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Abstract. Automatic person identification using un-obtrusive methods
are of immense importance in the area of computer vision. Anthropo-
metric approaches are robust to external factors including environmental
illumination and obstructions due to hair, spectacles, hats or any other
wearable. Recently, there have been efforts made on people identification
using walking pattern of the skeleton data obtained from Kinect. In this
paper we investigate the possibility of identification using static postures
namely sitting and standing. Existing gait based identifications, mostly
rely on the dynamics of the joints of the skeleton data. In case of static
postures the motion information is not available, hence the identifica-
tion mainly relies on the static distance information between the joints.
Moreover, the variation of pose in a particular posture makes the identifi-
cation more challenging. The proposed methodology, initially sub-divides
the body-parts into static, dynamic and noisy parts followed by a combi-
natorial element responsible for selectively extracting features for each of
those parts. Finally a radial basis function support vector machine clas-
sifier is used to perform the training and testing for the identification.
Results indicate an identification accuracy of more than 97% in terms
of F-score for 10 people using a dataset created with various poses of
natural sitting and standing posture.

Keywords: Person Identification, Natural Static posture, Skeleton joints,
Kinect

1 Introduction

Human brain can discriminate between people based on their unique physical as
well as behavioural characteristics [1]. Everyday the importance of non-intrusive
person identification has been increasing as the technology that can serve sev-
eral critical applications like video surveillance, people counting, server-room
or datacenter authentication, audience measurement etc. Several modalities of
person identification (PI) in terms of biometrics already exist in the current lit-
erature on computer vision. A few of them include behavioural characteristics
like lip movement, typing pattern etc. or physiological signatures like speech,
face, iris, fingerprint etc. Unfortunately, these modalities are intrusive in nature,
thus require direct human interaction for the authentication. Moreover extrac-
tion of fingerprint, iris or audio related biometric information (at recognizable
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form) from a large distance is definitely a challenging job. However, when other
cues are not robust enough in discriminating between people, soft-biometrics like
global shape [2] can be used to do the person identification. Global shape based
approaches mainly utilize physical build of a person like body dimensions, height,
length of limbs etc. for identifying a person. This type of systems is comparatively
advantageous because it is very difficult to hide and conceal. In addition, global
shape traits can also be extracted without making any user interaction, so it is
non-intrusive in nature. They can be obtained either by using RGB-D images
or by analysing skeleton joint co-ordinates of a particular subject. Fortunately,
the Microsoft motion sensing device named Kinect directly provides RGB-D in-
formation and 3D co-ordinates of 20 skeleton joints like head, shoulder-center
etc. In this paper, instead of storing image/video, we analyse structural build
characteristics of a subject using only skeleton data which is more robust to
illumination conditions. Skeleton joints can be obtained even if the face of the
person is obstructed by hair, if person wear spectacles, hats or any other wear-
able. However, the skeleton joints obtained from Kinect is somewhat noisy only
if the person wears black clothes which is mainly due to infrared sensor.

Several works have already been done on skeleton information based person
identification using Kinect. Preis et al. [3] and Sinha et al. [4] did the same from
side walking pattern using static as well as dynamic nature of gait features like
length of arms, legs, velocity etc. Naresh et al. [5] had proposed a PI system from
arbitrary unconstrained walking pattern. Though they [5] obtained 90% identifi-
cation accuracy for 20 subjects, but the paths of the subjects were predefined (a
front walking pattern with Kinect as the reference point) during training phase.
Sinha et al. [6] investigated an interesting pose and subpose based concept for
modeling arbitrary gait pattern using only skeleton data. They [6] employed un-
supervised learning algorithm i.e., K-Means clustering, for identifying 3 poses
and 8 subposes. Their method was able to achieve 94% recognition accuracy
for 20 subjects. But, all of these skeleton based approaches aimed at identify-
ing an individual based on only movement-pattern rather than static posture.
Chakravarty et al. [7] proposed a PI system in static posture. Though they [7] got
96% identification accuracy for 10 subjects, but their method is mainly focused
on frontal standing posture, rather than unconstrained natural static ones. In
addition, they had carried out performance evaluation using training and testing
at a fixed predefined position and posture. However as the subject is not very
robotic and can assume variety of poses, their method performs very poorly in
real-life. Identifying the person using global shape information obtained from
RGB-D is quite easy compared to skeleton but it is quite challenging using
skeleton data. For example, if two people are of same height and assume limb
lengths are of similar size, still they can be easily discriminated from the width
of hands, legs or body from RGB-D as it gives these additional clues. However,
skeleton joints are single points we cannot get these crucial information like the
3D structure of person which is very unique. Therefore, identifying the persons
of similar structures is quite challenging using skeleton data. Keeping all those
problems in mind, we have developed a robust person identification system in
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static postures mainly sitting and/or standing using only global shape based
features. In this work, we have defined sitting, standing, bending etc. as posture
where a posture may have many poses. A pose is described as the attitude (e.g.
orientation with respect to a reference point) of the body, or the position of
the limbs (arms and legs) in a particular posture. While developing the robust
PI system using skeleton data, we have explored physical build characteristics
of a person in two phases where in the first phase we have explored feature
sets related to constrained sitting and standing postures (method 1) and then,
based on the drawback-analysis of method 1 in real-life scenario, method 2 is
proposed in phase 2. The method 2 does not require any user cooperation and
performs well in constrained as well natural sitting and standing postures. The
contribution of this paper is mainly 4 folds

