Ten years of pedestrian detection, what have we learned? Supplementary material

Rodrigo Benenson Mohamed Omran Jan Hosang Bernt Schiele

Max Planck Institut for Informatics Saarbrücken, Germany firstname.lastname@mpi-inf.mpg.de

1 Reviewing the effect of features

The idea behind the experiments in section 4.1 of the main paper is to demonstrate that, within a single framework, varying the features can replicate the jump in detection performance over a ten-year span (2004 - 2014), i.e. the jump in performance between VJ and the current state-of-the-art.

See figure 1 for results on INRIA and Caltech-USA of the following methods (all based on SquaresChnFtrs, described in section 4 of the paper):

- VJLike uses only the luminance colour channel, emulating the original VJ [1]. We use 8 000 weak classifiers to compensate for the weak input feature, only square pooling regions, and level-2 trees to emulate the Haar wavelet-like features used by VJ.
- HOGLike+LUV is identical to HOGLike, but with additional LUV colour channels (10 feature channels total).
- SquaresChnFtrs is the baseline described in the beginning of the experiments section (§4). It is similar to HOGLike+LUV but the size of the square pooling regions is not restricted.
- SquaresChnFtrs+DCT is inspired by [3]. We expand the ten HOG+LUV channels into 40 channels by convolving each of the 10 channels with three DCT (discrete cosine transform) filters (7×7 pixels), and storing the absolute value of the filter responses as additional feature channels. The three DCT basis functions we use as 2d-filters correspond to the lowest spatial frequencies. We name this variant SquaresChnFtrs+DCT and it serves as reference point for the performance improvement that can be obtained by increasing the number of channels.

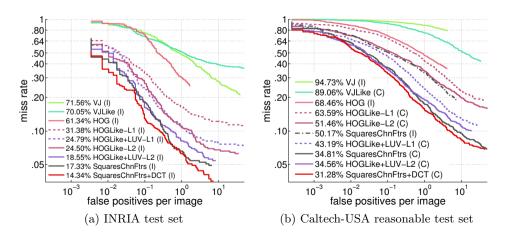


Figure 1: Effect of features on detection performance. (I)/(C) indicates using INRIA/Caltech-USA training set respectively.

2 Complementarity of approaches

Table 1 contains the detailed results of combining different approaches with a strong baseline, related to section 4.2 of the main paper. Katamari-v1 combines all three listed approaches with SquaresChnFtrs. We train and test on the Caltech-USA dataset. It can be noticed that the obtained improvement is very close to the sum of individual gains, showing that these approaches are quite complementary amongst each other.

Table 1: Complementarity between different extensions of the SquaresChnFtrs strong baseline. Results in MR (lower is better). Improvement in MR percent points. Expected improvement is the direct sum of individual improvements.

Method	Results	Improvement	Expected improvement
SquaresChnFtrs	34.81%	-	-
+DCT	31.28%	3.53	-
+SDt [4]	30.34%	4.47	-
+2Ped [5]	29.42%	5.39	-
+DCT+2Ped	27.40%	7.41	8.92
+SDt+2Ped	26.68%	8.13	9.86
+DCT+SDt	25.24%	9.57	8.00
Katamari-v1	22.49%	12.32	13.39

References

- 1. Viola, P., Jones, M., Snow, D.: Detecting pedestrians using patterns of motion and appearance. In: CVPR. (2003)
- Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR. (2005)
- Nam, W., Dollár, P., Han, J.H.: Local decorrelation for improved detection. In: arXiv. (2014)
- 4. Park, D., Ramanan, D., Fowlkes, C.: Multiresolution models for object detection. In: ECCV. (2010)
- Ouyang, W., Wang, X.: Single-pedestrian detection aided by multi-pedestrian detection. In: CVPR. (2013)