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Abstract. In this paper we propose a post-processing pipeline to recover accu-
rately the views (light-field) from the raw data of a plenoptic camera such as Lytro
and to estimate disparity maps in a novel way from such a light-field. First, the
microlens centers are estimated and then the raw image is demultiplexed without
demosaicking it beforehand. Then, we present a new block-matching algorithm
to estimate disparities for the mosaicked plenoptic views. Our algorithm exploits
at best the configuration given by the plenoptic camera: (i) the views are horizon-
tally and vertically rectified and have the same baseline, and therefore (ii) at each
point, the vertical and horizontal disparities are the same. Our strategy of demul-
tiplexing without demosaicking avoids image artifacts due to view cross-talk and
helps estimating more accurate disparity maps. Finally, we compare our results
with state-of-the-art methods.

1 Introduction

Plenoptic cameras are gaining a lot of popularity in the field of computational photogra-
phy because of the additional information they capture compared to traditional cameras.
Indeed, they are able to measure the amount of light traveling along each ray bundle
that intersects the sensor, thanks to a microlens array placed between the main lens and
the sensor. As a result, such cameras have novel post-capture processing capabilities
(e.g., depth estimation and refocusing). There are several optical designs for plenoptic
cameras depending on the distance between the microlens array and the sensor. If this
distance is equal to the microlenses focal length it is called a type 1.0 plenoptic camera
[17]; and type 2.0 (or focused) plenoptic camera [16] otherwise. In the first case the
number of pixels per rendered view1 is equal to the number of microlenses (only one
pixel per microlens is rendered on each view). In the second case, the rendered views
have a higher spatial resolution, but that comes at the cost of decreasing the angular
resolution. Depending on the application, one camera or another would be preferred. In
this paper we focus on type 1.0 plenoptic cameras.

The concept of integral photography, which is the underlying technology in plenop-
tic cameras was introduced in [15] and then brought up to computer vision in [3], but it
has recently become practical with the hand-held cameras that Lytro2 and Raytrix3 have
put on the market for the mass market and professionals respectively. Since then, the
scientific community has taken an interest in the LF (Light-Field) technology. Recent

1 The terms view and sub-aperture image are equally used in the literature.
2 http://www.lytro.com
3 http://www.raytrix.de
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Fig. 1. Pipeline of our method. For visualization purposes only a part of the subimages and the
views are shown. The LF is obtained by demultiplexing mosaicked data using the center subimage
positions. Then the accurate disparity map for a reference view is estimated from the LF.

studies in the field address the bottleneck of the plenoptic cameras, namely the resolu-
tion problem ([10], [5], [18] and [24]). Besides super-resolution, depth estimation has
also been investigated as a natural application of plenoptic images ([5], [24] and [22]).
Indeed, the intrinsic information of the LF has the advantage to allow disparity compu-
tation without the image calibration and rectification steps required in classic binocular
stereo or multi-view algorithms, making it an enormous advantage for 3D applications.
However, the last cited works consider the sampled LF (the set of demultiplexed views)
as input for their disparity estimation methods, meaning that they do not study the pro-
cess that converts the raw data acquired by the plenoptic camera into the set of demul-
tiplexed views. In this paper we show that such processing, called demultiplexing, is of
paramount importance for depth estimation.

The contributions of this paper are twofold. First, we model the demultiplexing
process of images acquired with a Lytro camera and then we present a novel algorithm
for disparity estimation specially designed for the singular qualities of plenoptic data.
In particular, we show that estimating disparities from mosaicked views is preferred
to using views obtained through conventional linear demosaicking on the raw data.
Therefore, for the sake of accurate disparity estimation, demosaicking is not performed
in our method (see our pipeline in Fig. 1). To the best of our knowledge this approach
has never been proposed before.

2 Related Work

The closest works to our demultiplexing method have been published recently. In [7]
a demultiplexing algorithm followed by a rectification step where lens distortions are
corrected using a 15-parameter camera model is proposed. In [6], the authors also pro-
posed a demultiplexing algorithm for the Lytro camera and studied several interpolation
methods to superresolve the reconstructed images. On the contrary, [9] recovers the re-
focused Lytro images via splatting without demultiplexing the views.

