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Abstract. In this paper, we propose an activity-based human identifica-
tion approach using discriminative sparse projections (DSP) and orthog-
onal ensemble metric learning (OEML). Unlike gait recognition which
recognizes person only from his/her walking activity, this study aims to
identify people from more general types of human activities such as eat-
ing, drinking, running, and so on. That is because people may not always
walk in the scene and gait recognition fails to work in this scenario. Giv-
en an activity video, human body mask in each frame is first extracted
by background substraction. Then, we propose a DSP method to map
these body masks into a low-dimensional subspace and cluster them into
a number of clusters to form a dictionary, simultaneously. Subsequently,
each video clip is pooled as a histogram feature for activity representa-
tion. Lastly, we propose an OEML method to learn a similarity distance
metric to exploit discriminative information for recognition. Experimen-
tal results show the effectiveness of our proposed approach and better
recognition rate is achieved than state-of-the-art methods.

Keywords: Human identification, activity analysis, subspace learning,
sparse coding, metric learning.

1 Introduction

Over the past two decades, gait recognition has attracted much attention in com-
puter vision [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14] because
human gait provides a noninvasive way to human identification at a distance.
One key shortcoming of gait recognition is that only the walking activity is ex-
ploited for human identification and these gait recognition systems are likely
to fail to work when people perform other activities such as eating, drinking,
and running rather than walking. In many real-world applications, people may
not always walk in the scene and it is very likely that they are performing other
activities besides walking in the scene. Since gait can provide enough discrimina-
tive information for human identification, a natural question arises: is it possible
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to identify people from different types of activities rather than gait since gait
can be considered as a special case of general human activities? If so, how to
effectively explore discriminative features of these activities to achieve this goal?
In this paper, we provide a positive answer to these two questions.

Intuitively, the manner with which humans perform different activities can
provide some distinctive information for human identification because human
body information is generally distinct for different persons. Moreover, different
dynamic information observed in other activities are also discriminative. Similar
to gait recognition, people may perform the same activity in different manners.
While gait recognition [1], [2], [3], [4], [5], [7], [12] has been extensively studied
over the past decade, there has been extremely few attempts on using other
activities rather than gait for human identification. In this paper, we present
a new approach to activity-based human identification. For each activity video,
human body mask in each frame is extracted by background substraction. Then,
we project these body masks into a low-dimensional subspace and cluster them
into a number of clusters, simultaneously. Subsequently, each video clip is pooled
as a histogram feature for activity representation. Finally, we propose an OEML
method to learn a discriminative distance metric for discriminative feature ex-
traction. Experimental results show the effectiveness of our proposed approach.

2 Related Work

Human Activity Analysis: In computer vision, a large number of activity
recognition methods have been proposed in recent years [15], [16], [17], [18], [19],
[20], [21], [22]. Unlike activity recognition which aims to recognize the type of
human activity from videos, activity-based human identification is a relative-
ly new research topic, and there has been only a few seminal studies in recent
years [23], [24], [25]. To our best knowledge, Gkalelis et al. [23] was the first
attempt to formally address the problem of activity-based human identification
by using fuzzy c-means (FCM) and linear discriminant analysis (LDA). Their
method was further evaluated on more activity datasets and encouraging results
were achieved to show the feasibility of human identification using activities [24].
More recently, Lu et al. [25] presented a sparse coding method for activity-based
human identification. Since the the quantization error is reduced, their method
achieved better performance than [23]. However, both FCM and sparse coding
are not discriminative enough since they are generative methods. Moreover, these
methods performed feature quantization in the original feature space, which may
not be effective enough because some irrelevant and redundancy information are
contained in this space. To address these shortcomings, we propose a discrimi-
native sparse projections (DSP) method to learn a low-dimensional subspace for
feature quantization, so that the irrelevant information of human body masks is
discarded in the learned subspace and a discriminative codebook can be obtained
for feature encoding.

