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Abstract. Automatic extraction of soft biometric characteristics from face im-
ages is a very prolific field of research. Among these soft biometrics, age es-
timation can be very useful for several applications, such as advanced video
surveillance [5, 12], demographic statistics collection, business intelligence and
customer profiling, and search optimization in large databases. However, esti-
mating age from uncontrollable environments, with insufficient and incomplete
training data, dealing with strong person-specificity, and high within-range vari-
ance, can be very challenging. These difficulties have been addressed in the past
with complex and strongly hand-crafted descriptors, which make it difficult to
replicate and compare the validity of posterior classification schemes. This paper
presents a simple yet effective approach which fuses and exploits texture- and
local appearance-based descriptors to achieve faster and more accurate results.
A series of local descriptors and their combinations have been evaluated under
a diversity of settings, and the extensive experiments carried out on two large
databases (MORPH and FRGC) demonstrate state-of-the-art results over previ-
ous work.
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1 Introduction

The problem of age estimation from images has historically been one of the most chal-
lenging within the field of facial analysis. Some of the reasons are the uncontrollable
nature of the aging process, the strong specificity to the personal traits of each individ-
ual [24], high variance of observations within the same age range, and the fact that it is
very hard to gather complete and sufficient data to train accurate models [7].

This process can be made easier by having available large and representative collec-
tions of age-annotated images. However, in the past the available databases were often
very limited and strongly skewed. This is especially disadvantageous for applications
like video surveillance and forensics, which need to work correctly when facing un-
known subjects and a lack of any additional cues. Fortunately, the recent availability of
large databases like MORPH [21] and FRGC [20] offers a great opportunity to make ad-
vances in the field. Keeping in mind that any training data set which is representative of
the whole population cannot exist, the only viable option is to develop methods that are
able to exploit large databases in order to gain substantial generalization capabilities.
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The inherent difficulties in the facial age estimation problem, such as limited im-
agery, challenging subject variability, and subtle visual age patterns, have derived re-
search in the field into building particularly complex feature extraction schemes. The
most typical ones consist of either hand-tuned multi-level filter banks, that intend to
emulate the behavior of primary visual cortex cells, or fine-grained facial meshes to
accomplish precise alignment through dozens of facial landmarks. In any case, the re-
sulting extraction schemes are difficult to replicate, and the high-dimensional visual
descriptors in many cases take considerable time to be extracted and processed.

On the other hand, during the last decade, several fields within image classification
and object recognition have proposed different families of very fast and descriptive fea-
ture extraction schemes, which have become well-known for being especially invariant
to rotation, scale, illumination, and alignment. Such histogram-based descriptors, which
typically capture local intensity variations or local neighborhood patterns from spatial
grids, are nowadays a fundamental tool to deal with highly adverse and unconstrained
environments for a variety of applications.

In this paper we conduct a thorough evaluation of a series of common local visual
descriptors, in order to investigate their utility towards the automatic facial age estima-
tion problem. The contributions are as follows:

– We review some of the most efficient and effective local visual descriptors from im-
age classification, and explore their suitability to extract age-related discriminative
patterns.

– We demonstrate that the fusion of textural and local appearance-based descrip-
tors achieves state-of-the-art results, improving over complex feature extraction
schemes that were previously proposed.

– Candidate descriptors are exhaustively evaluated regarding optimal parameters and
regularization, in terms of mean average errors and cumulative score curves over
two large databases.

The paper is structured as follows: next section gathers and comments on previ-
ous related work on facial age estimation. The candidate descriptors to be evaluated
are reviewed in Section 3, along with the selected classification scheme. Evaluation is
presented out in Section 4, by first describing available large databases with age an-
notations, and subsequently analyzing the extensive experiments carried out over the
combinations of local descriptors. Finally, Section 5 summarizes the results and draws
some conclusions.

2 Related work

After an initial interest on automatic age estimation from images dated back in the early
2000s [13–15], research in the field has experienced a renewed interest from 2006 on,
since the availability of large databases like MORPH-Album 2 [21], which increased
by 55× the amount of real age-annotated data with respect to traditional age databases.
Therefore, this database has deeply been employed in recent works by applying over it
different descriptors and classification schemes.
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Feature extraction scheme. Regarding visual features, flexible shape and appear-
ance models such as ASM (Active Shape Model) and AAM (Active Appearance Model)
have been some of the primary cues used to model aging patterns [2, 7, 8, 13]. Such sta-
tistical models capture the main modes of variation in shape and intensity observed in
a set of faces, and allow face signatures based on such characterizations to be encoded.

