moves mmax. Algorithms in this family
are distinguished by the fusion operation and the proposal generator that they
employ, which we will discuss in the next two sections.

4 Jörg H. Kappes, Thorsten Beier and Christoph Schnörr

Algorithm 2 Fusion Moves

Require: J(x) ≤ J(x′)
Ensure: J(x̂) ≤ J(x)

1: procedure FUSEQPBO(x, x′, J)
2: X̄ ← {x̄ ∈ X|∀i : x̄i ∈ {xi, x

′
i}} . Build Boolean subspace of X

3: x̂← QPBO(J(·), X̄) . Solve relaxation for persistent states
4: x̂i ← xi ∀x̂i = 1

2
. Replace non-persistent states

5: return x̂
6: end procedure

7: procedure FUSELF2(x, x
′, J)

8: X̄ ← {x̄ ∈ X|∀i : x̄i ∈ {xi, x
′
i}} . Build Boolean subspace of X

9: LazyF lipper.setStartingPoint← x . Set starting point
10: LazyF lipper.searchDepth← 2 . Set search depth
11: x̂← LazyF lipper(J(·), X̄) . Lazy Flipper improves the current state
12: return x̂
13: end procedure

14: procedure FUSEILP(x, x′, J)
15: X̄ ← {x̄ ∈ X|∀i : x̄i ∈ {xi, x

′
i}} . Build Boolean subspace of X

16: RILP.setStartingPoint← x . Add the current best into the solution pool
17: x̂← RILP (J(·), X̄) . ILP improves the current state
18: return x̂
19: end procedure

20: procedure FUSEBASE(x, x′, J)
21: return arg minx̄∈{x,x′}J(x̄)
22: end procedure

3 Fusion Move Operators

As discussed in the previous section an elementary part of fusion-algorithms
is the fusion-operator FUSE. In this section we discuss different operators and
present two novel fusion-operators. The corresponding pseudo code is shown in
Alg. 2. The returned labeling is guaranteed to have an energy lower or equal to
the energy of the current labeling and the proposed labeling.

QPBO Fusion: The standard fusion-operator FUSEQPBO was proposed by
Lempitsky et al. [8] and generalized to the higher-order case by Ishikawa [12]
and Fix et al. [13], which reduce in a preprocessing step the higher-order sub-
problem into a second-order one. For the second-order problem the local polytope
relaxation is solved by QPBO [11] and persistency is used to improve the current
best labeling. While this can be done in polynomial time, there is in general no
guaranty that we obtain persistency for any variable. However, empirically this
fusion-operator works well and is therefore widely considered as state-of-the-art.

MAP-Inference on Large Graphical Models by Fusion Moves 5

Lazy Flipping Fusion: An alternative ansatz is to improve the current labeling
by local flipping. In the case when only one variable is flipped at the same time
this boils down to ICM [19]. Lempitsky et al. [8] show that ICM-Fusion does
not work well. However, Andres et al. have suggested a generalization of ICM
to multi-variable flipping, called Lazy Flipper [20]. Lazy Flipper can handle
higher-order terms directly, hence order reduction is not required. In the present
work we use lazy flipping with search depth two defining the fusion-operator
FUSELF2 and initialize it with the current best labeling. The initial labeling is
sequentially improved by flips of less or equal than two variables until no further
improvement is possible. Obviously, the final labeling will not be worse than
the initial one. While Lazy Flipping does not require the existence of persistent
variables, it stops if improvements can only be obtained by flipping too many
variables simultaneously.
Optimal Fusion: Recently, Kappes et al. [21] have shown that many discrete
optimization problems in computer vision can be solved exactly by first reducing
the problem size by partial optimality and than solving the smaller remaining
problem by advanced methods like integer linear programming (ILP). In the case
that the remaining problem splits in several connected components, those can
be handled independently which gives additional speed up. The fusion-operator
FUSEILP is defined by using QPBO [11] with the reduction of Fix [13] for higher-
order models to obtain partial optimality and solving the connected components
of the remaining problem by the Cplex ILP-solver [22]. By adding the current
best solution in the solution pool of the ILP solver it is guaranteed that the final
solution will not be worse. Furthermore, this provides a good starting point and
an upper bound. Since the remaining ILPs can still be quite hard, we interrupted
the solver after 100 seconds and return the best labeling from the solution pool.
Consequently, in our experiments a move is optimal if it is calculated within 100
seconds.
Base Fusion: To determine the impact of fusion-operations, we also define a
naive operator FUSEBASE, which returns the better of the two labelings

x̄ = arg minx̄∈{x,x′}J(x̄). (5)

This fusion-operator does only profit from the proposal quality and not from
their diversity.