Metric Learning: Metric learning has been proven to be an effective tool
for visual analysis and many such algorithms have been presented over the past
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decade [26], [27], [28], [29], [30], [31], [32], [33], [34]. While these methods have
achieved reasonably good performance in many computer vision applications,
these methods usually suffer from high-dimensional feature representations. To
address this, PCA is usually applied to reduce the feature dimensionality before
metric learning. However, such a preprocessing may lose some discriminative
information. In this paper, we propose a new OEML method to learn multiple
projections from randomly sampled subsets of training samples, and orthogo-
nalize these projections and combine them into a distance metric. Hence, no
PCA preprocessing is required in our method. Moreover, the basic vectors of our
learned distance metric are orthogonal to each other such that they are more
compact than those of most existing metric learning methods [26], [27], [28], [29],
[31].

3 Proposed Approach

Our key objective of this work is to learn discriminative identity information
from activities for person recognition. Such information can be exploited at two
levels: the single frame level and the whole video level. To extract discriminative
information at the single frame level, we propose simultaneously learning a low-
dimensional subspace and a discriminative dictionary, so that the irrelevant and
redundancy information of body masks are discarded in the learned subspace
and discriminative information can be exploited in the learned dictionary. To
extract discriminative information at the whole video level, we propose OEML
to learn a discriminative distance metric to enhance their separability. We will
detail the proposed approach in the following subsections.

3.1 Body Mask Extraction

For each activity video, we first extract human body silhouette in each frame by
background subtraction by using the method in [4]. Then, we align each body
mask into 64×48 in each frame to make all body masks in different frames are
of the same size. Fig. 1 shows several extracted body masks from different types
of activities.

3.2 Discriminative Sparse Projections

Let Y = [y1, y2, · · · , yN ] ∈ Rd×N be a training set of binary masks, where yi ∈ Rd

is the ith sample, d is the feature dimension of each yi, and N is the number
of training samples. The aim of DSP is to learn a low-dimensional subspace
P ∈ Rl×d and a codebook U ∈ Rl×K , under which each sample yi is encoded as
vi ∈ RK so that

1. Each sample yi is sparsely reconstructed by vi over U ;
2. The intraclass and interclass variations of each yi are minimized and maxi-

mized, simultaneously.
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jack    jump   pjump    run     side    skip     walk   wave1   wave2 

Fig. 1. Extracted and aligned body masks from different activities in the Weizmann
dataset.

We present the following optimization objective function to achieve the above
goals:

min
P,U,V

‖PY − UV ‖2F + α‖Y − PTPY ‖2F

+β(

N
∑

ij

‖vi − vj‖
2W c

ij −

N
∑

ij

‖vi − vj‖
2W

p
ij)

subject to PPT = I, ‖vi‖0 ≤ T0, and‖ui‖
2
F ≤ 1, ∀i. (1)

where I ∈ Rl×l is the identity matrix, α and β are non-negative constants and
they were empirically set as 1.0 and 1.0 in our experiments, P is the learned
low-dimensional subspace, and rows of P are enforced to be orthogonal and
normalized to unit norm. U is the dictionary learned in the low-dimensional
subspace, ‖ui‖

2
F ≤ 1 is to constrain the scale of ui, V is the sparse representation

of Y over U , and T0 is the sparsity level, W c and W p are two affinity matrices to
characterize the geometrical structure of the samples in the training set, which
are defined as [35]:

W c
ij =

{

1 if xi ∈ N+
k1
(xj) or xj ∈ N+

k1
(xi)

0 otherwise
(2)

and

W
p
ij =

{

1 if xi ∈ N−

k2
(xj) or xj ∈ N−

k2
(xi)

0 otherwise
(3)

where N+
k1
(x) and N−

k1
(x) denote the k1-intra-class and k2-inter-class nearest

neighbors of x, respectively, and k1 and k2 are two empirically pre-specified
parameters to define the sizes of the local neighborhoods. With some algebraic
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deduction, the third term of Eq. (1) can be simplified as