Bio-Inspired Features (BIF) [22] and its derivations have consistently been used for
age estimation in the last years [7, 12]. These feed-forward models consist of a number
of layers intertwining convolutionally and pooling processes. First, an input image is
mapped to a higher-dimensional space by convolving it with a bank of multi-scale and
multi-orientation Gabor filters. Later, a pooling step downscales the results with a non-
linear reduction, typically a MAX or STD operation, progressively encoding the results
into a vector signature. In [17], the authors carefully design a two-layer simplification of
this model for age estimation by manually setting the number of bands and orientations
for convolution and pooling. Such features are also used in their posterior works [9–11].

Features extracted from local neighborhoods have very rarely been used for the
purpose of age estimation. In [24], LBP histogram features are combined with principal
components of BIF, shape and textural features of AAM, and PCA projection of the
original image pixels. HOG features have independently been used for age estimation
in [4].

Classification scheme. With regards to the learning algorithm, several approaches
have been proposed, including, among others, Support Vector Machines (SVM) / Sup-
port Vector Regressors (SVR) [17, 12, 2, 24], neural networks [13] and their variant of
Conditional Probability Neural Network (CPNN) [7], Random Forests (RF) [16], and
projection techniques such as Partial Least Squares (PLS) and Canonical Correlation
Analysis (CCA), along with their regularized and kernelized versions [9–11]. An ex-
tensive comparison of these classification schemes for age estimation has been reported
in our previous paper [4], and in particular the advantageousness of CCA was demon-
strated over the others, both regarding accuracy and efficiency.

Specific attention must be given to the CCA technique, which is the main focus
of this paper from the classification perspective. The PLS and CCA subspace learning
algorithms were originally conceived to model the compatibility between two multi-
dimensional variables. PLS uses latent variables to learn a new space in which such
variables have maximum correlation, whereas CCA finds basis vectors such that the
projections of the two variables using these vectors are maximally correlated to each
other. Both techniques have been adapted for label regression. To the best of our knowl-
edge, the best current result over MORPH is achieved by combining BIF features with
kernel CCA [10], although in that case the size of training folds is limited to 10K sam-
ples due to computational limitations.

The main contribution of this paper is the proposal of a novel combination of well-
known local descriptors capturing texture and contour cues for the purpose of facial
age estimation. The orthogonal nature of these features allows the exploitation of the
benefits of each of them, bringing to performance which are superior than in the case
of them applied separately. To the best of our knowledge, this approach has never been
employed before for age estimation, and our experiments demonstrate comparable per-
formance with respect to state-of-the-art results provided by complex and fine-tuned
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feature extraction schemes such as BIF [11]. Moreover, for the sake of simplicity and
efficiency, a simple eye alignment operation is carried out through similarity transfor-
mation, as opposed to precise alignment approaches typically fitting active shape and
appearance models with tens of facial landmarks.

3 Methodology

Preprocessing. In general, existing works tackle the problem of age estimation with
visual features that are either complex and fine-tuned (e.g., BIF), or require precise
statistical models involving tens of facial landmarks for accurate alignment (e.g., ASM
and AAM). As opposed to them, we do not rely on precisely aligned appearance models;
instead, our experiments will be evaluated using a simple alignment through the fiducial
landmarks of the detected eye regions.

The facial region of each image has been detected with the face detector described
in [19]. The relative alignment invariance of local descriptors based on concatenated
cell histograms allows us to work with simple eye-aligned images. The fiducial mark-
ers corresponding to the eye centers have been obtained using the convolutional neural
network for face alignment presented in [23]. The aligned version of each detected face
is obtained by a non-reflective similarity image transformation that yields an optimal
least-square correspondence between the eye centers and the target locations, that have
been symmetrically placed at 25% and 75% of the alignment template. Unlike previous
works like [10], which use input images of 60×60 pixels, our aligned image are resized
to only 50×50 pixels.

Descriptors. The choice of visual features to be extracted from aligned images and
sent to the classification scheme plays a fundamental role on the resulting estimation
accuracy. In this paper, we have selected a number of significant local invariant de-
scriptors that have been useful for image matching and object recognition in the past
due to their expressiveness, fast computation, compactness, and invariance to misalign-
ment and monotonic illumination changes. They include local appearance descriptors
as HOG and texture descriptors as LBP and SURF.