Considering disparity estimation for plenoptic images, several works have proposed
a variational method ([24], [4], [5] , [13] and [23]). In particular, [24] uses the epipo-
lar plane image (EPI), [4] and [5] propose an antialiasing filtering to avoid cross-talk
image artifacts and [13] combines the idea of Active Wavefront Sampling (AWS) with
the LF technique. In fact, variational methods better deal with the noise in the images
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but they are computationally expensive. Given the large number of views on the LF,
such approaches are not suitable for many of applications. In addition to variational
approaches, other methods have been proposed for disparity estimation. [14] estimates
disparity maps from high spatio-angular LF with a fine-to-coarse algorithm where dis-
parities around object boundaries are first estimated using an EPI-based method and
then propagated. [22] proposes an interesting approach that combines defocus and cor-
respondence to estimate the scene depth. Finally, [25] presents a Line-Assisted Graph-
Cut method in which line segments with known disparities are used as hard constraints
in the graph-cut algorithm.

In each section we shall discuss the differences between our method and the most
related works on demultiplexing and disparity estimation methods on Lytro data. While
demosaicking is not the goal of this paper, note that [10] already pointed out artifacts
due to raw plenoptic data demosaicking and that a practical solution was proposed by
[26] for type 2.0 plenoptic data.

3 Demultiplexing RAW data
Demultiplexing (also called ”decoding” [7] or ”calibration and decoding” [6]) is data
conversion from the 2D raw image to the 4D LF, usually represented by the two-plane
parametrization [12]. In particular, demultiplexing consists in reorganizing the pixels of
the raw image4 in such a way that all pixels capturing the light rays with a certain angle
of incidence are stored in the same image creating the so-called views. Each view is a
projection of the scene under a different angle. The set of views create a block matrix
where the central view stores the pixels capturing the light rays perpendicular to the
sensor. In fact, in plenoptic type 1.0, the angular information of the light rays is given
by the relative pixel positions in the subimages5 with respect to the subimage centers.
After demultiplexing, the number of restored views (entries of the block matrix) corre-
sponds to the number of pixels covered by one microlens and each restored view has as
many pixels as the number of microlenses.

Estimating Subimage Centers: In a plenoptic camera such as Lytro the microlens
centers are not necessarily well aligned with the pixels of the sensor. There is a rota-
tion offset between the sensor and the microlens plane. Also, the microlens diameter
does not cover an integer number of pixels. Finally, the microlenses are arranged on
a hexagonal grid to efficiently sample the space. Thus, in order to robustly estimate
the microlens centers, we estimate the transformation between two coordinate systems
(CS), the Cartesian CS given by the sensor pixels and K, the microlens center CS. K
is defined as follows: the origin is the center of the topmost and leftmost microlens and
the basis vectors are the two vectors from the origin to the adjacent microlens centers
(see Fig.2-(a)). Formally, if x and k are respectively the coordinates on the sensor and
microlens CSs, then, we estimate the system transformation matrix T and the offset
vector between the origins c such that x = Tk+ c , and

T =

(
1 1/2

0
√
3/2

)(
dh 0
0 dv

)(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, (1)

4 We use the tool in [1] to access the raw data from Lytro.
5 The image that is formed under a microlens and on the sensor is called a subimage.
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(a) (b) (c) (d)

Fig. 2. (a) Microlenses projected on the sensor plane in a hexagonal arrangement. The green and
blue axes represent the two CSs. There is a rotational offset θ and a translational offsetO− o. (b)
Mask used to locally estimate subimage center positions. (c) Lytro raw image of a white scene.
(d) Estimated center positions. They coincide when estimated from one color channel only or
from all the pixels in the raw image (gray).

where the first matrix accounts for the orthogonal to hexagonal grid conversion due
to the microlens arrangement, the second matrix deals with the vertical and horizontal
shears and the third matrix is the rotation matrix. Thus, estimating the microlens model
parameters {c, dh, dv, θ} gives the microlenses center positions.