N
∑

ij

‖vi − vj‖
2W c

ij −

N
∑

ij

‖vi − vj‖
2W

p
ij

= tr(V TLcV )− tr(V TLPV ) (4)

where Lc = Dc − W c and Lp = Dp − W p are two Laplacian matrices, Dc
ii =

∑

j W
c
ij and D

p
ii =

∑

j W
p
ij are two diagonal matrices to reflect the degree of the

ith sample, respectively.
In Eq. (1), the first term aims to seek sparse signals in the low-dimensional

subspace, the second term preserves the energy of the samples in the learned
subspace as much as possible, the third term aims to maximize the between-
class margin in a local neighborhood.

While the objective function in Eq. (1) is not convex over P , U and V , it is
convex to one of them when the other two are fixed. Following the work [36], we
iteratively optimize P , U and V using the following three-stage method:

Step 1: Solve P with fixed U and V : when U and V are fixed, Eq. (1)
can be rewritten as

min
P

‖PY − UV ‖2F + α‖Y − PTPY ‖2F

subject to PPT = I. (5)

Let Q = UV Y −1. Eq. (5) can be formulated as

min
P

‖P −Q‖2F + α‖I − PTP‖2F

subject to PPT = I. (6)

We construct a Lagrange function as follows

L(P, µ) = ‖P −Q‖2F + α‖I − PTP‖2F − µ(PPT − I) (7)

Let ∂L(P,µ)
∂P

= 0 and ∂L(P,µ)
∂µ

= 0, we have

∂L(P, µ)

∂P
= (1 − α− µ)P − 2Q = 0 (8)

∂L(P, µ)

∂µ
= PPT − I = 0 (9)

According to Eqs. (8) and (9), P can be obtained as

P =
UV Y −1

2‖UV Y −1‖2F
(10)

Step 2: Solve U with fixed P and V : when P and V are fixed, Eq. (1)
can be rewritten as

min
U

‖PY − UV ‖2F

subject to ‖ui‖
2
F ≤ 1, ∀i. (11)
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Input: Training set Y = [y1, y2, · · · , yN ] ∈ Rd×N , affinity matrices W c and W p,
parameters α, β, T0, iteration number R, convergence error ǫ.

Output: Projection matrix P , dictionary U , and sparse coefficient matrix V .
Step 1 (Initialization):

Compute the initiations: P 0, U0 and V 0.
Step 2 (Local optimization):

For r = 1, 2, · · · , R, repeat
2.1. Solve P with fixed U and V via Eq. (10).
2.2. Solve U with fixed P and V via Eq. (11).
2.3. Solve V with fixed P and U via Eq. (13).
2.3. If r > 2 and |Ur − Ur−1| < ǫ, go to Step 3.

Step 3 (Output):
Output P r, Ur, and V r.

Algorithm 1: DSP

Eq. (11) is a least square problem with quadratic constraints. There are many
possible methods to solve this problem. Following [36], we use the conjugate
gradient decent method to learn the dictionary U .

Step 3: Solve V with fixed P and U : when P and U are fixed, Eq. (1)
can be rewritten as

min
V

‖PY − UV ‖2F + β(tr(V TLcV )− tr(V TLPV ))

subject to ‖vi‖0 ≤ T0, ∀i. (12)

Following the work in [36], we optimize each vi individually by fixing other
coefficients vj (j 6= i). We rewrite Eq. (12) as

min
vi

‖PY − Uvi‖
2
F + βG(vi)

subject to ‖vi‖0 ≤ T0, ∀i. (13)

where

G(vi) = (viV Lc
i + (V Lc

i)
T vi − viL

c
iivi)− (viV L

p
i + (V L

p
i )

T vi − viL
p
iivi)(14)

We apply the feature sign search algorithm [36] to solve each vi.
Now, we discuss how to set the initiations of our proposed DSP method.