Histograms of Oriented Gradients (HOG) [3] have largely been used as robust
visual descriptors in many computer vision applications related to object detection and
recognition. The horizontal and vertical gradients of the input image are computed, and
the image region is divided into Cx × Cy grid cells. A histogram of orientations is
assigned to each cell, in which every bin accounts for an evenly split sector of either the
[0, π] or [−π, π] domain (for unsigned and signed versions, respectively). At each pixel
location, the gradient magnitude and orientation is computed, and that pixel increments
the assigned orientation bin of its correspondent cell by its gradient magnitude. Cell
histograms are concatenated to provide the final descriptor. We use HOGC,B to denote
C×C square grids and B orientation bins.

Local Binary Patterns (LBP) [18] have been long used as a textural descriptor
for image classification, and more recently, variations of the original proposal have
provided state-of-the-art results in fields like face and object recognition. The origi-
nal operator describes every pixel in the image by thresholding its surrounding 3×3-
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neighborhood with its intensity value, and concatenating the 8 boolean tests as a binary
number. A common extension considers generic pixel neighborhoods formed by P sam-
pled pixel values at radiusR from the central pixel. To build an LBP compact descriptor,
a histogram is computed over the filtered result, in which each bin corresponds to a LBP
code. Another typical extension reduces the dimensionality of the descriptor by assign-
ing all non-uniform codes to a single bin, whereas uniform codes are defined as those
having not more than 2 bitwise transitions from 0 to 1 or vice versa (e.g., 00111000,
versus non-uniform 01001101). An LBP descriptor of generic neighborhood size and
radius using uniform patterns is referred as LBPu2

P,R, e.g. LBPu2
8,2.

Speeded-Up Robust Features (SURF) [1] is an interest point detector and de-
scriptor that is particularly invariant to scale and rotation. It has commonly been used
in image matching and object recognition as a faster and comparable alternative to
SIFT. In our case, we concentrate on the descriptor component of the upright version
of the technique (U-SURF). The square image region to describe is partitioned into
4×4 subregions. Horizontal and vertical wavelet responses dx and dy are computed
and weighted with a Gaussian. The sum of these responses and their absolute values
are stored, generating a 4-dimensional vector (

∑
dx,
∑
dy,
∑
|dx|,

∑
|dy|) for each

subregion, and these are concatenated to form the final 64-dimensional descriptor of
the image region, SURF64. A common extension consists of doubling the number of
features, by separately computing the sums of dx and |dx| for dy < 0 and dy ≥ 0, and
equally for dy given the sign of dx, thus yielding SURF128.

As gradient information is typically a very relevant cue to describe image content
for many image descriptors, we have included raw magnitude gradient images (GRAD)
as a baseline in our experiments for the evaluation of the proposed descriptors.

Classification. From the wide variety of learning schemes presented in the literature
on facial age estimation, Canonical Correlation Analysis (CCA) and its derivations
have recently obtained state-of-the-art results in challenging large databases such as
MORPH [11]. This projection technique involves low computational effort and un-
precedented accuracy in the field, for which we use it as our chosen regression learning
algorithm. CCA is posed as the problem of relating data X to labels Y by finding basis
vectors wx and wy , such that the projections of the two variables on their respective
basis vectors maximize the correlation coefficient

ρ =
wx

TXYTwy√
(wx

TXXTwx)(wy
TYYTwy)

, (1)

or, equivalently, finding maxwx,wy wx
TXYTwy subject to the scaling wx

TXXTwx=1
and wy

TYYTwy=1. For age estimation, labels in Y are unidimensional, so a least
squares fitting suffices to relate these labels to the projected data features. Thus, only
wx is computed, by solving the following generalized eigenvalue problem:

XYT
(
YYT +y I

)−1
YXTwx = λ

(
XXT + I

)
wx (2)

When projecting through the solution wx, the dimensionality of data features is reduced
to one dimension per output (a single numerical value in our case), so the aforemen-
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tioned label fitting simply consists on finding the scalar value that optimally adapts the
projected values to the ground truth age, in the least-squares sense. The described pro-
cedure can be stabilized through regularization, by modifying the eigenvalue problem
in the following manner:

XYT
(
(1− γy)YYT + γyI

)−1
YXTwx = λ

(
(1− γx)XXT + γxI

)
wx (3)

Regularization terms γx, γy ∈ [0, 1] have been included in Eq. 3 to prevent overfitting.
Although CCA also admits extension to a kernelized version, in that case covariance
matrices become computationally intractable with over 10K samples. In practice, reg-
ularized CCA works comparably to KCCA [10], it is much less computationally de-
manding, and will allow us to reproduce the same exact validation schemes over large
databases.

4 Experimental Results

Age databases. Due to the nature of the age estimation problem, there is a restricted
number of publicly available databases providing a substantial number of face images
labeled with accurate age information. Table 1 shows the summary of the existing
databases with main reference, number of samples, number of subjects, and comments.