4 Generating Proposals

The second major component of a fusion-algorithm is the generation of propos-
als. On the one hand, proposals should be of high quality with respect to the
energy function J(·). On the other hand, they should be also diverse among
each other and cheap to calculate. Proposal generators can be clustered into
four groups: (i) inference-based generators, (ii) randomized generators, (iii) de-
terministic generators, and (iv) application specific generators.

Pseudo-code for (i)–(iii) is given in Alg. 3. We do not consider application
specific generators in the present work because they are none generic and require
more data than just the objective function.

6 Jörg H. Kappes, Thorsten Beier and Christoph Schnörr

Algorithm 3 Proposal Generators

1: procedure RandomGen(x, J,X)
Require: ∀i ∈ V : Pi(xi) . Shared for all moves
2: for i ∈ V do
3: x̂i ∼Pi(xi) Xi

4: end for
5: return x̄
6: end procedure

7: procedure InfGen(x, J,X)
Require: INF ← INF (J,X) . Shared for all moves
8: INF.runOneStep
9: X̄ ← INF.getLabeling

10: return x̄
11: end procedure

12: procedure DeterministicGen(x, J,X)
Require: n← 0 . Shared for all moves
13: X̄ ← gen(x, n,X)
14: n← n + 1
15: return x̄
16: end procedure

Inference-Based Generators: For the cartographic label placement problem
Lempitsky et al. [8] used the labelings that Loopy Belief Propagation (LBP)
generates after each iteration as proposals. They obtained a result superior to
state-of-the-art for this problem instance.

This result was not further generalized or tested for other problems in later
work. However, it is very appealing since methods based on linear programming
relaxations like TRWS [23], MPLP [24] or approximative message passing meth-
ods like LBP [25], BPS [23] provide after each iteration good proposals close
to the optimal one. The diversity is generated by the heuristic rounding proce-
dure. Fusion moves can profit from this diversity and overcome failures caused
by greedy rounding if this failures are not present in all iterations.

We use the visitor concept of OpenGM [16] and inject the fusion operation
after each algorithmic unit. This allows using any OpenGM-inference method as
proposal generator with a few lines of code. In the present work we show results
for TRWS, MPLP, BPS and LBP with different damping. MPLP and LBP can
also deal with higher-order problems.

Randomized Generators: A general way to generate diverse proposals is to
sample those from a distribution P . The disadvantage of such generators is
that the proposals usually have bad quality. One can try to alleviate this by
prior knowledge. We consider the following sampling distributions, which all
defined independently for each variable. For problems with arbitrary structure

MAP-Inference on Large Graphical Models by Fusion Moves 7

we consider uniform random distributions (PU)

Pi(xi) =
1

|Xi|
, (6)

and local marginal approximations (PL) which estimate for a given temperature
T first order marginals from unary terms f̄i by

Pi(xi) ∝ exp{−T · f̄i(xi)}. (7)

For T → 0 the distribution becomes uniform and for T → ∞ all its mass
concentrated in the local mode. When local data terms a weak or misleading the
distribution is not helpful.

We also follow the idea used in [12, 13], which blur the current labeling on the
image grid and sample proposals around the ”blurred labeling”. Of course this
is only useful if labels have the same meaning for all variables. Empirically we
observe no advantage by repeating the blurring in each iteration if the standard
variation of the Gaussian blur is large. We suggest to blur the unary terms
instead of the labeling, this is also more robust to missing unary terms and
uncertain information. Furthermore, blurring has to be done only once. For each
variable we obtain a Gaussian blurred unary term label-wise

f̄Bi (xi) = GaussianBlurσ(f̄(xi))i, (8)

x̄Bi = arg maxxi
f̄Bi (xi). (9)

As in [12, 13] we sampling uniformly (PUB) from

Pi(xi) ∝
{

1 if even round or xi ∈ [x̄Bi − 1.5σ, x̄Bi + 1.5σ]
0 else

(10)

Alternatively we can use the blurred unaries for a local blurred marginal approx-
imations (PLB) as in the non-blurred case

Pi(xi) ∝ exp{−T · f̄Bi (xi)}. (11)

Deterministic Generators: Deterministic generators provide very simple pro-
posals with low workload. The proposals depend on the current labeling x and
iteration n. For deterministic generators we determine the number of moves with
no improvements mmax for which immediate termination will have no effect on
the final solution. An example is the generalization of α-Expansion [26] where
mmax = maxi∈V |Xi|. The proposal x̂ in iteration n takes the label α(n) = n
mod mmax if possible, i.e.

x̂i =

{
α(n) if α(n) ∈ Xi

xi else
(12)

Another example are αβ-Swaps [26] which can be generalized to arbitrary dis-
crete problems. Here in each step n variables that have the labels α(n) and