According to the second term of Eq. (1), the objective of P is to preserve the
energy of the samples in the learned subspace as much as possible. Hence, we
first learn a PCA subspace on Y as the initiation of P 0. Then, we apply P0 to
map Y into a low-dimensional subspace Y1. Lastly, we employ the conventional
sparse coding method [37] on Y1 to learn U0 and V 0 as the initiations of U and
V . The proposed DSP method is summarized in Algorithm 1.

Having obtained V = [v1, v2, · · · , vM ] for a set of human body masks ex-
tracted from one activity video clip, we represent it as S = [s1, s2, · · · , sK ] by a
pre-defined pooling function:

s = F(V ) (15)



Activity-Based Human Identification Using DSP and OEML 7

where

sj = max{|v1j |, |v2j |, · · · , |vMj |} (16)

sj is the jth element of s, j = 1, · · · ,K, K is the size of the codebook U , which
is empirically set as 200 in our implementations.

3.3 Orthogonal Ensemble Metric Learning

Let S = [s1, s2, · · · , sn] be the training set of C different persons, where si ∈ RK

is the feature of the ith sample and n is the number of activity video clips,
L = [l1, l2, · · · , ln] be the labels of the training samples, where li ∈ [1, 2, · · · , C].
OEML aims to seek a distance metric M which pushes si and sj (li = lj) as
close as possible, and pull si and sj (li 6= lj) as far as possible, simultaneously,
where

dM (si, sj) =
√

(si − sj)TM(si − sj) (17)

where M is a K × K square matrix, and 1 ≤ i, j ≤ n. Since M is a distance
metric, it should be symmetric and positive semi-definite. hence, we can seek a
non-square matrix Q of size K ×K ′, where K ′ ≤ K, such that

M = QQT (18)

Then, Eq. (17) can be rewritten as

dM (si, sj) =
√

(si − sj)TM(si − sj)

=
√

(si − sj)TQQT (si − sj)

=
√

(ti − tj)T (ti − tj) (19)

where ti = QT si and tj = QT sj .
Different from most existing distance metric learning methods [26], [27], [28],

[29] which learn the distance metric over the whole training samples, we ran-
domly sample two groups of samples from the training set and consider them as
positive and negative samples for SVM learning. Assume there are C persons in
the training set, we generate one group by randomly sampling F (F ≤ C

2 ) classes
from the whole training samples as positive samples. Then, we generate another
group by randomly sampling F classes from the remaining training samples as
negative samples. Hence, these two groups don’t share any the same-class sample
because we need to learn a projection vector to distinguish them.

Then, we learn a linear SVM on these two groups of samples and seek a
projection vector pi = (wi − bi)

T to maximize the margin of these two groups of
samples, where wi and bi are the normal vector and bias of the SVM model. We
randomly iterate this procedure K ′ times and have multiple projection vectors
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Fig. 2. Learning different projection vectors by SVM from different subsets of the
training samples, where q1 are learned from G1 and G2, and q2 are learned from G3

and G4, respectively.

Input: Training set: S = [s1, s2, · · · , sn], label vector L = [l1, l2, · · · , ln],
parameter K′.

Output: Projection matrix Q.
Step 1 (Learning projection vectors with SVM):

For k = 1, 2, · · · ,K′, repeat
1.1. Sampling two groups of samples from S.
1.2. Obtain zk with SVM.

Step 2 (Orthogonazation):
Orthogonalize Z to obtain Q.

Step 3 (Output projection matrix):
Output projection matrix Q.

Algorithm 2: OEML

Z = [z1, z2, · · · , zK′ ]. Fig 2 illustrates the basic idea of the learning procedure.
In our experiments, we empirically set K ′ as 200.

Since the projection vectors are learned from the randomly sampled samples,
they are not orthogonal. To reduce the redundancy of these projection vectors,
we orthogonalize them to make more succinct feature extraction as follows.