Database Samples Subjects Comments

PAL [15] 580 580 Limited number of samples
FG-NET [14] 1,002 82 Limited number of samples and subjects
GROUPS [6] 28,231 28,231 Ages discretized into seven age intervals
FRGC v2.0 [20] 44,278 568 Large database; many samples per subjects
MORPH II [21] 55,134 13,618 Large database; high diversity

Table 1. Description of the existing databases for age estimation.

From the information in Table 1, we see that PAL and FG-NET are comparatively
negligible to the rest in terms of number of samples. Additionally, age annotations in
GROUPS are discretized into seven age intervals, which makes it unsuitable for train-
ing accurate age estimation models. Moreover, FG-NET contains only 82 subjects, so
a leave-one-person-out validation scheme is employed by convention, to avoid opti-
mistic biasing by identity replication. Given such limitations, and the recent tendency
to use MORPH as a standard for age estimation, we concentrate on this database and
on FRGC to provide experimental evaluations. Although the FRGC database is compa-
rable to MORPH regarding number of samples, image quality and age range coverage,
we have only found one previous publication on age estimation including FRGC as part
of their experiments [4]. Figure 1 offers a graphical visualization and comparison of the
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Fig. 1. Age distribution and density per database. In the left graphic (Age distribution) different
ages are represented by the intensity. In the right graphic (Desity per age) the intensity represent
the density (white color more density). PAL and FG-NET are relatively negligible compared to
others, and GROUPS only provides age intervals, so we focus on MORPH II and FGRC. Age
samples are mainly skewed towards 20–30 and 50 year old.

analyzed databases, by number of samples and density of age ranges.

Metrics. To evaluate the accuracy of the age estimators, the conventional metrics are
the Mean Average Error (MAE) and the Cumulative Score (CS). MAE computes the
average age deviation error in absolute terms, MAE =

∑M
i=1 |âi − ai|/M , with âi the

estimated age of the i-th sample, ai its real age andM the total of samples. CS is defined
as the percentage of images for which the error e is no higher than a given number of
years l, as CS(l) = Me≤l/M [2, 24, 12] . Related publications typically supply either
an eleven-point curve for age deviations [0− 10], or simply the value CS(5).

All through the rest of this paper, the optimal parameters are searched so as to
minimize the MAE score over MORPH, using 5-fold cross-validation in all cases. In
particular, the division into training and validation sets is made so that all the instances
of the same subject are contained in one single fold at a time; this applies to all the pre-
sented experiments. Descriptors are always directly extracted from the aligned version
of detected faces.

Parameter analysis. In order to evaluate in depth the performance of the analyzed fea-
tures for age estimation, we have conducted an analysis of the different parameters for
the compared feature detectors. In the case of HOGC,B , the optimal parameters for grid
size C×C and number of bins B have been obtained through exhaustive logarithmic
grid search and 5-fold cross-validation, for single and multiple scales. Multiscale vari-
ations are achieved by concatenating the feature vectors obtained by the descriptor at
different scales. In order to have a fair comparison with the results reported in [11],
images have been processed at 50×50 (similar to the 60×60 size used in that paper).
However, we also evaluate the effect of different image sizes on the final performance
in Fig. 4, where images of size 100×100 were used. In summary, Figs. 2, 3 and 4 re-
port the individual analysis of HOG descriptors for a single scale at 50×50 pixels; for
3-scales at {50×50, 25×25, 13×13}; and for a single scale at 100×100, respectively.
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Cx Cy B
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3 3 7.84 8.16 7.32 7.06 7.11 6.97 6.88 6.86 6.73 6.77 6.66 6.58 6.60 6.56 6.55 6.48 6.48 6.49

4 4 7.47 7.17 6.84 6.82 6.62 6.56 6.35 6.42 6.28 6.28 6.17 6.18 6.16 6.16 6.08 6.06 6.04 6.06

5 5 6.68 6.45 6.02 6.05 5.76 5.75 5.55 5.53 5.47 5.44 5.39 5.37 5.38 5.35 5.33 5.31 5.31 5.29

6 6 6.15 6.07 5.66 5.67 5.53 5.43 5.30 5.32 5.26 5.23 5.17 5.18 5.16 5.14 5.13 5.11 5.12 5.10

7 7 5.90 5.70 5.47 5.36 5.13 5.10 4.98 4.99 4.93 4.93 4.89 4.89 4.88 4.85 4.85 4.85 4.85 4.84