8 Jörg H. Kappes, Thorsten Beier and Christoph Schnörr

Table 1: Overview of the used models and the number of variables (# vari-
ables), number of labels (# labels), model order (order), number of instances (#
instances) and temperature used for determine local marginals.

modelname # variables # labels order # instances used temperature

Field of Experts 38801 256 4 100 0.1
MRF Inpainting 65536 256 2 2 0.001
Protein Folding 1972 503 2 21 0.1
Protein Prediction 14441 2 3 8 1
DTF Inpainting 17856 2 2 100 0.1
Matching 21 21 2 4 0.1
Cell Tracking 41134 2 9 1 0.1

β(n) are changed to β(n) and α(n) if possible, respectively. Here mmax =
0.5 ·maxi∈V |Xi| · (maxi∈V |Xi| − 1).

x̂i =

α(n) if xi = β(n) and α(n) ∈ Xi

β(n) if xi = α(n) and β(n) ∈ Xi

xi else
(13)

5 Evaluation

We compare the combination of fusion operations and proposal generators for
different graphical models benchmarks [2, 1, 15] and the FoE-dataset [27]. All
this instances are or will be made publicly available in the OpenGM-format.

We run all combinations for 1000 iterations (nmax = 1000) and maximal 900
seconds on a Core i7-2600K with 3.40 GHz single-threaded. We stop after 50
moves without improvement (mmax = 50). Stopping condition of deterministic
methods are the deterministic default. Due lack of space we add the complete
results as supplementary material and show only selected combinations here.
The used temperature parameter for the sampling distributions and an overview
of the models is given in Tab. 1.

We report the energy value, averaged over all model instances, of the best
labeling after 10, 60 and 600 seconds as well as for the final labeling. Additionally
we report the mean runtime and the number of iterations or moves. The best
value among all fusion-algorithms in each time slot is marked green, and the
fusion-operation which give the best mean energy for a given proposal-generator
blue. Additionally, we add results of state-of-the-art-methods to the tables, if
those results were available. If the best of those beats all fusion algorithm it is
marked red.

Field of Experts: Field of experts were introduced by Roth and Black [27],
which use higher-order terms to expressive image priors that capture the statis-
tics of natural scenes. Field of export models have become a standard benchmark
for fusion moves [12, 13]. We follow the experimental setup used in [12, 13] and
take the 100 test images from the BSD300 [28], downscale them by a factor of
two and add Gaussian noise with standard deviation σ = 20. The energy func-
tion includes unary terms penalize the L1-distance of the 256 labels/colors to

MAP-Inference on Large Graphical Models by Fusion Moves 9

the noisy pixel color and fourth order experts learned and kindly provided by
Roth and Black [27].

Classical QPBO-based fusion is clearly inferior to LazyFlipper-based, c.f.
Tab. 2 and Fig. 1(a). For the α-expansion generator QPBO-fusion does a bad
job as reported in [12]. When we switch to LazyFlipper-based fusion it is still
not best but comparable to other combinations. Using optimal moves does not
improve the results significantly. The moves are only marginal better but slower.
Overall best results are obtained when sampling from the distributions base on
non-blurred unary terms.

Table 2: For field of experts instances FUSIONLF2 overall performs best.

algorithm value time it

(10 sec) (60 sec) (600 sec) (end) (end) (end)

α-Exp-FUSIONILP 115331.95 112908.90 108011.80 105001.75 941.28 sec 27.30
α-Exp-FUSIONLF2 109604.69 76950.74 35553.15 34958.88 709.57 sec 999.88
α-Exp-FUSIONQPBO 113027.96 107330.34 56267.95 54571.25 900.91 sec 541.81

PUB-FUSIONILP 107585.42 105930.25 37603.67 35351.69 903.09 sec 220.24
PUB-FUSIONLF2 71918.21 38631.97 32925.36 32848.61 695.85 sec 1000.00
PUB-FUSIONQPBO 97796.97 47536.08 33481.48 33090.60 872.46 sec 899.96

PL-FUSIONILP 87010.93 41320.95 32779.26 32637.81 899.81 sec 806.71
PL-FUSIONLF2 54960.13 35583.31 32619.64 32586.99 701.58 sec 1000.00
PL-FUSIONQPBO 57337.32 35918.37 32646.95 32613.20 688.93 sec 1000.00

PU -FUSIONILP 81230.66 41289.75 32936.93 32779.52 806.42 sec 999.44
PU -FUSIONLF2 64828.40 38662.98 32882.46 32782.16 736.44 sec 996.45
PU -FUSIONQPBO 63305.54 38500.68 32871.21 32797.15 699.14 sec 1000.00