Assume Q = [q1, q2, · · · , qK′ ] be the orthogonal basis vectors of Z. Let q1 =
p1. The ith projection vector qi can be computed as follows:

qi = zi −

i−1
∑

j=1

(qj)
T zi

(qj)T qj
qj (20)

Algorithm 2 summarizes the proposed OEML method.

4 Experimental Results

In this section, we conduct experiments on five different activity databases in-
cluding the Weizmann [38], AIIA-MOBISERV [24], KTH [39], MSR [12] and
TUM [40] databases to evaluate the performance of our proposed approach.
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4.1 Datasets and Settings

The Weizmann dataset [38] contains 9 persons and each person performed 10 d-
ifferent activities including bending, jumping-jack, jumping-forward-on-two-legs,
jumping in place-on-two-legs, running, galloping-sideways, skipping, walking,
waving-one-hand, and waving-two-hands, respectively. There are 93 video clips
in this database. Since some videos contain two or more cycles of a specific ac-
tion performed by some subjects, we break up these videos into several single
period activity videos. Hence, we obtain a database of 216 videos in total. For
each person, we randomly selected 5 activities for training and the remaining 5
activities were used for testing.

The AIIA-MOBISERV dataset [24] was specifically designed for the activity-
based human identification task. It contains 12 persons and each person per-
formed eating and drinking activities with two different clothing in four different
days. There are totally 96 videos in this database. Since some videos contain two
or more cycles of a specific activity performed by some subjects, these sequences
were segmented into several single-period activities. Following the settings in
[24], we consider drinking with a cup and eating with a fork for human identifi-
cation, where 776 video clips in total were selected. We use the eating activity
for training and the drinking activity for testing.

The KTH dataset [39] contains 25 persons, and each person performed 6 dif-
ferent activities, including boxing, handclapping, handwaving, jogging, running,
and walking, respectively. For each activity, it is captured at 4 different scenarios
such as outdoor, indoor, outdoor with a scale variation, and outdoor with dif-
ferent clothes, respectively. In our experiments, we randomly chose 3 activities
as training examples for each scenario and the remaining 3 activities as testing
examples.

The MSR dataset [12] was captured by a Kinect device. There are 10 subjects
in this dataset. For each subject, there are 16 activities: drinking, eating, reading
a book, calling a cellphone, writing on a paper, using a laptop, using a vacuum
cleaner, cheering up, sitting still, tossing paper, playing game, lying down on
sofa, walking, playing guitar, standing up, and sitting, respectively. Each subject
performed each activity twice: one in standing position and the other one in
sitting position. For each person, both color and depth videos are captured.
Hence, there are 320 videos in total. In our experiments, we only use the color
videos to evaluate the performance of our approach. We randomly selected 8
activities for each person as training examples and the remaining 8 activities as
testing examples.

The TUM dataset [40] is a collection of activity sequences recorded in a k-
itchen environment equipped with multiple complementary sensors. The record-
ed data consists of 4 subjects who naturally performed manipulation tasks in
a kitchen environment with different manners. Different from previous activ-
ity datasets, this dataset offers more natural activities for evaluating activity
recognition and motion tracking. There are multiple sensors used to capture hu-
man activities such as web camera, RFID and Magnetic (reed) sensors. In our
experiments, we only use the video data for human identification. For each per-
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son, we selected 4 video sequences captured from 4 synchronized cameras which
were installed at 4 different viewpoints. We randomly selected videos from two
viewpoints as training examples and the remaining two viewpoints as testing
examples.

We also construct a hybrid dataset which combines the Weizmann, AIIA-
MOBISERV, KTH, MSR, and TUM databases into a larger dataset to evaluate
the performance of our approach. Intuitively, this hybrid dataset is more chal-
lenging because there are 50 persons and different persons may perform differ-
ent types of activities in the hybrid dataset. We followed the above experimental
protocol for different datasets to construct the training and test datasets. Specif-
ically, all training sets from each dataset which used in the above experiments
were used for training and the remaining videos were used for testing.