1. PI task is carried out in natural unconstrained static postures in real time
using only skeleton data obtained from Kinect. The system is invariant to
lighting condition and also ensures user’s privacy.

2. Benefits and drawbacks of different feature sets are investigated for identi-
fying an individual in natural and constrained static postures.

3. For robust PI, the pose invariant optimal feature vector is selected from
different body-parts after examining combinatorial study on different feature
sets.

4. Density based clustering approach is used for dividing entire skeleton struc-
ture based on static, dynamic and noisy nature of joints.

We have also evaluated performance of method 2 with respect to the state-of-
the-art systems [6] [7] and it is shown that our method outperforms the existing
systems in natural static postures.

Rest of the paper is organized as follows: Section 2 gives the brief explana-
tion of posture and poses along with the details of database creation for static
postures. Two phase implementation of our proposed PI system is presented in
two sections Section 3 and Section 4 where Section 3 gives the performance anal-
ysis of different global shape based features on different datasets and Section 4
presents the proposed robust person identification system based on joint analysis
of different body-parts. Conclusion of this paper is laid out in the final section.

2 Experimental Database

In this work, we have developed a person identification system using only skele-
ton information obtained from Kinect [8]. Here we are focusing on the PI task,
only in static postures like sitting and standing. For this we have analyzed physi-
cal build characteristics in terms of skeleton data. Methods in [6] [4] [9] [3] [5] did
the PI by analyzing the movement patterns in terms of spatio-temporal variation
of skeleton joint co-ordinates. But, unfortunately no standard public database
exists for person identification in static postures (specially sitting and standing)
using skeleton data. Therefore, we have carefully designed our own database
that suits to real-time scenario. In this study, we have used Kinect sensor which
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(a) 20 skeleton joints with labels (b) Representation of postures using angles