Inpainting: We consider the two inpainting problems from [3] which have
256 labels. For these instances TRWS followed by local search is currently the
leading method [1]. These methods make use of the convex regularizer and apply
distance transform [29] for good any time performance. Fusion algorithms did
not work well within 1000 iterations except TRWS is used as generator. This
agrees with the results reported in [3] where α-expansion also needed much
more iterations and has a simple explanation. The unaries and the regularizer

Table 3: For the inpainting problems fusion-algorithms improve the performance
of TRWS. Random generators do not work well here.

algorithm value time it

(10 sec) (60 sec) (600 sec) (end) (end) (end)

TRWS 26481554.50 26465539.50 26464769.50 26464759.00 632.40 sec 944.50
TRWS-LF2 ∞ ∞ ∞ 26463829.00 3009.52 sec −

PU -FUSIONBASE 420556187.50 420556187.50 420556187.50 420556187.50 2.40 sec 50.00
PU -FUSIONILP 60296247.50 38570409.50 34890334.50 34890334.50 196.09 sec 1000.00
PU -FUSIONLF2 100770607.50 45696051.50 35241978.50 34985385.50 501.38 sec 1000.00
PU -FUSIONQPBO 50696441.50 36367339.50 34904322.00 34904322.00 119.94 sec 1000.00

TRWS-FUSIONBASE 26481554.50 26465534.50 26465416.50 26465416.50 103.48 sec 163.00
TRWS-FUSIONILP 26476904.00 26464727.50 26464158.00 26464158.00 217.59 sec 318.50
TRWS-FUSIONLF2 26482403.50 26465290.00 26464904.50 26464904.50 206.98 sec 276.00
TRWS-FUSIONQPBO 26476820.00 26464728.50 26464158.00 26464158.00 214.05 sec 318.50

10 Jörg H. Kappes, Thorsten Beier and Christoph Schnörr

are based on squared differences. This make them very picky and selective. This
limits the set of improving moves for random proposals.

Protein Folding: The protein folding instances [30] have a moderate num-
ber of variables, but are fully connected and have for some variables huge label
spaces. Recently it has been shown [15], that sequential Belief Propagation (BPS)
gives very good results near optimality. Using BPS as generator fusion obtain
better and faster results than BPS alone and advanced combinatorial methods
like CombiLP [31]. For other generators the results are worse but still compara-
ble with other methods and always improve the baseline significantly, c.f. Tab.4
and Fig. 1(c).

Table 4: For the protein folding instances BPS-FUSION leads to better results
and is more than ten times faster than BPS.

algorithm value time it

(10 sec) (60 sec) (600 sec) (end) (end) (end)

BPS −5958.72 −5958.72 −5958.72 −5958.72 25.34 sec 1000.00
LBP −5817.90 −5841.98 −5872.91 −5872.91 183.53 sec 1000.00
TRWS −5735.86 −5799.52 −5846.86 −5846.86 118.17 sec 675.48
CombiLP ∞ ∞ −5822.45 −5911.12 568.86 sec −

BPS-FUSIONBASE −5958.37 −5958.37 −5958.37 −5958.37 1.63 sec 57.24
BPS-FUSIONILP −5959.82 −5959.82 −5959.82 −5959.82 1.69 sec 57.05
BPS-FUSIONLF2 −5959.48 −5959.48 −5959.48 −5959.48 1.70 sec 57.05
BPS-FUSIONQPBO −5959.82 −5959.82 −5959.82 −5959.82 1.61 sec 57.05

LBP-0.5-FUSIONBASE −5926.10 −5944.87 −5944.87 −5944.87 16.95 sec 86.24
LBP-0.5-FUSIONILP −5928.60 −5946.35 −5946.35 −5946.35 16.19 sec 80.67
LBP-0.5-FUSIONLF2 −5926.10 −5944.87 −5944.87 −5944.87 16.99 sec 86.24
LBP-0.5-FUSIONQPBO −5928.60 −5945.28 −5945.28 −5945.28 16.11 sec 81.86

Protein Prediction: The protein prediction instances [32] include sparse
third-order binary models. We beat the best performing method from the bench-
mark [15] which is LBP with damping 0.5 followed by Lazy Flipping of search
depth 2, by using damped LBP as generator and QPBO or ILP for fusion, c.f.
Tab.5 and Fig. 1(d).