8 8 5.58 5.44 5.19 5.13 4.97 4.94 4.84 4.86 4.80 4.80 4.76 4.77 4.75 4.75 4.74 4.73 4.74 4.73

9 9 5.36 5.25 5.02 4.98 4.86 4.81 4.73 4.75 4.71 4.69 4.66 4.67 4.64 4.64 4.65 4.64 4.63 4.64

10 10 5.28 5.13 4.98 4.91 4.77 4.73 4.68 4.69 4.64 4.61 4.61 4.60 4.59 4.58 4.59 4.59 4.59 4.59

11 11 5.10 5.01 4.83 4.76 4.66 4.62 4.55 4.57 4.54 4.50 4.50 4.50 4.49 4.47 4.50 4.49 4.49 4.50

12 12 5.33 5.21 5.03 4.97 4.84 4.82 4.77 4.78 4.72 4.71 4.70 4.72 4.70 4.69 4.70 4.70 4.71 4.71

13 13 5.11 5.00 4.82 4.80 4.66 4.65 4.60 4.61 4.57 4.56 4.54 4.56 4.55 4.54 4.55 4.56 4.56 4.57

14 14 4.97 4.87 4.70 4.68 4.57 4.55 4.50 4.51 4.47 4.46 4.45 4.48 4.46 4.46 4.47 4.47 4.48 4.49

15 15 4.83 4.78 4.59 4.56 4.47 4.45 4.41 4.42 4.39 4.38 4.38 4.40 4.39 4.39 4.40 4.41 4.41 4.43

16 16 5.56 5.44 5.29 5.24 5.14 5.09 5.08 5.10 5.04 5.06 5.05 5.06 5.07 5.04 5.09 5.10 5.11 5.11

17 17 5.39 5.29 5.13 5.08 5.00 4.95 4.96 4.97 4.92 4.92 4.92 4.94 4.95 4.92 4.96 4.98 4.99 5.01

18 18 5.21 5.11 4.96 4.92 4.84 4.81 4.81 4.82 4.77 4.77 4.79 4.80 4.81 4.80 4.83 4.85 4.88 4.88

19 19 5.03 4.89 4.76 4.74 4.65 4.64 4.62 4.63 4.61 4.60 4.62 4.63 4.63 4.63 4.67 4.69 4.71 4.72

20 20 4.90 4.78 4.67 4.63 4.55 4.55 4.54 4.54 4.54 4.53 4.54 4.56 4.57 4.57 4.60 4.63 4.65 4.67

21 21 4.82 4.71 4.61 4.59 4.50 4.50 4.49 4.51 4.50 4.50 4.51 4.53 4.54 4.55 4.58 4.61 4.63 4.66

22 22 4.73 4.64 4.54 4.52 4.45 4.44 4.44 4.46 4.46 4.46 4.47 4.50 4.50 4.52 4.55 4.59 4.61 4.64

23 23 4.68 4.61 4.50 4.48 4.42 4.41 4.41 4.44 4.44 4.45 4.45 4.49 4.50 4.51 4.56 4.60 4.61 4.65

24 24 4.64 4.57 4.48 4.47 4.41 4.40 4.41 4.43 4.44 4.44 4.45 4.50 4.51 4.53 4.57 4.62 4.64 4.67
25 25 6.14 6.07 6.02 5.90 5.89 5.86 5.84 5.88 5.89 5.90 5.93 5.96 5.99 6.03 6.12 6.12 6.18 6.24

Fig. 2. Results for HOGC,B feature for a single scale with image size 50×50 at varying grid size
C (rows) and number of bins B (columns). The bordered cell shows the best value.

Cx Cy B
5 6 7 8 9 10 11 12 13 14 15 16 17 18

8 8 4.62 4.63 4.58 4.59 4.58 4.58

9 9 4.50 4.51 4.48 4.48 4.47 4.48

10 10 4.72 4.67 4.56 4.55 4.51 4.52 4.49 4.49 4.48 4.50 4.50 4.49 4.64 4.52

11 11 4.61 4.56 4.48 4.47 4.43 4.44 4.42 4.43 4.43 4.44 4.45 4.44 4.47 4.48

12 12 4.72 4.68 4.60 4.61 4.57 4.59 4.57 4.58 4.58 4.61 4.60 4.63 4.64 4.66

13 13 4.74 4.73 4.61 4.62 4.58 4.60 4.57 4.57 4.57 4.59 4.58 4.59 4.59 4.62

14 14 4.63 4.62 4.53 4.53 4.48 4.52 4.49 4.49 4.49 4.53 4.52 4.54 4.55 4.57

15 15 4.52 4.51 4.45 4.45 4.41 4.45 4.42 4.43 4.44 4.47 4.46 4.49 4.51 4.54
16 16 5.04 5.04 5.08 5.04 5.07 5.07 5.09 5.12

Fig. 3. Results for HOG×3
C,B feature for 3 scales concatenating descriptors over 50×50, 25×25,

and 13×13 images, at varying grid size C (rows) and number of binsB (columns). The bordered
cell shows the best value.