Fig. 1: Representation of skeleton structure and postures

is placed at 6-10 ft distance from the subject to collect the skeleton data from
sitting and standing posture. It mainly records {x, y, z} co-ordinates (in meters)
of different skeleton joints for a particular subject. The 20 skeleton joints namely
Hip Center(A), Spine(B), Shoulder Center(C), Head(D), Shoulder Left(E), El-
bow Left(F), Wrist Left(G), Hand Left(H), Shoulder Right(I), Elbow Right(J),
Wrist Right(K), Hand Right(L), Hip Left(M), Knee Left(N), Ankle Left(O), Foot
Left(P), Hip Right(Q), Knee Right(R), Ankle Right(S), Foot Right(T) obtained
from the Kinect are shown in Fig. 1a. The data is collected from the sitting and
standing postures in two modes - 1) constrained static postures - frontal sitting
and standing pose, and 2) unconstrained static postures - natural sitting and
standing pose. In both the modes, datasets are created from 10 people (3 female
and 7 male). We have presented a brief discussion on posture and pose followed
by the details on the corpus creation.
Overview of posture and pose
Before going into discussion about database creation on sitting and standing pos-
tures with different poses, we want to clarify the difference between posture and
pose. Posture is viewed at macroscopic level whereas single posture can have
multiple poses. The orientation of the posture with respect to some reference
point is treated as pose. Therefore, pose can be viewed as containing micro-
scopic level information. For example, the postures can be like sitting, standing,
sleeping, bending, leaning etc. Any particular posture is independent of person’s
orientation in the space. However, pose should be defined with respect to some
reference point. In our case, if we consider Kinect as the reference, then the
orientation of person with respect to Kinect is treated as pose. If the subject
is straight towards camera i.e., perpendicular it is treated as straight pose or
frontal pose. Else we consider pose (with some angle with respect to Kinect) as
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natural one. Not only that in natural poses, the subject may vary position of
his/her limbs. The skeleton joints extracted from Kinect are represented by 3D
world co-ordinates (x,y,z) where ‘x ’ represents the left/right variation, ‘y ’ rep-
resents up/down variation and ‘z ’ represents to/from variation of subject with
respect to Kinect. Scientifically, the angles formed by some joints with respect
to Kinect in X-Y (coronal) and/or Z-Y (sagittal) plane can differentiate the pos-
ture. Once posture is fixed, the orientation of subject with respect to Kinect in
Z-X (transverse) plane can differentiate poses within the posture. As shown in
Fig. 1b, postures like leaning, sitting, bending are defined using the angle infor-
mation which is obtained from the joints like A and B (Fig. 1a) with respect
to Kinect(marked as V). However, the posture standing is discriminated from
other postures using additional angle information made by the joints M and N
or Q and R (Fig. 1a).
Dataset #1
This is created from the respective 10 people in the constrained static postures
specifically frontal sitting and standing one. In this case, we have asked the sub-
jects to view straight towards the Kinect. From each subject, we have collected
1 set of data for training and 3 sets of data for testing. Each set consists of 1
minute of data with approximately 30 frames per second. The training set is
frontal one where legs are kept perpendicular to Kinect and hands are lied on
both the legs at different locations which are varied from Knee to near Hip loca-
tion. One set of test data is similar to the training set whereas for other two test
sets we have requested the subjects to remain in the frontal standing or sitting
pose but asked to produce small variations of dynamic joints like leg and hand
positions (without crossing legs and folding hands).
Dataset #2
This is also created from the same 10 people of dataset #1 but in unconstrained
static poses i.e., natural standing and sitting poses. From each subject, we have
collected 2 sets of data, where one set is used for training and other set is for
testing. In the training phase, we have asked the subject to sit and stand in
some particular predefined poses (one example shown in Fig. 2) but in testing
phase we have not restricted the subject in viewing Kinect. Instead the subject
is encouraged to sit and stand with some angle to the Kinect. In fact, we have
requested the subject to give arbitrary sitting and standing posture by making
large variations of dynamic joints. While designing dataset #2 we have empha-
sized the fact that in real life, during testing, a subject may give totally different
static pose that is not present in the training corpus.

Fig. 2: Representation of different poses of sitting posture



6 V. Ramu Reddy, Kingshuk Chakravarty and Aniruddha Sinha

3 Person Identification in Static Postures: Method 1

We have developed a person identification (PI) system from sitting and stand-
ing postures in two phases. In the first phase (method 1), the PI system is
implemented in two steps (i) feature extraction (ii) decision making and
performance analysis. The method 2 is proposed based on the performance
analysis of method 1. In other words, we have critically analysed drawbacks of
method 1 and proposed a robust PI system in phase 2 (method 2). It needs to
be mentioned that the performance of method 1 & 2 is evaluated using both the
datasets #1 & #2. The implementation details of method 1 are presented in the
following subsections.

3.1 Feature Extraction

The feature extraction module generates different sets of features for identifying
the person in sitting and standing posture. Therefore, identifying appropriate
salient features from the 3D world co-ordinates of 20 joints, which can discrimi-
nate the individual characteristics, is a very crucial step for any high performance
system. The details of features for PI are as follows:
In static postures, meaningful information about identity or uniqueness of any
individual can be obtained by extracting the features related to the structural
or physical build of the subject (e.g. height, length of limbs etc.). So keeping
this fact in mind, we have used differences of 3D world co-ordinates between ev-
ery pair of joints (physically connected and unconnected) as a candidate feature
vector (F cu) and F cu is extracted at frame level. The feature set F cu contains
all the necessary and unique information about the physical build of a subject
whereas, differences of co-ordinate ‘x ’, ‘y ’ and ‘z ’ for every joint-pair capture the
width, height and depth information, respectively. From Fig. 1a it is observed
that there are 20 joints with 19 physically connected pairs, where the differences
of co-ordinates ‘y ’ inherently give the information about length of limbs. The
features F c and F y represent the differences of 3D world co-ordinates and differ-
ences of ‘y ’ co-ordinate between every ‘connected ’ pair of joints, respectively. In
the first phase of our implementation, the candidate features such as F c and F y

(F y, F c ⊂ F cu) are extracted from each frame for analysing how they affect PI in
different posing conditions. F cu, F c and F y are formulated using equations (1),
(2) and (3) where J is the total number of joints in D dimensional co-ordinate
system and CP represents number of physically connected joint-pairs.

