
Supplementary Material for
SocialSync: Sub-Frame Synchronization in a

Smartphone Camera Network

Richard Latimer, Jason Holloway, Ashok Veeraraghavan, Ashutosh Sabharwal

Rice University, Houston, TX

1 Implementation Details

The following section provides high level framework implementation supplement-
ing those described in Sec. 3 Camera Characterization of [1].

1.1 Design Outline

Our implementation uses client devices consisting of the HTC One (M7) and
Nexus 5 running Android OS 4.3 and 4.4. The communication server is a Win-
dows 7 laptop running a web service powered by Play! framework. The time
server is a Raspberry Pi computer running an NTP daemon built into the Unix
shell and synchronized to a GPS clock. A Cisco router links these four devices
together.

Android App The following details are important when implementing our
SocialSync Android app:

– The smartphone camera network may become unsynchronized when the auto
exposure is enabled, as the frame rate may change during metering. Therefore
initially, auto exposure should be allowed to correct image contrast and then
it should be locked for subsequent image captures.

– The camera client object runs on a background thread separately from the
main activity and UI to prevent scheduling problems, otherwise the delivery
timestamps TD(i) will be delayed considerably when the preview callback
is executed, resulting in estimation error when predicting TC(0). Note that
both the Nexus 5 and HTC One are multi-core; measurement results may
be different on single core systems.

– Computation in the onPreviewFrame() callback must be returned before
the next callback is scheduled since the callback is executed sequentially.
Should the execution time in a callback delay the scheduling of the next
callback, a cascading effect may occur, thereby delaying the measurement of
TD and introducing error into the estimate of TC(0). Prolonged processing in
the preview callback may result in a frame being dropped. Furthermore, the
process of saving frames to disk takes considerable time, therefore the frames
either must be queued and recorded after the image sequence is captured or
passed to a secondary thread running on a separate core.



2 R. Latimer, J. Holloway, A. Veeraraghavan, A. Sabharwal

– Since the camera object is a client, neither calling stopPreview() nor re-
leasing the client object is sufficient to stop the camera service immediately.
Therefore, our stochastic synchronization protocol is achieved through a hard
restart of the app, thereby forcing the camera service to stop. An alternative
approach to implementing the SocialSync synchronization protocol would
be to vary the frame rate by enabling the auto exposure, white balance, or
changing the FPS range. While possible, this setup requires calculating the
frame rate on the fly.

Fig. 1. The 8×8 LED clock showing rolling shutter effect. The sensor reads out rows
of pixels from the top to bottom. The RPi turns on a column of LEDs, moving from
left to right in 1 ms intervals. By measuring the number of pixels between two partially
illuminated LEDs and dividing by the difference in time, we estimate the per pixel
readout time

1.2 Rolling Shutter:

CMOS image sensors, as typically found on smartphones, implement a rolling
shutter, whereby rows of pixels are exposed to light at different times, due to
readout speed requirements. The rolling shutter exposes each row of the image
sensor evenly, but initiates the readout of the row in time intervals ∆TR. Thus,
each row y in the image has a readout time of

TR(i,Ny) = TC(i) + (y − 1) ∗∆TR, (1)

where TC(i) represents the capture of the i-th frame. Knowing the rolling shutter
characteristics allows us to characterize the precise timing information of every
pixel in the image. Readout speed of the image sensor is measured by placing the
rolling shutter rows perpendicular to the LED clock array, such that the LEDs
sweep across the image plane as a column, in 1 ms intervals, as seen in Fig. 1.



Supplementary Material for SocialSync 3

By examining the difference between illuminated pixels along the diagonal tem-
poral shear of the image and dividing by the elapsed time between pixels, we
measured the rolling shutter readout speed ∆TR as approximately 24 µs per row
for a Nexus 5 and 18 µs per row for a HTC One, with 1080 sensor rows per
preview image for both devices. Therefore, rolling shutter pixel readout time of
pixels across the sensor may differ by 20 ms for typical 2.1 megapixel preview
images.

1.3 Capture Timestamp Estimate:

By examining the captured photo of the LED array, we have created a precise
timing platform for estimating TC(i) by measuring the number of illuminated
LEDs at a row of pixels y, where the previous row had a set of illuminated LEDs
which were shifted by 1 and represent a difference of 1 ms. If the LED clock
triggers at TS(i) by an external trigger, the number of illuminated LEDs Ny for
a row of pixels indicates how much time has passed since TS(i). We express this
as

TL(i,Ny) = TS(i) +Ny. (2)

We measure the number of illuminated LEDs at the boundary where a previ-
ous row of illuminated LEDs was shifted by a time duration of 1 ms and solve for
TC(i) by setting TR(i, y) equal to TL(i,Ny) with TS(i), y, Ny, and ∆TR being
known constants.

References

1. Latimer, R., Holloway, J., Veeraraghavan, A., Sabharwal, A.: SocialSync: Sub-frame
synchronization in a smartphone camera network (2014), Computer Vision–ECCV
2014. LF4CV submission.