Fig. 4 shows that 100×100 images provide even better scores than the traditional sizes
in the literature, although we conduct the rest of experiments for 50×50 pixels for fair
comparison. Single scale HOG performed better than multiscale.

A similar grid search procedure has been chosen to optimize the parameters of LBP
and SURF descriptors. In the case of LBPu2

P,R the analysis has been carried out by
searching the optimal number of sampled neighbors P and radius R, for one and three
scales, constraining the number of neighbors to either 8 or 16, see Table 2. In the case
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Cx Cy B
6 7 8 9 10 11 12 13 14 15 16 17

7 7 5.39 5.13 5.09 4.97 4.95 4.87 4.88 4.85 4.82 4.82 4.81 4.80

8 8 5.15 4.93 4.91 4.80 4.79 4.73 4.72 4.70 4.67 4.66 4.65 4.66

9 9 4.85 4.70 4.65 4.59 4.59 4.53 4.51 4.49 4.48 4.48 4.47 4.48

10 10 4.87 4.67 4.62 4.54 4.55 4.49 4.49 4.46 4.44 4.44 4.44 4.43

11 11 4.64 4.50 4.48 4.41 4.42 4.37 4.37 4.36 4.34 4.35 4.34 4.34

12 12 4.63 4.51 4.47 4.41 4.42 4.38 4.38 4.37 4.36 4.36 4.35 4.36

13 13 4.52 4.41 4.38 4.33 4.33 4.30 4.29 4.28 4.28 4.28 4.28 4.28

14 14 4.47 4.36 4.33 4.31 4.30 4.28 4.29 4.27 4.26 4.28 4.27 4.29

15 15 4.37 4.28 4.26 4.23 4.23 4.21 4.22 4.20 4.20 4.21 4.22 4.24

16 16 4.44 4.35 4.33 4.30 4.31 4.30 4.28 4.29 4.27 4.29 4.29 4.30

17 17 4.36 4.28 4.26 4.24 4.25 4.23 4.23 4.23 4.22 4.24 4.24 4.25

18 18 4.30 4.23 4.21 4.20 4.20 4.19 4.18 4.19 4.19 4.20 4.21 4.22

19 19 4.26 4.20 4.18 4.17 4.18 4.17 4.16 4.17 4.17 4.19 4.19 4.22
20 20 4.41 4.34 4.24 4.33 4.33 4.32 4.34 4.34 4.35 4.38 4.37 4.40

Fig. 4. Results for HOGC,B feature for a single scale with size image 100×100 at varying grid
size C (rows) and number of bins B (columns). The bordered cell shows the best value.

(Size)
Radius R

2 3 4 5 6 7 8 9 10

LBPu2
8,R (59) 7.17 7.12 7.15 7.30 7.55 7.82 8.04 8.11 8.08

LBPu2
16,R (243) 6.88 6.70 6.66 6.76 7.06 7.25 7.40 7.51 7.81

LBPu2×3
8,R (177) 6.48 6.49 6.66 6.82 10.75 - - - -

LBPu2×3
16,R (729) 6.18 6.13 12.41 11.32 12.26 - - - -

Table 2. MAE for the single-scale descriptor LBPu2
P,R at 50×50 pixels, and for the 3-scale

LBPu2×3
P,R concatenating 50×50, 25×25, and 13×13. Neighborhoods of 8 and 16 are shown.

Scale SURF64 SURF128 Multiscale SURF×S
64 SURF×S

128

1.6 6.09 (320) 5.72 (640) {1.6, 2} 5.73 (640) 5.39 (1280)
1.8 6.21 (320) 5.77 (640) {1.6, 2.4} 5.71 (640) 5.41 (1280)
2.0 6.24 (320) 5.81 (640) {2, 3} 5.95 (640) 5.60 (1280)
2.4 6.65 (320) 6.24 (640) {1.6, 1.8, 2} 5.67 (960) 5.34 (1920)
3.0 6.93 (320) 6.59 (640) {1.6, 2, 2.4} 5.59 (960) 5.30 (1920)
4.0 7.46 (320) 7.12 (640) {1.6, 2.4, 3} 5.60 (960) 5.33 (1920)
5.0 7.52 (320) 7.26 (640) {2, 2.4, 3} 5.84 (960) 5.53 (1920)

Table 3. MAE results for SURF at one and multiple scale combinations. Size in brackets.

of SURF, multiple scales have been tested for both the original and extended descriptor
(SURF64 and SURF128), as shown in Table 3.