Table 5: For the protein-prediction problems the FUSIONILP leads to better
results even with random proposals.

algorithm value time it

(10 sec) (60 sec) (600 sec) (end) (end) (end)

LBP-0.5 53407.52 52974.98 52974.98 52974.98 60.97 sec 766.88
LBP-LF2 ∞ ∞ 52942.95 52942.95 69.86 sec −

LBP-0.5-FUSIONBASE 52971.53 52971.53 52971.53 52971.53 6.22 sec 110.50
LBP-0.5-FUSIONILP 52827.89 52821.38 52821.38 52821.38 9.64 sec 110.12
LBP-0.5-FUSIONLF2 52971.53 52971.53 52971.53 52971.53 6.22 sec 110.50
LBP-0.5-FUSIONQPBO 52826.64 52826.64 52826.64 52826.64 6.20 sec 124.12

PU -FUSIONBASE 97071.97 97071.97 97071.97 97071.97 0.76 sec 50.00
PU -FUSIONILP 95886.12 95787.15 55531.88 55509.32 380.11 sec 689.25
PU -FUSIONLF2 58622.95 58622.81 58622.81 58622.81 13.62 sec 87.25
PU -FUSIONQPBO 75582.10 66164.13 65933.02 65933.02 58.27 sec 955.00

MAP-Inference on Large Graphical Models by Fusion Moves 11

DTF Chinese Characters: A challenging second-order binary problem is
using decision tree fields (DTF) for inpainting [33, 1]. While advanced combina-
torial solvers (MCBC) [21] give best performance [1], they are slow. The best fast
solver in [1] was sequential belief propagation (BPS). Recently, Gorelick et al.
presented a fast and accurate alternative based on local submodular approxima-
tions with trust region terms (LSA-TR) [34]. While we do not beat LSA-TR we
improve other methods significantly. This indicates that fusion algorithms are
also useful for hard problems – especially if ILP-Fusion is used – and improve
final solutions and any-time performance, c.f. Tab. 6 and Fig. 1(b). Note that
contrary to MCBC and LSA-TR, Fusion algorithms are not limited to binary
models.

Table 6: For the DTF Chinese characters fusion based methods has not beaten
LSA-TR. However, we get quite close and improve standard methods. *Results
was taken from the original papers and not reproduced.

algorithm value time it

(10 sec) (60 sec) (600 sec) (end) (end) (end)

TRWS −49512.31 −49514.04 −49514.06 −49514.06 112.37 sec 856.13
BPS-TAB −49536.02 −49537.63 −49538.16 −49538.16 78.65 sec 1000.00
LSA-TR* −49547.61 −49547.61 −49547.61 −49547.61 0.21 sec −−
MCBC-pct* −− −− −− −49550.10 2053.89 sec −−

α-Exp-FUSIONBASE −49434.39 −49434.39 −49434.39 −49434.39 0.01 sec 2.00
α-Exp-FUSIONILP −49434.39 −49434.39 −49527.97 −49528.00 273.90 sec 4.40
α-Exp-FUSIONLF2 −49495.76 −49496.83 −49496.83 −49496.83 13.39 sec 3.50
α-Exp-FUSIONQPBO −49499.09 −49501.69 −49501.69 −49501.69 7.63 sec 11.53

BPS-FUSIONBASE −49535.10 −49535.10 −49535.10 −49535.10 5.17 sec 81.73
BPS-FUSIONILP −49504.33 −49504.36 −49542.08 −49543.30 447.73 sec 40.79
BPS-FUSIONLF2 −49535.69 −49535.69 −49535.69 −49535.69 6.27 sec 75.30
BPS-FUSIONQPBO −49535.82 −49535.82 −49535.82 −49535.82 4.90 sec 74.58

TRWS-FUSIONBASE −49512.19 −49512.21 −49512.21 −49512.21 8.59 sec 71.63
TRWS-FUSIONILP −49476.91 −49482.33 −49535.98 −49537.55 543.30 sec 41.83
TRWS-FUSIONLF2 −49528.15 −49529.41 −49529.41 −49529.41 16.06 sec 63.29
TRWS-FUSIONQPBO −49531.64 −49532.29 −49532.29 −49532.29 17.03 sec 69.55

Matching: We also consider the matching instances from [1] which are
small but very hard. In [1] it has been shown that α-expansion proposals are
not an adequate proposal choice. This is no longer true for other proposals
including random ones. However fusion moves often run into a labeling which is
hard to escape. If such a labeling is feasible, i.e. represents a one-to-one match, a
proposal has to support a cyclic swap of the labels in order to fulfill the one-to-one
matching constraint and improve the energy in order to escape. Consequently,
it is less likely to find global optimal solutions.