We conducted experiments 10 times with different randomly selected training
and testing samples, and the final result was shown as the mean of the correct
identification rate1. In our experiments, the nearest neighbor classifier is used
for classification. Since the advantage of our proposed approach results from two
different stages: DSP feature encoding and OEML metric learning, we evaluate
the performance where only one is applied to reveal their respective effects,
respectively.

4.2 Results and Analysis

Comparison with Existing Feature Encoding Methods: We compare our
proposed DSP method with different feature encoding methods including the K-
means (KM), FCM, sparse coding (SC) [37], Laplacian sparse coding (LSC) [41]
on the activity-based human identification task. For the SC and LSC method-
s, the maximal pooling was also used. The codebook size was set as 300 and
the nearest neighbor (NN) classifier with the Euclidian distance was used for
identification. Table 1 shows the rank-one identification rate of different feature
encoding methods. We can see that our DSP performs better than the other
four compared methods. This is because the other compared feature encoding
methods are unsupervised and our DSP method is supervised, such that more
discriminative information can be exploited in our method. Moreover, our DSP
method performs feature encoding in the low-dimensional subspace, which can
remove the noisy and irrelevant information in the learned codebook.

Comparison with Existing Metric Learning Methods: To investigate
the effectiveness of the proposed OEML method in the activity-based human
identification task, we compare it with five state-of-the-art metric learning meth-
ods including large margin nearest neighbor (LMNN) [27], neighborhood compo-
nent analysis (NCA) [26], information theoretic metric learning [28], cosine sim-
ilarity metric learning (CSML) [29], and neighborhood repulsed metric learning
(NRML) [31]. For the first four compared methods, we empirically set the num-
ber of the nearest neighbors as 5. For the NRML method, two neighborhood sizes

1 The AIIA-MOBISERV dataset was not repeated 10 times because the training and
testing sets are fixed in this dataset.
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Table 1. Rank-1 identification rate (%) of different feature encoding methods on dif-
ferent datasets.

Method Weizmann AIIA-MOBISERV KTH MSR TUM Hybird

KM 64.5 55.4 20.5 24.7 41.7 40.0
FCM 68.3 57.6 24.5 28.6 50.0 43.0
SC 72.1 59.3 27.5 30.6 50.0 45.5
LSC 73.4 61.3 30.4 32.5 58.3 48.8
DSP 78.5 64.5 32.7 35.6 66.7 51.3

Table 2. Rank-1 identification rate (%) of different metric learning methods on differ-
ent datasets.

Method Weizmann AIIA-MOBISERV KTH MSR TUM Hybird

LMNN 75.5 59.5 22.5 27.8 58.3 45.0
NCA 74.3 58.3 21.8 26.9 50.0 44.5
ITML 74.6 58.0 21.6 27.3 50.0 44.0
CSML 76.3 60.5 25.7 30.4 66.7 47.5
NRML 77.5 61.7 28.6 33.5 66.7 49.0
OEML 80.2 65.1 32.5 36.2 75.0 52.5

were set as 5 and 20, respectively. We also applied principal component analysis
(PCA) to reduce each encoded histogram feature learned into 100 dimensions for
these five metric learning methods. For the proposed OEML method, we learned
the distance metric directly from the original feature space. The FCM method
was used for feature encoding. Table 2 compares the rank-1 identification rate
of different metric learning methods. We can clearly see from this table that
our OEML performs better than the other five compared metric learning. The
reason is that the other compared metric learning methods learn the distance
metric in the PCA reduced subspace and some discriminative information may
be removed in the subspace because the objectives of PCA and these metric
learning methods are usually not consistent. However, our OEML method learn-
s the distance metric in the original high-dimensional feature space, which can
exploit more discriminative information in the high-dimensional feature space
directly.