In practice, the subimage centers are computed from a white image depicted in
Fig. 2-(c), that is an image taken through a white Lambertian diffuser. Actually, the
subimage centers xi of the i-th microlens in the raw image are computed as the local
maximum positions of the convolution between the white image and the mask shown
in Fig. 2-(b). Then, given xi and the integer positions ki in the K CS, the model para-
meters (and consequently T and c) are estimated as the solution of a least square error
problem from the equations xi = Tki+c. Thus, in this paper, the final center positions
used in the demultiplexing step are the pixel positions given by ci := round(Tki+ c).
However, more advanced approaches can take into account the sub-pixel accuracy of
the estimated centers and re-grid the data on integer spatial coordinates of the Carte-
sian CS. Fig. 2-(d) shows the subimage center estimation obtained with the method
described above. Since the raw white image has a Bayer pattern, we have verified that
the center positions estimated by considering only red, green or blue channel, or alter-
natively considering all color channels, are essentially the same. Indeed, demosaicking
the raw white image does not create image cross-talk since the three color channels are
the same for all pixels in the center of the subimages.

Reordering pixels: In the following, we assume that the raw image has been di-
vided pixel-wise by the white image. This division considerably corrects the vignetting
6 which is enough for our purposes. We refer to [7] for a precise vignetting modeling
in plenoptic images. Now, in order to recover the different views, pixels are organized
as illustrated in Fig. 3-(a). In order to preserve the pixel arrangement in the raw image
(hexagonal pixel grid), empty spaces are left between pixels on the views as shown in
Fig. 3-(b). Respecting the sampling grid avoids creating aliasing on the views. Notice

6 Light rays hitting the sensor at an oblique angle produce a weaker signal than other light rays.
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(a)

(b)

Fig. 3. (a) Demultiplexing. Pixels with the same relative position w.r.t. the subimage centers are
stored in the same view. Only two views are illustrated for visualization. Color corresponds to
sensor color on original Bayer pattern, and is carried over to assembled raw views. (b) Color
patterns of three consecutive mosaicked views (even, odd and even positions of a line of the
matrix of views) for a Lytro camera (∼10× 10 pix. per microlens). Color patterns from the
views at even positions are very similar while the color pattern at the odd position is significantly
different although there are horizontal color stripes too. White (empty) pixels are left to avoid
aliasing.

(a) (b) (c) (d)

Fig. 4. (a) Lytro image (for visualization purposes). (b) One mosaicked view. (c) Zoomed red
rectangle in view (b). (d) Same zoom with horizontal interpolation of empty (black) pixels, when
possible. This simple interpolation does not create artifacts since all the pixels in a view contain
same angular information.

that, since the raw image has not been demosaicked, the views inherit new color pat-
terns. Because of the shift and rotation of the microlenses w.r.t. the sensor, the microlens
centers (as well as other relative positions) do not always correspond to the same color.
As a consequence, each view has its own color pattern (mainly horizontal monochrome
lines in Lytro).

After demultiplexing, the views could be demosaicked without risking to fuse pixel
information from different angular light rays. However, classic demosaicking algo-
rithms are not well adapted to these new color patterns, specially on high frequencies.
For the sake of disparity estimation, we simply fill the empty pixels in a color chanel
(white pixels in Fig. 3) when the neighboring pixels have the color information for this
chanel (see Fig. 4). For example, if an empty pixel of the raw data has a green pixel on
the right and on the left, then the empty pixel is filled with a green value by interpolation
(1D Piecewise Cubic Hermite interpolation). Other empty pixels are left as such.

Differences with State-of-the-Art: The main difference with the demultiplexing
method in [7] is the fact that in their method the raw data of a scene is demosaicked be-
fore being demultiplexed. This approach mixes information from different views and,
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as we will show in the next section, it has dramatic consequences on the disparity esti-
mation. Besides, the method in [7] estimates the microlenses centers similarly to us but
it does not force the center positions to be integer as we do in our optimization step. In-
stead, the raw image is interpolated to satisfy this constraint. Even if theoretically this
solution should provide a more accurate LF, interpolating the raw data implies again
mixing information from different views which creates image cross-talk artifacts. The
method for estimating the center positions in [6] differs considerably from ours since
the centers are found via local maxima estimation in the frequency domain. First, the
raw image is demosaicked and converted to gray and the final center positions are the
result of fitting the local estimation on a Delaunay triangular grid. Moreover, the sec-
ond step to render the views is coupled with super-resolution providing views of size
1080× 1080 (instead of 328× 328, which is the number of microlenses).