F cu = abs((xj , yj , zj)− (xk, yk, zk)) ∀ j = [1, 20], k = [1, 20], j 6= k,

F cu ∈ R(D×JC2),where D=3 and J=20
(1)

F c = abs((xj , yj , zj)− (xk, yk, zk)) ∀ j, k = {1, . . . , 20|j, k connected},
F c ∈ R(D×CP) and F c ⊂ F cu,where D=3 and CP=19

(2)

F y = abs((yj)− (yk)), ∀ j, k = {1, . . . , 20|j, k connected},
F y ∈ RCP and F y ⊂ F cu,where CP=19

(3)
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3.2 Decision Making and Performance Analysis

The decision making task is carried out using a supervised learning algorithm
with feature sets F cu, F c and F y separately. A classification algorithm is used
to map feature vectors to a particular object class representing a person. We
have realized the classifier using multi-class support vector machine (SVM) with
Radial Basis Function (RBF) as kernel [10] [11]. SVM classification is an exam-
ple of supervised learning. SVMs are useful due to their wide applicability for
classification tasks in many applications [12]- [18]. The main goal of SVM for
classification problem is to produce a model which predicts target class label
of data instances in the testing set, given only the attributes. The intuition to
use RBF kernel function is due to its universal approximation properties. Also,
it offers good generalization as well as good performance in solving practical
problems [15] [16].

In this study, the statistical measure F-score [6], which is defined as the
harmonic mean of precision and recall is used for performance evaluation. For
N subjects F-Score is defined by the equation (4).

F-scorei =
2 ∗ precisioni ∗ recalli
(precisioni + recalli)

∀i, 1 ≤ i ≤ N (4)

For method 1, various types of experiments are then carried out on the datasets
explained in the section 2. These are described as follows:
(A) Trained and tested at frontal static posture
As an initial step of our experimentation, we have used only dataset #1 for PI in
frontal static posture. The identification accuracy in the form of confusion matrix
for test set 1 using feature vector F cu is given in Table 1. Table 2 represents
the average F-scores of the PI system using feature vectors F cu, F c and F y

separately on all the 3 test sets.
Analysis: The average performance of PI system shown in the diagonal of Table
1 indicates that almost all persons are well classified. But it is also observed from
Table 2 that for all the features, performance of method 1 is better on test set
1 compared to test sets 2 and 3. This is mainly because the test set 1 and
the training set have similar poses for the postures. However, if the subject even
slightly varies his/her frontal sitting or standing pose (dataset #1–> test sets
2 & 3) like keeping the arm and leg positions different from that of training
model, the performance of this implementation degrades (F-scores for set 2 and
set 3 in Table 2). Moreover, as F cu includes differences of 3D co-ordinates for
both connected and unconnected pairs, it is obvious that F c and F y perform
relatively better on test sets 2 & 3 than F cu. Therefore, slight variation in legs
and arm positions in testing phase largely affects feature vectors related to the
unconnected joint-pairs which is present F cu.
(B) Trained at frontal and tested using unconstrained static posture
To make our PI system more realistic, we have used frontal sitting and standing

data from dataset #1 for training and unconstrained (natural) pose data from
dataset #2 for testing. The average F-scores for all feature vectors are compared
in Table 3.
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Table 1: Confusion matrix for 10 subjects trained and tested at frontal sitting
posture using feature vector Fcu. Entries in table indicate F-scores in (%)

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P2 1.85 98.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P3 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P4 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
P5 0.00 0.00 0.00 0.00 97.23 2.01 0.76 0.00 0.00 0.00
P6 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00
P7 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00
P8 0.00 0.65 0.00 0.00 0.00 0.00 0.00 99.35 0.00 0.00
P9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00
P10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

Table 2: Average F-scores(%) of PI system for frontal training and testing

Test on dataset #1
Sitting Standing

F cu F c F y F cu F c F y

Set 1 99.47 98.61 97.79 100.00 99.42 98.18
Set 2 92.10 96.78 94.56 91.27 95.65 92.18
Set 3 87.45 90.19 89.20 90.13 92.90 92.14

Table 3: Average F-score(%) of PI system for frontal training and natural testing
Test on dataset #2 F cu F c F y

Natural Sit 54.60 62.17 58.19
Natural Stand 63.22 68.98 65.37

Analysis: Table 3 clearly tells us that the results are more worse compared to
Table 2. Our analysis suggests that the system performs poorly because of lack
of pose variation information in the training data.
(C) Trained and tested at natural static posture
Next, both the training and testing data are taken from dataset #2. The diagonal
entries in Table 4 show the average PI performance for 10 subjects using feature
vector F cu. We have also compared the performance using feature vectors F cu,
F c and F y in Table 5.