Comparison with State-of-the-Art Activity-Based human identifi-

cation Methods: we compare our approach with the state-of-the-art activity-

Table 3. Rank-1 identification rate (%) of different activity-based human identification
methods on different datasets.

Method Weizmann AIIA-MOBISERV KTH MSR TUM Hybird

Method in [23] 70.4 58.6 25.8 29.4 50.0 44.9
Method in [24] 74.3 60.3 27.6 32.3 50.0 48.5
Method in [25] 75.4 62.5 31.4 35.7 66.7 50.2
Ours 83.3 67.5 35.8 40.3 83.3 54.9
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Table 4. Rank-1 identification rate (%) of different combinations of feature encoding
and metric learning methods on different datasets.

Method Weizmann AIIA-MOBISERV KTH MSR TUM Hybird

Baseline 76.1 61.3 24.9 31.2 66.7 50.6
Baseline+DSP 78.5 64.5 32.7 35.6 66.7 52.2
Baseline+OEML 81.3 65.8 33.9 37.5 75.0 52.6
DSP+OEML 83.3 67.5 35.8 40.3 83.3 54.9
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Fig. 3. Rank-1 identification rate (%) of our approach versus different codebook sizes
on the hybrid dataset.

based human identification methods in [23], [24] and [25]. We implemented the
three compared methods [23], [24], [25] ourselves. For a fair comparison, the
number of clusters is set as 300 in our implementations for all methods. Table 3
compares the rank-1 identification rate of different methods. As can be seen from
this table, our approach significantly outperforms the compared activity-based
human identification methods because our approach adopts supervised feature
encoding and high-dimensional metric learning, such that more discriminative
information can be extracted for recognition.

Performance Analysis of Different Stages in Our Approach: We con-
duct experiments to analyze our approach when different modules are used. We
create the baseline method which performs dictionary learning in the original
feature space and uses NN for recognition without metric learning. Then, we
include different modules in our approach. Table 4 compares the rank-1 identi-
fication rate of different combinations of feature encoding and metric learning
methods. We see that all modules including low-dimensional subspace, discrim-
inative dictionary learning, and discriminative metric learning contribute the
final recognition rate of our approach.

Parameter Analysis: We first evaluate the effect of the codebook sizes of
our approach on the hybrid dataset. Fig. 3 shows the rank-1 identification rate
of our approach versus different codebook sizes on the hybrid dataset. We see
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Fig. 4. Rank-1 identification rate versus different number of iterations of DSP on the
hybrid dataset.
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Fig. 5. Rank-1 identification rate (%) of our approach versus different number of fea-
ture dimensions on the hybrid dataset.

that the performance of our approach continues to increase as the increasing of
the codebook size. However, the improvement is marginal, which indicates that
the performance of our approach is not sensitive to the codebook size.

Fig. 4 shows the rank-1 identification rate versus different number of itera-
tions on the hybrid database. We see that the recognition performance of our
proposed DSP method can converge to a local optimal peak in a few iterations.

Lastly, we investigated the effect of the parameter K ′ in OEML. Fig. 5 shows
the rank-1 identification rate versus different number of feature dimensions on
the hybrid database. We see that our OEML can reach stable performance when
the number of K ′ is above 100.
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5 Conclusion

This paper presented a new activity-based human identification approach by
using discriminative sparse projections and orthogonal ensemble metric learning
(OEML). Experimental results demonstrate the effectiveness of the proposed
approach. How to apply our proposed approach to other visual recognition ap-
plications such as face identification, object recognition, and visual tracking to
further demonstrate its effectiveness seems an interesting future work.
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21. Junejo, I., Dexter, E., Laptev, I., Pérez, P.: View-independent action recogni-
tion from temporal self-similarities. IEEE Transactions on Pattern Analysis and
Machine Intelligence 33(1) (2011) 172–185

22. Seo, H., Milanfar, P.: Action recognition from one example. IEEE Transactions
on Pattern Analysis and Machine Intelligence 33(5) (2011) 867–882