12 Jörg H. Kappes, Thorsten Beier and Christoph Schnörr

Table 7: For matching problems results could only be marginally improved, since
the feasible move space is small in most iterations.

algorithm value time it

(10 sec) (60 sec) (600 sec) (end) (end) (end)

TRWS 43.38 43.38 43.38 43.38 0.35 sec 253.00
MPLP-C 21.22 21.22 21.22 21.22 4.63 sec 145.25

LBP-0.5-FUSIONBASE 26.87 26.87 26.87 26.87 0.16 sec 77.25
LBP-0.5-FUSIONILP 24.56 24.56 24.56 24.56 0.19 sec 78.25
LBP-0.5-FUSIONLF2 26.87 26.87 26.87 26.87 0.16 sec 77.25
LBP-0.5-FUSIONQPBO 27.80 27.80 27.80 27.80 0.13 sec 66.00

PU -FUSIONILP 43.36 43.36 43.36 43.36 1.04 sec 243.00
PU -FUSIONLF2 55.22 55.22 55.22 55.22 0.30 sec 216.00
PU -FUSIONQPBO 50.78 50.78 50.78 50.78 0.03 sec 232.25

TRWS-FUSIONBASE 43.38 43.38 43.38 43.38 0.08 sec 59.25
TRWS-FUSIONILP 40.97 40.97 40.97 40.97 0.37 sec 67.75
TRWS-FUSIONLF2 42.00 42.00 42.00 42.00 0.13 sec 67.25
TRWS-FUSIONQPBO 40.97 40.97 40.97 40.97 0.09 sec 67.75

Cell-Tracking: The tracking model considered in [1] include binary vari-
ables and terms of order up to 9. While ILP-solvers solves this instance to opti-
mality very efficiently one should not expect that this will hold for larger models.
In such scenarios relaxations would be an alternative but those suffer from the
soft-constraints and labelings generated by rounding might violate those. In such
situations Fusion can help a lot and provide early close-to-optimal solutions.

Table 8: For the cell-tracking instance we obtain faster good results only
marginally worse than the optimum.

algorithm value time it

(10 sec) (60 sec) (600 sec) (end) (end) (end)

LBP 107515639.76 107515319.56 107515319.56 107515319.56 80.70 sec 1000.00
ILP 45364196.24 7514421.21 7514421.21 7514421.21 13.78 sec 0.00

LBP-0.5-FUSIONBASE 7822517.15 7822517.15 7822517.15 7822517.15 10.00 sec 89.00
LBP-0.5-FUSIONILP 7518000.15 7514751.98 7514751.98 7514751.98 26.69 sec 234.00
LBP-0.5-FUSIONLF2 7822517.15 7822517.15 7822517.15 7822517.15 9.83 sec 89.00
LBP-0.5-FUSIONQPBO 10324281.39 10314354.13 10314354.13 10314354.13 24.96 sec 227.00

LBP-FUSIONBASE 7518099.53 7518099.53 7518099.53 7518099.53 11.83 sec 111.00
LBP-FUSIONILP 7515318.79 7515029.55 7515029.55 7515029.55 17.49 sec 145.00
LBP-FUSIONLF2 7518099.53 7518099.53 7518099.53 7518099.53 12.11 sec 111.00
LBP-FUSIONQPBO 7516031.12 7515029.55 7515029.55 7515029.55 15.96 sec 145.00

PU -FUSIONBASE 58794439.99 58794439.99 58794439.99 58794439.99 2.17 sec 50.00
PU -FUSIONILP 14033539.27 7791724.31 7531572.24 7531572.24 643.67 sec 304.00
PU -FUSIONLF2 9281131.45 9278699.79 9278699.79 9278699.79 18.91 sec 109.00
PU -FUSIONQPBO 11217379.70 9008429.54 8437145.94 8437145.94 156.95 sec 1000.00

MAP-Inference on Large Graphical Models by Fusion Moves 13

6 Conclusions

Fusion algorithms are very powerful and their performance on discrete graphical
models has been apparently underestimated in the past. We showed that the
performance of any inference method can be improved by embedding it as a
proposal generator into a fusion algorithm. This leads to better solutions as
well as to better any-time performance by compensating rounding artefacts, c.f.
Fig. 1. The additional computational costs are usually negligible.

Concerning proposal generators, inference based generators are overall supe-
rior, since the proposals are of high quality. However, for large scale or higher-
order models they are sometimes no longer applicable, e.g. for field of experts,
or much slower, e.g. for protein folding, than random or deterministic ones. Here
randomized generators work often reasonable. Application specific or more ad-
vanced generators might be able to further close this gap with small additional
computational costs.

The quality of fusion algorithms can be also improved by fusion operators
different from QPBO-Fusion. We presented two powerful alternatives: Integer
linear programming solvers can be used to calculate the optimal moves in each
step.