Analysis: From Tables 4 and 5, it is observed that the average performance
of method 1 is slightly improved compared to the previous approach. However,
the performance of PI is still not satisfactory and we have got maximum 70.65%
and 79.12% PI accuracies in natural sitting and standing postures, respectively.
Our analysis suggests that even the subject maintains different pose but may not
have good control on hands and leg positions due to flexibility of more dynamic
nature of joints in natural scenario. It is also seen that some of the joints exhibit
noise in some viewing angles due to occlusion and thus make the PI system more
erroneous. From the above analysis, we conclude that different features perform
better in different conditions for method 1. Hence, if we can carefully select the
features based on the orientation of joints, it will definitely improve the system
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Table 4: Confusion matrix for 10 subjects trained and tested at natural sitting
posture using the feature vector Fcu. Entries in table indicate F-scores in (%)

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 62.07 13.12 0.00 0.00 0.00 14.81 0.00 4.48 0.00 5.52
P2 6.35 91.29 0.00 0.05 2.31 0.00 0.00 0.00 0.00 0.00
P3 21.48 0.00 52.10 6.36 0.00 0.00 0.00 5.62 13.18 1.26
P4 1.83 0.00 6.67 89.58 0.00 0.00 1.92 0.00 0.00 0.00
P5 20.40 0.00 0.00 0.00 61.16 0.00 3.60 0.00 14.84 0.00
P6 0.00 2.62 20.10 0.00 0.00 75.23 0.00 0.00 2.05 0.00
P7 0.00 0.00 45.17 0.00 0.00 0.00 54.83 0.00 0.00 0.00
P8 0.00 9.22 2.67 16.46 0.00 0.00 0.00 71.65 0.00 0.00
P9 0.00 0.06 28.70 0.00 0.00 2.80 0.85 0.00 67.59 0.00
P10 0.00 0.00 2.63 0.98 15.28 0.06 0.00 0.08 0.00 80.97

Table 5: Average F-score(%) of PI system for natural training and testing
Test on dataset #2 F cu F c F y

Natural Sit 70.65 69.80 65.57
Natural Stand 79.12 73.29 69.65

performance. This gives us the motivation to develop more robust PI system by
modifying method 1. The following section 4 describes our modified approach.

4 Person Identification in Static Postures: Method 2

We always keep in mind that we have to design a PI system in natural static
posture so that it perfectly matches any real-life scenario. Therefore we have
developed method 2 by modifying method 1 to overcome the above limitations
(described in the section 3). In method 2, we have analyzed joints belong to
different body-parts, extracted relevant features and then finally evaluated the
performance. The frame-work of method 2 contains 5 modules (i) Data Acqui-
sition (DA), (ii) Skeleton Divider (SD), (iii) Feature Generator (FG),
(iv) Combinatorics Engine (CE) and (v) Model Generator (MG) in its
functional architecture which is shown in Fig. 3.
The DA module captures co-ordinates of 20 skeleton-joints using Kinect and

Fig. 3: Functional architecture of method 2
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forwards these 20 joints to SD module. In SD module, entire skeleton structure
is divided into different body-parts based on the static upper, dynamic lower,
dynamic upper and noisy middle nature of joints (labeled with different colors in
Fig. 1a). FG module extracts the candidate features F cu, F c and F y (explained
in the section 3) from the skeleton joints. Once the feature generation is done,
CE module explores all possible combination of features extracted from differ-
ent body-parts and finally, all these combinations are feeded to MG module to
generate the training models. In method 2, the training and testing are done
only on dataset #2 where predefined poses are used for training but testing is
carried out with unconstrained natural static postures. The key contribution of
this approach is mainly dividing 20 skeleton joints into different body-parts and
automatic selection of optimal features from the respective body-parts. In addi-
tion to this we have also analyzed the influence of certain angles in capturing the
pose related information. The details of the proposed methodology and influence
of the angles on the proposed system are presented in the following subsections.