23. Gkalelis, N., Tefas, A., Pitas, I.: Human identification from human movements.
In: IEEE International Conference on Image Processing. (2009) 2585–2588

24. Iosifidis, A., Tefas, A., Pitas, I.: Activity-based person identification using fuzzy
representation and discriminant learning. IEEE Transactions on Information
Forensics and Security 7(2) (2012) 530–542

25. Lu, J., Hu, J., Zhou, X., Shang, Y.: Activity-based person identification using s-
parse coding and discriminative metric learning. In: ACM International Conference
on Multimedia. (2012) 1061–1064

26. Goldberger, J., Roweis, S., Hinton, G., Salakhutdinov, R.: Neighborhood com-
ponent analysis. In: Advances in Neural Information Processing Systems. (2004)
2539–2544

27. Weinberger, K., Blitzer, J., Saul, L.: Distance metric learning for large margin
nearest neighbor classification. In: Advances in Neural Information Processing
Systems. (2005)

28. Davis, J., Kulis, B., Jain, P., Sra, S., Dhillon, I.: Information-theoretic metric
learning. In: International Conference on Machine Learning. (2007) 209–216

29. Nguyen, H., Bai, L.: Cosine similarity metric learning for face verification. Asian
Conference on Computer Vision (2011) 709–720



16 Haibin Yan, Jiwen Lu, and Xiuzhuang Zhou

30. Lu, J., Tan, Y.P.: Regularized locality preserving projections and its extensions
for face recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part
B: Cybernetics 40(3) (2010) 958–963

31. Lu, J., Hu, J., Zhou, X., Shang, Y., Tan, Y.P., Wang, G.: Neighborhood repulsed
metric learning for kinship verification. In: IEEE International Conference on
Computer Vision and Pattern Recognition. (2012) 2594–2601

32. Lu, J., Wang, G., Moulin, P.: Image set classification using holistic multiple order
statistics features and localized multi-kernel metric learning. In: IEEE Interna-
tional Conference on Computer Vision. (2013) 329–336

33. Lu, J., Tan, Y.P., Wang, G.: Discriminative multimanifold analysis for face recog-
nition from a single training sample per person. IEEE Transactions on Pattern
Analysis and Machine Intelligence 35(1) (2013) 39–51

34. Yan, H., Lu, J., Deng, W., Zhou, X.: Discriminative multimetric learning for
kinship verification. IEEE Transactions on Information Forensics and Security
9(7) (2014) 1169–1178

35. Yan, S., Xu, D., Zhang, B., Zhang, H.J., Yang, Q., Lin, S.: Graph embedding and
extensions: a general framework for dimensionality reduction. IEEE Transactions
on Pattern Analysis and Machine Intelligence 29(1) (2007) 40–51

36. Lee, H., Battle, A., Raina, R., Ng, A.: Efficient sparse coding algorithms. In:
Advances in Neural Information Processing Systems. Volume 19. (2006) 801

37. Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using
sparse coding for image classification. In: IEEE International Conference on Com-
puter Vision and Pattern Recognition. (2009) 1794–1801

38. Gorelick, L., Blank, M., Shechtman, E., Irani, M., Basri, R.: Actions as space-time
shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(12)
(2007) 2247–2253

39. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local svm ap-
proach. In: IEEE International Conference on Pattern Recognition. Volume 3.
(2004) 32–36

40. Tenorth, M., Bandouch, J., Beetz, M.: The tum kitchen data set of everyday
manipulation activities for motion tracking and action recognition. In: IEEE In-
ternational Conference on Computer Vision Workshops. (2009) 1089–1096

41. Gao, S., Tsang, I.W., Chia, L.T., Zhao, P.: Local features are not lonely–laplacian
sparse coding for image classification. In: IEEE International Conference on Com-
puter Vision and Pattern Recognition. (2010) 3555–3561