The optimal regularization cost γ∗, as defined in Section 3, differs for each com-
puted feature and parameter. For this reason, initially the above-mentioned grid search
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has been performed without regularization (γ = 0). Once the best parameters for the
feature detectors have been identified, the optimal regularization cost has been searched
by looking for the optimal (minimum) MAE. Additionally, we impose γx = γy . How-
ever, our experiments suggest that no significant changes can be noticed when incor-
porating regularization because of the relative size of the database to the descriptor, as
shown in Fig. 5. As the number of database examples M increases well over the di-
mensionality of the feature N , i.e. M�N , the optimal regularization cost γ∗ tends to
zero.

0 0.5 1 1.5 2 2.5 3
x 10−3

4

4.5
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E
 (y
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Effect of training size on regularization requirements
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Fig. 5. The need for regularization depends strongly on the ratio between training examples
M and feature dimensionality N . This figure shows 5-fold cross-validation results using 576-
dimensional HOG8,9 and CCA, through different values of γ and increasing examples from 100
to 50K. As M increases the optimal γ∗ decays, dropping to zero for M�N .

In order to improve the accuracy of the estimation, and taking advantage of the
orthogonal nature of different descriptors, a thorough analysis of fusion combinations
among feature candidates has been carried out. Although more combinations have been
tested, Table 4 shows the most significant ones: single-scale HOG8,9 and HOG15,13;
3-scale LBPu2×3

16,3 ; the raw gradient magnitude GRAD; and the 3-scale SURF×3
64 and

SURF×3
128 with scales 1.6, 2, and 2.4. Feature combinations have been obtained by con-

catenating the descriptors and exploiting the best parameters obtained previously.
As observed from the results summarized in Table 4, SURF×3

128 reduces its MAE
when fused with other features (from 5.30 years down to 4.33 when combined with
HOG15,13 and LBPu2×3

16,3 ), and performs worse than SURF64 under the same combina-
tion. The best result is obtained when combining HOG15,13, LBPu2×3

16,3 and SURF×3
64 .

This combination has the advantage of fusing texture and local appearance-based de-
scriptors. Another noticeable remark is the so-called curse of dimensionality: the ad-
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HOG8,9 HOG15,13 LBPu2×3
16,3 GRAD SURF×3

64 SURF×3
128 (Size) MAE

• (576) 4.84
• (2925) 4.38

• (729) 6.13
• (2500) 5.58

• (960) 5.59
• (1920) 5.30

HOG8,9 HOG15,13 LBPu2×3
16,3 GRAD SURF×3

64 SURF×3
128 (Size) MAE

• • (1305) 4.66
• • • (3805) 4.53
• • • (2265) 4.42
• • • (3225) 4.61
• • • • (4765) 4.51
• • • • (5725) 4.72

• • (3654) 4.33
• • (5420) 4.33
• • • (6154) 4.30
• • (3885) 4.30
• • (4845) 4.33
• • • (4614) 4.27
• • • (5574) 4.33
• • • • (7114) 4.31
• • • • (8074) 4.34

• • (3229) 5.07
• • (1689) 5.31
• • (2649) 6.45

Table 4. MAE results for the fusion of different descriptors that yielded best results. HOG8,9

and HOG15,13 have a single scale. LBPu2×3
16,3 is computed at the original, half and quarter image

size. GRAD is formed concatenating all gradient magnitude values. SURF×3
64 and SURF×3

128 are
aggregated SURF descriptors with scales {1.6, 2, 2.4}. The best result is achieved by combining
HOG15,13, LBPu2×3

16,3 , and SURF×3
64 .

dition of further descriptors into higher dimensional features not always enhances the
result.