4.1 Methodology

In the static posture like sitting or standing, a person can be oriented in any
direction with respect to Kinect exhibiting natural pose. However, for a given
posture a person can not move some of the joints flexibly irrespective of poses.
For example, upper body joints like Spine, Hip Center etc. are fixed for any pose
in a particular posture. We define those joints as static one. On the contrary,
in a single pose, a subject can move his joints like Knee Left, Wrist Left, Foot
Left etc. very flexibly. Therefore, we name them as dynamic joints. It is also
noticed that some of the joints are more prone to noise due to occlusion effect.
For example, in most of the poses of sitting posture, Hip Left and Hip Right are
occluded with Knee Left and Knee Right, respectively. These types of joints are
considered as noisy joints. This is also verified by grouping the co-ordinates of
different joints from upper and lower body-parts using density based clustering
algorithm DBSCAN [19]. The results of DBSCAN for some joints (Left portion
of the body) for both the postures are illustrated in Table 6. Right portion of
the body joints also exhibited the similar trend. Table 6 indicates that for sitting
posture(s) DBSCAN identifies 6 clusters whereas for standing posture(s) it forms
only 2 clusters. It can also be noticed from the results that in both postures,
certain joints of upper body like Shoulder Center, Shoulder Left, Spine etc. form
one cluster (static cluster) and Elbow Left, Wrist Left, Knee Left, Ankle Left
form another cluster (dynamic cluster). The joints which are varying over frames
mainly belong to dynamic cluster and the joints which are static over frames form
the static cluster. However, Table 6 also captures an interesting fact that for Hip
portion joints like Hip Left, Hip Center, the frames are not clearly separable as
pure static or dynamic ones because Hip portion joints are occluded by Knee
portion joints while sitting, this causes the noisy nature of Hip joints. 35.02%
and 16.09% of HipLeft frames (Table 6) are moved to dynamic cluster in sitting
and standing posture. This is mainly because in sitting, the occlusion is more
compared to standing. The dynamic joints are further divided into two portions
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namely dynamic upper and dynamic lower. So, based on the above observation,
entire skeleton structure is divided into four parts:

1. Static Upper Body (SUB): The joints B, C, D, E and I representing the main
body portion (color coded in dark blue in Fig. 1a) are more static in nature
during any pose for a particular posture.

2. Dynamic Upper Limbs (DUL): Based on the subject’s flexibility of changing
the arm positions in natural static postures, the joints F, G, H, J, K and L
are considered as dynamic upper limbs (color coded in green in Fig. 1a).

3. Dynamic Lower Limbs (DLL): Based on the subject’s flexibility of changing
leg positions in natural static postures, we have considered the joints N, O,
P, R, S and T as dynamic lower limbs (color coded in sky blue in Fig. 1a).

4. Noisy Middle Hip (NMH): It is also noticed that if the person varies his/her
pose in a particular posture, some joints are reliable and some are noisy. It
is mainly due to occlusion of some body portions. This effect is very much
vivid in middle hip portion. Therefore, we name the joints A, M and Q as
noisy middle hip joints (color coded in deep red in Fig. 1a).

Table 6: Division of body parts using clustering of joints where Cl.=Cluster
Sitting

Joint
Standing

Cl. 1 Cl. 2 Cl. 3 Cl. 4 Cl. 5 Cl. 6 Cl. 1 Cl. 2

29.96 0.67 64.66 0.67 0.00 4.04 HipCenter 18.15 77.85
4.71 0.54 93.67 0.40 0.00 0.67 Spine 13.00 87.00
3.10 0.27 95.69 0.40 0.13 0.40 ShoulderCenter 13.34 86.66
12.11 0.00 87.08 0.40 0.13 0.27 ShoulderLeft 4.26 95.74
88.83 2.56 3.90 0.67 0.67 3.36 ElbowLeft 91.20 8.80
97.98 0.40 0.40 0.00 0.27 0.94 WristLeft 91.20 8.80
94.75 0.54 2.83 1.21 0.13 0.54 KneeLeft 89.96 10.04
99.33 0.13 0.13 0.00 0.27 0.13 AnkleLeft 88.72 11.28
35.02 1.08 60.94 0.27 0.54 2.15 HipLeft 16.09 83.91

When the body-part segmentation is done, we have explored all the possible
combination of features (F cu, F c and F y) extracted from those body-parts
(SUB, DUL, DLL and NMH). This is carried out by CE module and it gener-

ates total number of combinations =
TP∑
k=1

pk ×
(
TP
k

)
, where TP= total number

of body-parts and p = total number of features. With 3 type of features and 4
body parts, different features extracted from single body part result to 12 com-
binations (31 ×