The goal of this paper is to estimate accurately the disparity on plenoptic images,
but we have observed that the processing needed before doing that is of foremost im-
portance. So, even if the works in [7] and [6] are an important step forward for LF
processing, we propose an alternative processing of the views which is better suited to
subsequent disparity estimation.

4 Disparity Estimation

In this section, we present a new block-matching disparity estimation algorithm adapted
to plenoptic images. We assume that a matrix of views is available (obtained as ex-
plained in the previous section) such that the views are horizontally and vertically rec-
tified, i.e., satisfying the epipolar constraint. Therefore, given a pixel in a reference
view, its corresponding pixels from the same row of the matrix are only shifted hori-
zontally. Similar reasoning is valid for the vertical pixel shifts among views from the
same column of the matrix. Furthermore, consecutive views have always the same base-
line a (horizontally and vertically). As a consequence, for each point, its horizontal and
vertical disparities with respect to nearest views are equal provided the point is not oc-
cluded. In other words, given a point in the reference view, the corresponding point in
its consecutive right view is displaced horizontally by the same distance than the corre-
sponding point in its consecutive bottom view is displaced vertically. By construction,
the plenoptic camera provides a matrix of views with small baselines, which means that
the possible occlusions are small. In fact, each point of the scene is seen from different
points of views (even if it is occluded for some of them). Thus, the horizontal and ver-
tical disparity equality is true for almost all the points of the scene. To the best of our
knowledge, this particular property of plenoptic data has not been exploited before.

Since the available views have color patterns as in Fig. 3, we propose a block match-
ing method in which only pixels in the block having the same color information are
compared. We propose to use a similarity measure between blocks based on the ZSSD
(Zero-Mean Sum of Squared Differences). Formally, let Ip be a reference view of the
matrix of views and Iq be a view belonging to the same matrix row as Ip. Let ap,q be
the respective baseline (a multiple of a). Then, the cost function between Ip and Iq at
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the center (x0, y0) of a block B0 in Ip is defined as a function of the disparity d:

CF p,q0 (d) =
1∑

(x,y)∈B0

W (x, x′, y)

∑
(x,y)∈B0

W (x, x′, y)
(
Ip(x, y)−Ip0−Iq(x′, y)+I

q
0

)2
,

(2)
where x′ := x + ap,q d, Ip0 and Iq0 are the average values of Ip and Iq over the block
centered at (x0, y0) and (x0 + ap,q d, y0) respectively and W is the window function

W (x, x′, y) = G0(x, y) · S(x, x′, y) ,

where G0 is a Gaussian function centered at (x0, y0) and supported in B0 and S is the
characteristic function controlling that only pixels in the block with same color infor-
mation are compared in the cost function: S(x, x′, y) = 1 if Ip(x, y) and Iq(x′, y) have
the same color information, and 0 otherwise. Note that the cost function is similarly de-
fined when Ip and Iq are views from the same matrix column. In practice, we consider
blocks of size 13× 13.

Now, our algorithm takes advantage of the multitude of views given by the LF and
estimates the disparity through all the rows and columns of the matrix. Let Θ be the set
of index-view pairs such that the disparity can be computed horizontally or vertically
w.r.t. the reference view Ip. In other words, Θ is the set of index-view pairs of the form
(Ip, Iq), where Iq is from the same row or the same column as Ip. In fact, consecutive
views are not considered in Θ since consecutive color patterns are essentially different
because of the sampling period of sensor’s Bayer pattern. Besides, views on the borders
of the matrix are strongly degraded by the vignetting effect of the main lens. So, it is
reasonable to only consider the 8 × 8 or 6 × 6 matrix of views placed in the center for
the Lytro camera. Fig. 5 depicts the pairs of considered images for disparity estimation
in a matrix row. Finally, given a reference view Ip, the disparity at (x0, y0) is given by

d(x0, y0) = Med(p,q)∈Θ
{
argmin

d
CF p,qB0

(d)
}
, (3)

where Med stands for the 1D median filter. This median filter is used to remove outliers
that may appear on a disparity map computed for a single pair of views, specially in
low-textured areas. It should be noted that through this median filtering, all the hori-
zontally and vertically estimated disparities are considered to select a robust estimation
of disparity which is possible thanks to the horizontal and vertical disparity equality
mentioned beforehand.