This can lead to much better results when the persistency of QPBO is small,
e.g. DTF or protein prediction. Lazy Flipping based fusion does also not suf-
fer from small persistency but requires that the global move can be obtained
by a sequence of local moves. When this is the case, as for the field of expert
instances, Lazy Flipping fusion gives the best trade-off between runtime and en-
ergy improvement. Another interesting observation in this context is that optimal
moves are not always desirable. Contrary to non-optimal moves optimal moves,
can tend to run into ”dead ends” for which only a small number of proposals
generate moves which allow to escape. Such a proposal might not be generated
within mmax iterations and the algorithm stops too early. Furthermore, fusion is
a greedy procedure and an optimal fusion move might not be optimal in the long
run. For example for some protein folding instances QPBO fusion is sometimes
marginal better than ILP fusion for the same number of iterations. However,
except for these outliers and on average optimal moves performs better than
QPBO-based moves – at least in the long run.

Finally we would like to remark that contrary to the standard QPBO-based
fusion-operator the presented alternatives can deal with more than one proposal.
Consequently the subproblems would be multi-label problems and X ′ larger,
which allows more powerful moves.

14 Jörg H. Kappes, Thorsten Beier and Christoph Schnörr

0 sec. 300 sec. 600 sec.
37150

38000

39000

runtime

PUB-FUSIONILP

PUB-FUSIONLF2

PUB-FUSIONQPBO

PLB-FUSIONILP

PLB-FUSIONLF2

PLB-FUSIONQPBO

100 300 600
37150

38000

39000

iteration

PUB-FUSIONILP

PUB-FUSIONLF2

PUB-FUSIONQPBO

PLB-FUSIONILP

PLB-FUSIONLF2

PLB-FUSIONQPBO

(a) FoE - instance: 101085

0 sec. 15 sec.
−56544

−56456

runtime

BPS-FUSIONBASE

BPS-FUSIONILP

BPS-FUSIONLF2

BPS-FUSIONQPBO

TRWS-FUSIONBASE

TRWS-FUSIONILP

TRWS-FUSIONLF2

TRWS-FUSIONQPBO

0 50 100
−56544

−56456

iteration

BPS-FUSIONBASE

BPS-FUSIONILP

BPS-FUSIONLF2

BPS-FUSIONQPBO

TRWS-FUSIONBASE

TRWS-FUSIONILP

TRWS-FUSIONLF2

TRWS-FUSIONQPBO

(b) DTF Chinese Characters - instance: 0001

0 sec. 10 sec. 20 sec.

3930

3940

3950

runtime

BPS-FUSIONBASE

BPS-FUSIONILP

BPS-FUSIONLF2

BPS-FUSIONQPBO

LBP-0.5-FUSIONBASE

LBP-0.5-FUSIONILP

LBP-0.5-FUSIONLF2

LBP-0.5-FUSIONQPBO

0 100 150

3930

3940

3950

iteration

BPS-FUSIONBASE

BPS-FUSIONILP

BPS-FUSIONLF2

BPS-FUSIONQPBO

LBP-0.5-FUSIONBASE

LBP-0.5-FUSIONILP

LBP-0.5-FUSIONLF2

LBP-0.5-FUSIONQPBO

(c) Protein Folding - instance: pdb1b25

0 sec. 10 sec. 20 sec.

32150

runtime

LBP-0.5-FUSIONBASE

LBP-0.5-FUSIONILP

LBP-0.5-FUSIONLF2

LBP-0.5-FUSIONQPBO

PU -FUSIONILP

PU -FUSIONQPBO

0 100 200

32150

iteration

LBP-0.5-FUSIONBASE

LBP-0.5-FUSIONILP

LBP-0.5-FUSIONLF2

LBP-0.5-FUSIONQPBO

PU -FUSIONILP

PU -FUSIONQPBO

(d) Protein Prediction - instance: 1

Fig. 1: Energy improvement for selected instances and methods over time (left)
and over iterations (right).

MAP-Inference on Large Graphical Models by Fusion Moves 15

References

1. Kappes, J.H., Andres, B., Hamprecht, F.A., Schnörr, C., Nowozin, S., Batra, D.,
Kim, S., Kausler, B.X., Lellmann, J., Komodakis, N., Rother, C.: A comparative
study of modern inference techniques for discrete energy minimization problems.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). (2013)

2. Elidan, G., Globerson, A.: The probabilistic inference challenge (PIC2011).
http://www.cs.huji.ac.il/project/PASCAL/

3. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A.,
Tappen, M., Rother, C.: A comparative study of energy minimization methods for
Markov random fields with smoothness-based priors. IEEE PAMI 30(6) (2008)
1068–1080

4. Goldluecke, B., Strekalovskiy, E., Cremers, D.: Tight convex relaxations for vector-
valued labeling. SIAM Journal on Imaging Sciences 6(3) (2013) 1626–1664

5. Kohli, P., Ladicky, L., Torr, P.H.: Robust higher order potentials for enforcing
label consistency. International Journal of Computer Vision 82(3) (2009) 302–324