(
4
1

)
). For example, if 3 feature vectors is extracted from single

body part at a time and no features are extracted from other body parts, it can
be done in three ways. In the same way, three feature vectors extracted from rest
of the body parts can be done in 9 ways. Therefore, features extracted from sin-
gle body part scheme results to total 12 combinations. Similarly, feature vectors
extracted from two body parts at a time while maintaining other two body-
parts features none can result 54 combinations (32 ×

(
4
2

)
). Three feature vector

combinations for 3 different body parts and no features from left body part will
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result 108 combinations (33×
(
4
3

)
). Finally, different feature vector combinations

including all the body parts result 81 (34 ×
(
4
4

)
). Thus the system has result to

255 combinations in total. Then all these combinations are feeded to multi-class
SVM to generate different models. Now to do the evaluation, we have done 5
fold cross-validation using the training corpus from dataset #2. The average of
top 10 PI F-scores are listed in Table 7 for both sitting and standing postures. In
Table 7, ‘NOT’ indicates that none of the feature vectors are employed for that
particular body-part. It is found that among all the 255 models, the combination
(F best

sit )– F cu for SUB, F c for DUL, F y for DLL and ‘NOT’ for NMH produces
the best F-Score in sitting posture. Similarly for standing posture, we compute
the same i.e. F best

stand. To test the robustness of method 2, these combinations are
applied on the test data of dataset #2 and we able to achieve average 93.00%
& 95.33% identification accuracy in sitting and standing, respectively. Table 8
shows the confusion matrix in natural sitting posture for the combination F best

sit .
Analysis: The top 10 results indicate that in many cases if the features ex-

Table 7: Top 10 F-scores(%) of method 2 using combination of features and
bodyparts (Cross-validation performance)

Sl. No.
Sitting Standing

SUB DUL DLL NMH F-score (%) SUB DUL DLL NMH F-score(%)

1 F cu F c F y NOT 95.51 F cu F c F y F cu 96.02

2 F cu NOT F y NOT 94.98 F cu NOT F c NOT 95.73

3 F cu NOT F y F cu 93.01 F cu F c F y NOT 94.56

4 F cu F y F y NOT 91.71 F cu NOT F y F cu 94.05

5 F cu F y F y F cu 91.27 F cu NOT F y NOT 93.72

6 F cu F c F c F y 90.86 F cu F c F y F y 91.00

7 F cu F c NOT F cu 89.98 F cu F y F c F cu 90.72

8 F c NOT F c F y 89.45 F cu F c F c F y 90.57

9 F cu F c NOT NOT 89.38 F cu F c F c NOT 90.57

10 F cu F c F c F cu 89.29 F cu F y F y F cu 90.36

Table 8: Confusion matrix for 10 subjects using F best
sit on test-set of dataset #2

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 94.21 0.00 1.21 2.43 0.00 2.15 0.00 0.00 0.00 0.00
P2 0.00 89.79 0.00 6.14 2.00 0.00 0.00 2.07 0.00 0.00
P3 3.33 0.00 90.18 0.00 3.16 0.00 0.00 0.00 0.00 3.33
P4 0.00 0.00 0.00 96.67 0.00 0.00 0.00 3.33 0.00 0.00
P5 0.00 6.66 3.33 0.00 88.02 0.00 0.00 0.00 1.99 0.00
P6 2.00 0.00 0.00 0.00 0.00 98.00 0.00 0.00 0.00 0.00
P7 0.00 0.00 0.00 0.00 5.02 0.00 92.50 0.00 0.38 2.10
P8 0.00 0.00 0.00 5.33 0.00 0.00 0.00 94.67 0.00 0.00
P9 1.50 0.00 0.00 6.67 0.00 4.02 0.00 0.00 87.41 0.40
P10 0.00 0.00 1.50 0.00 0.00 0.00 0.00 0.00 0.00 98.50

tracted from the body-part NMH are not considered then the performance is
better. Even best PI accuracy in sitting posture is obtained without using NMH
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joints (Row 1 Table 7). It is observed in Table 7 that ’NOT’ for NMH joints ap-
peared four times. However, it is observed from the results of 255 combinations
this effect is less in standing posture due to less occlusion of NMH joints. Due
to space constraint we have not given all 255 combinations. In some cases, it is
also seen that if we do not use features from DUL and DLL, method 2 provides
good results. This analysis helps us to conclude that the joints belong to NMH
are more noisy than the others. Moreover, some joints of DUL and DLL produce
noise when the person sits or stands with some orientation other than frontal
pose. It is mainly because of occlusion of joints by other body-parts. Therefore,
some frames get misclassified which results in slightly reduced performance. Ta-
ble 7 also emphasizes that in all top 10 results most of the times, DLL and DUL
use features F y and F c but not F cu. It is because, the features related to con-
nected joint pairs are sufficient enough to capture the dynamic nature of joints
specially arms and legs. Similarly, F cu captures all the information related to
static nature of upper main body portion. As the joints belonging to the SUB
part are more static in nature, the body segment is proved to be most stable
one across all poses in any postures. Not only that, we also explore different an-
gles made by SUB-joints to capture the variation of poses in any natural static
posture.