The specific size of the most accurate descriptors does not seem to be correlated to
their accuracy either, at least not after proper regularization has been applied. The HOG
family of descriptors behaves particularly well for the different granularities that were
tested, HOG8,9 and HOG15,13, of 576 and 2925 dimensions respectively. This suggests
that local appearance information is particularly useful and quite sufficient for capturing
age patterns. The size of the descriptor deserves important consideration in the case of
CCA, as it strongly affects the computational efficiency of the training process, and
plays an important role in the stability of the solution: higher M

N ratios result in more
stable pseudo-inverse matrices when searching for the CCA projection matrix.
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HOG15,13 GRAD LBPu2×3
16,3 SURF×3

128 BIF [11] Fusion

(Size) (2925) (2500) (729) (1920) (4376) (4614)
MAE (γ = 0) 4.38 5.58 6.13 5.30 5.37 4.27
MAE (best γ∗) 4.34 5.49 6.13 5.29 4.42 4.25

(γ∗=0.001) (γ∗=0.002) (γ∗→0) (γ∗→0) (γ∗=0.05) (γ∗→0)
Table 5. Results for non-regularized CCA (γ = 0) and for CCA with the regularization cost γ∗

yielding the best MAE, for each descriptor.

Table 5 shows the effect of regularization on the features that yielded best MAE
scores in our experiments, over the MORPH database and using the regularized CCA
regression technique. The optimal regularization costs are provided. We have also in-
cluded the best results (to the best of our knowledge) achieved using the BIF descrip-
tor, which is very commonly used in age estimation and provides the lowest MAE for
MORPH in the literature [11]. The size of BIF after dimensionality reduction (4376) is
very similar to the proposed fusion without any further processing (4614). Nonetheless,
our proposed fusion of local descriptors improves over the best registered result in this
database, reducing it from 4.42 down to 4.25. It is noteworthy to see how differently
regularization contributes to each descriptor. For instance, it does not affect LBP, but it
improves BIF by 18%.

Finally, these results have been obtained for FRGC as well. Table 6 contains global
MAE errors and CS(5) values for MORPH and FRGC, whereas Figure 6 shows the
complete cumulative score curves for error levels between 0 and 10. From Figure 6(a)
it can be seen that for the MORPH database, the fusion of descriptors consistently im-
proves over individual features, even for their optimal configuration of parameters and
regularization. On the other hand, the FRGC curves are practically identical. As stated
at the beginning of this section, this may be due to the lack of variability in the images
of this database, in which every individual averages 80 images, and all very alike. In
terms of MAE, the fusion of descriptors always obtains the best score.

MAE CS(5)
HOG GRAD LBP SURF Fusion HOG GRAD LBP SURF Fusion

MORPH–5CV 4.34 5.49 6.13 5.29 4.25 69.5% 57.6% 52.1% 60.2% 71.2%
FRGC–5CV 4.19 4.38 4.45 4.44 4.17 76.0% 77.9% 77.4% 77.5% 76.2%
Table 6. MAE and CS(5) scores for MORPH and FRGC. Each descriptor has optimal parameters.

5 Conclusions

We have provided a thorough evaluation on the effectiveness of local invariant descrip-
tors, both individually and combined, towards the automatic estimation of apparent age



Fusion of Texture and local appearance Descriptors for Age Estimation 13

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100
C

um
ul

at
iv

e 
sc

or
e 

(%
)

Error level (years)

5 cross−validation for MORPH

Fusion  MORPH−5CV
HOG     MORPH−5CV
GRAD  MORPH−5CV
LBP      MORPH−5CV
SURF   MORPH−5CV

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

C
um

ul
at

iv
e 

sc
or

e 
(%

)

Error level (years)

5 cross−validation for FRGC

Fusion  FRGC−5CV
HOG     FRGC−5CV
GRAD  FRGC−5CV
LBP      FRGC−5CV
SURF   FRGC−5CV

(a) (b)

Fig. 6. 5-fold cross-validation (5CV) Cumulative Score curves of the Feature descriptor tech-
niques evaluated in: (a) MORPH and (b) FRGC databases.

from facial images, using a standard classification technique. In our experiments, the
early fusion of HOG, LBP and SURF descriptors over eye-aligned images provides
state-of-the-art results over two large databases, MORPH and FGRC. Concretely, the
proposed fusion of descriptors at 50×50 pixel images improves over the best MAE
score reported using the CCA technique, resulting in 4.25 years compared to the 4.38
of BIF at 60×60 pixels. Our experiments also show that this distance can be further
increased when using larger images and a single HOG descriptor (MAE 4.16).

Our approach requires few feature tuning; it does not involve statistical face models
requiring precise annotation of tens of facial landmarks; and it does not require addi-
tional cues. We have explored the robustness of the descriptors in terms of parameter
settings and in the presence and lack of regularization. Finally, we have demonstrated
that local appearance information is sufficient for capturing age information from faces,
although it is further improved with textural cues. Canonical Correlation Analysis has
proved to be a very effective and efficient technique for age estimation, working con-
sistently for an ample variety of descriptors.
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