Removing outliers: Block-matching methods tend to provide noisy disparity maps
when there is a matching ambiguity, e.g., for repeated structures in the images or on
poorly textured areas. Inspired by the well-known cross-checking in binocular stereovi-
sion [20] (i.e., comparing left-to-right and right-to-left disparity maps), our method can
also remove unreliable estimations comparing all possible estimations. Since a large
amount of views are available from a LF, it is straightforward to rule out inconsistent
disparities. More precisely, points (x0, y0) are considered unreliable if

Std(p,q)∈Θ
{
argmin

d
CF p,qx0,y0(d)

}
> ε , (4)
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Fig. 5. On the left: LF (matrix of views). Views in the center get more radiance than views of the
border of the matrix (pixels coming from the border of the microlenses). The 6× 6 central views
among the 10× 10 are used. On the right: 6 central views from the same row of the matrix. Odd
and even views have different color patterns between them (but very similar patterns between odd
views and even views). This is represented with a red circle and a blue triangle. The index-view
pairs in Θ corresponding to this matrix row are represented with the red and blue arrows.

where Std stands for standard deviation and ε is the accuracy in pixels. In practice, we
consider an accuracy of an eight of a pixel, ε = 1

8 .

Sub-pixel disparity estimation: By construction, the baseline between the views
is small, specially between views with close positions in the matrix. So the disparity
estimation for plenoptic images must achieve sub-pixel accuracy. Such precision can be
achieved in two different ways: either by upsampling the views or by interpolating the
cost function. Usually the first method achieves better accuracy but at a higher compu-
tational burden, unless GPU implementations are used [8]. For this reason, the second
method (cost function interpolation) is usually used. However, it has been proved [19]
that block-matching algorithms with a quadratic cost function as in Eq. (2) achieve the
best trade-off between complexity and accuracy only by first upsampling the images by
a factor of 2 and then interpolating the cost function. We follow this rule in our disparity
estimation algorithm.

Differences with State-of-the-Art: The closest disparity estimation method for
plenoptic images compared to ours is the method presented in [5] but there are sev-
eral differences between both methods. First, our method properly demultiplexes the
views before estimating the disparity, whereas the method in [5] considers full RGB
views and proposes an antialiasing filter to cope with the weak prefilter in plenoptic
type 2.0. Then, the energy defined in [5] (compare Eq. 3 of this paper with Eq. 3 in [5])
considers all the possible pairs of views even if in practice, for complexity reasons, only
a subset of view pairs can be considered. In [5], no criteria is given to define such subset
of view pairs while a reasonable subset is given with respect to the color pattern in our
views. Finally, the proposed energy in [5] considers a regularization term in addition to
the data term and the energy is minimized iteratively using conjugate gradients. In ano-
ther state-of-the-art method, [22] combines spatial correspondence with defocus. More
precisely, the algorithm uses the 4D EPI and estimates correspondence cues by com-
puting angular variance, and defocus cues by computing spatial variance after angular
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(a) (b) (c)

Fig. 6. (a) Lytro Image of the scene. (b) Disparity estimation without raw image demosaicking.
(c) Disparity estimation with raw image demosaicking. The cost function is the same but the
characteristic function is equal to one for all the points since the views are in full RGB. For
the sake of accurate analysis no sub-pixel refinement has been performed. Errors due to image
cross-talk artifacts are tremendous on disparity maps.

integration. Both cues are combined in an MRF global optimization process. Never-
theless, their disparity estimation method does not take care of the demultiplexing step
accurately. Their algorithm not only demosaicks the raw image, but it stores it using
JPEG compression. So, the resulting LF is affected by image cross-talk artifacts and
compression artifacts. In next section, we shall compare our results with this method.
Unfortunately, a qualitative comparison with [5] is not possible since the authors work
with different data: mosaicked views from a focused or type 2.0 plenoptic camera.