4.2 Influence of Angles

If the person sits or stands in natural pose, the orientation of main body is very
crucial for defining a pose. It can be easily captured by computing angles formed
by the joints C, E and I from shoulder portion and A, M and Q from hip portion
(with respect to Kinect (V)) in Z-X plane. Table 9 shows the effect of these four
angles namely ∠VCE, ∠VCI, ∠VAM and ∠VAQ on PI system.

Table 9: F-scores(%) of method 2 without and with angles and F-scores(%)
with the methods proposed in [6] & [7]. In sitting F best = F best

sit & in standing
F best = F best

stand, and V is Kinect position
Posture F best F best, ∠VCE, ∠VCI, F best, ∠VCE and ∠VCI [6] [7]

∠VAM and ∠VAQ

Sitting 93.00 89.63 96.81 11.16 15.29
Standing 95.33 93.61 97.65 31.28 20.73

Analysis: Table 9 clearly shows that in both static postures, the performance
of method 2 is degraded with the inclusion of these four angles along with the
optimal combination F best

sit & F best
stand (shown in italics column 3 in Table 9). This

is mainly due to the inclusion of angles formed by more noisy joints like A, M and
Q. However the degradation in performance is less in standing posture compared
to sitting one as the occlusion of hip portion is less in natural standing. After
removal of these angles (∠VAM and ∠VAQ), it is observed that the performance
of method 2 is enhanced further compared to previous one (shown in column
2 and 4 in Table 9). From this we infer that angles formed by the shoulder



14 V. Ramu Reddy, Kingshuk Chakravarty and Aniruddha Sinha

joints are the key contributors in capturing the variation of pose information in
the natural unconstrained static postures. In this study, we have done the step-
by-step analysis for making the PI system in static postures more robust and
realistic. It needs to be mentioned that using method 2, the feature set F best,
∠VCE and ∠VCI is able to achieve average 96.81% and 97.65% identification
accuracy, in sitting and standing postures, respectively.
For the sake of completion of the analysis, we compare with the features proposed
earlier for walking pattern in [6]. Sinha et al. had done the pose and subpose
based modeling using static and dynamic gait features in [6]. We have also tested
their approach on our dataset #2. But their performance on our dataset is not
very satisfactory. It is mainly because their proposed features related to poses
and subposes [6] fail to model pose variations in static postures. In addition, we
have explored the method mentioned by Chakravarty et al. [7] on dataset #2. As
the feature vector used in [7], is strictly focused on constrained frontal standing
pose, their system fails to identify most of the subjects in natural sitting and
standing poses. The performance comparison of method 2 with the state-of-the-
art systems [6] & [7] is presented in the last 2 columns of Table 9. As expected
the features for walking or constrained standing posture are not good for the
unconstrained natural static scenario.

5 Conclusions

In this work, we have proposed a PI system in 2 phases. In the first phase,
different sets of global shape based features which represent the identity of the
person are explored. These features are then extracted from constrained and
unconstrained datasets of sitting and standing postures. Based on the analysis
and drawbacks of certain features for different body-parts in different poses, ro-
bust PI system is proposed in phase 2. In phase 2, clustering algorithm is used
to identify static, dynamic and noisy joints. From that analysis, entire skeleton
body is divided into four segments and we have explored all possible combi-
nations of features from these segments. It greatly improves PI accuracy from
70.65% to 93% in sitting and 79.12% to 95.33% in standing posture. The effect
of angle information from shoulder and hip portions is also analysed and it is
found that inclusion of angles from hip portion degrades the system performance
whereas angles extracted from shoulder portion enhances PI accuracy to 96.81%
and 97.65% for both sitting and standing postures, respectively. Performance
evaluation matrices also portray the significant improvement of identification
accuracy in static postures over the contemporary systems. In future, we like to
incorporate more static postures in our proposed system. We have also like to
improve the system performance accuracy use angle information obtained from
different joints i.e, transforming all poses to frontal pose using angle informa-
tion and then extracted the features. Moreover we have a plan to combine our
approach with other soft-biometric traits like gait, skin color etc. to build a
multimodal PI system.
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