6. Kim, S., Nowozin, S., Kohli, P., Yoo, C.D.: Higher-order correlation clustering
for image segmentation. In: Proceedings of the Annual Conference on Neural
Information Processing Systems (NIPS). (2011)

7. Delong, A., Osokin, A., Isack, H., Boykov, Y.: Fast approximate energy minimiza-
tion with label costs. International Journal of Computer Vision 96 (Jan. 2012)
1–27

8. Lempitsky, V., Rother, C., Roth, S., Blake, A.: Fusion moves for markov random
field optimization. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 32(8) (2010) 1392–1405

9. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph
cuts? In: ECCV. (2002)

10. Boros, E., Hammer, P.L.: Pseudo-boolean optimization. Discrete Appl. Math.
123(1-3) (November 2002) 155–225

11. Rother, C., Kolmogorov, V., Lempitsky, V.S., Szummer, M.: Optimizing binary
MRFs via extended roof duality. In: CVPR. (2007)

12. Ishikawa, H.: Transformation of general binary mrf minimization to the first-
order case. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(6)
(2011) 1234–1249

13. Fix, A., Gruber, A., Boros, E., Zabih, R.: A graph cut algorithm for higher-order
Markov random fields. In: ICCV. (2011)

14. Kahl, F., Strandmark, P.: Generalized roof duality. Discrete Applied Mathematics
160(16-17) (2012) 2419–2434

15. Kappes, J.H., Andres, B., Hamprecht, F.A., Schnörr, C., Nowozin, S., Batra, D.,
Kim, S., Kausler, B.X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B.,
Rother, C.: A comparative study of modern inference techniques for structured
discrete energy minimization problems. CoRR abs/1404.0533 (2014)

16. Andres, B., Beier, T., Kappes, J.H.: OpenGM2 (2012) http://hci.iwr.uni-
heidelberg.de/opengm2/.

17. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press (2009)

18. Nowozin, S., Lampert, C.H.: Structured learning and prediction in computer vision.
Foundations and Trends in Computer Graphics and Vision 6(3–4) (2011) 185–365

16 Jörg H. Kappes, Thorsten Beier and Christoph Schnörr

19. Besag, J.: On the Statistical Analysis of Dirty Pictures. Journal of the Royal
Statistical Society. Series B (Methodological) 48(3) (1986) 259–302

20. Andres, B., Kappes, J.H., Beier, T., Köthe, U., Hamprecht, F.A.: The lazy flip-
per: Efficient depth-limited exhaustive search in discrete graphical models. In:
Proceedings of the European Conference on Computer Vision (ECCV). (2012)

21. Kappes, J.H., Speth, M., Reinelt, G., Schnörr, C.: Towards efficient and exact
MAP-inference for large scale discrete computer vision problems via combinatorial
optimization. In: CVPR. (2013)

22. IBM: ILOG CPLEX Optimizer. http://www-
01.ibm.com/software/integration/optimization/cplex-optimizer/ (2013)

23. Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimiza-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(10)
(2006) 1568–1583

24. Globerson, A., Jaakkola, T.: Fixing max-product: Convergent message passing
algorithms for map lp-relaxations. In: NIPS. (2007)

25. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision.
Int. J. Comput. Vision 70(1) (October 2006) 41–54

26. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence
23(11) (2001) 1222–1239

27. Roth, S., Black, M.J.: Fields of experts. International Journal of Computer Vision
82(2) (2009) 205–229

28. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural
images and its application to evaluating segmentation algorithms and measuring
ecological statistics. In: ICCV. (2001)

29. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision.
International Journal of Computer Vision 70(1) (2006) 41–54

30. Yanover, C., Schueler-Furman, O., Weiss, Y.: Minimizing and learning energy
functions for side-chain prediction. Journal of Computational Biology 15(7) (2008)
899–911

31. Savchynskyy, B., Kappes, J.H., Swoboda, P., Schnörr, C.: Global MAP-optimality
by shrinking the combinatorial search area with convex relaxation. In: NIPS. (2013)

32. Jaimovich, A., Elidan, G., Margalit, H., Friedman, N.: Towards an integrated
protein-protein interaction network: A relational markov network approach. Jour-
nal of Computational Biology 13(2) (2006) 145–164

33. Nowozin, S., Rother, C., Bagon, S., Sharp, T., Yao, B., Kohli, P.: Decision tree
fields. In: ICCV, IEEE (2011) 1668–1675

34. Gorelick, L., Boykov, Y., Veksler, O., Ayed, I.B., Delong, A.: Submodularization
for binary pairwise energies. In: CVPR, IEEE (2014) in press.