5 Experimental Results
In this section we show the results obtained with our algorithm. First of all, we have
compared the disparity maps obtained with and without demosaicking the raw image.
Intuitively one can think that demosaicking the raw image will get better results since
more information is available on the views. However this intuition is rejected in practice
(see for instance Fig. 6). Therefore, we claim that accurate disparity estimation should
consider only the raw data on the views. Unfortunately, experimental evaluation with
available benchmarks with ground-truth [24] as in [13] is not possible because all LF in
the benchmark are already demosaicked.

Fig. 7 compares our disparity maps from Lytro using [2] and the disparity map
from [22] using the code provided by the authors and the corresponding microlenses
center positions for each experiment. The algorithms have been tested with images from
[22] and images obtained with our Lytro camera. The poor results from [22] with our
data show a strong sensitivity to parameters of their algorithm. Also, their algorithm
demosaicks and compresses (JPEG) the raw image before depth is estimated. On the
other hand, Lytro disparity maps are more robust but they are strongly quantized which
may not be sufficiently accurate for some applications. All in all, our method has been
tested on a large number of images from Lytro with different conditions and it provides
robust and accurate results compared to state-of-the-art disparity estimation method for
plenoptic images.

Obviously, other approaches could be considered for disparity estimation. For in-
stance, our cost function can be regarded as the data term in a global energy mini-
mization approach as in [25]. However, for the sake of computational speed we have
preferred a local method. Specially, because a multitude of disparity estimations can be
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(a) Data (b) Our results (c) Results from [22] (d) Lytro from [2]

Fig. 7. (a) Original data. The three last images are published in [22]. (b) Our disparity map results.
(c) Results from [22]. The authors have found a good set of parameters for their data but we have
found poor results using their algorithm with our data. (d) Depth map used by Lytro, obtained
with a third party toolbox [2].
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Fig. 8. Comparison of RGB views. Left: Our result. Right: Result of demosaicking the raw data
as in [22]. Besides of a different dynamic range certainly due to a different color balance, notice
the reddish and greenish bands on the right flower (best seen on PDF).

performed at each pixel. Moreover, other approaches using EPI’s as in [24] could be
used but we have observed that EPI’s from Lytro are highly noisy and only disparities
on object edges are reliable (EPI from Lytro is only ∼ 10 pixels width).

In this paper we propose to not perform demosaicking on the raw image to avoid
artifacts but full RGB images are needed for some applications (i.e., refocusing). In that
case we suggest to recover the lacking colors by bringing the color information from
all the corresponding points in all views using the estimated disparity information as
in [21]. Indeed, one point in the reference view seen with one color channel is seen in
the other views with another color. Fig. 8 shows disparity-guided demosaicking results.
We show that our approach avoids color artifacts compared with the method in [22]
that demosaicks raw images. So, our demultiplexing mosaicked data strategy not only
avoids artifacts on disparity maps but also on full RGB view rendering.

It shall be pointed out that we assume the Lytro camera to be a plenoptic type 1.0.
Although not much is officially available about its internal structure, our observation of
the captured data and the study in [11] support this assumption. However, the assump-
tion on the camera type only changes the pixel reordering in the demultiplexing step,
and the proposed method can be easily generalized to the case of plenoptic type 2.0.

Finally, even if our method only considers central views of the matrix of views,
we have observed slightly bigger errors on the borders of the image. Pushing further
the correction of vignetting and of other chromatic aberrations could be profitable to
accurate disparity estimation. This is one of our perspectives for future work.

6 Conclusion

Plenoptic cameras are promising tools to expand the capabilities of conventional cam-
eras, for they capture the 4D LF of a scene. However, specific image processing algo-
rithms should be developed to make the most of this new technology. There has been
tremendous effort on disparity estimation for binocular stereovision [20], but very little
has been done for the case of plenoptic data. In this paper, we have addressed the dispa-
rity estimation problem in plenoptic data and we have seen that it should be studied
together with demultiplexing. In fact, the proposed demultiplexing step on mosaicked
data is a simple pre-processing that has clear benefits for disparity estimation and full
RGB view rendering since they do not suffer from view cross-talk artifacts.
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