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Abstract. Advanced action recognition methods are prone to limited
generalization performances when trained on insufficient amount of data.
This limitation results from the high expense to label training samples
and their insufficiency to capture enough variability due to viewpoint
changes.
In this paper, we propose a solution that enriches training data by trans-
ferring their features across views. The proposed method is motivated by
the fact that cross-view features of the same actions are highly correlat-
ed. First, we use kernel-based canonical correlation analysis (CCA) to
learn nonlinear feature mappings that take multi-view data from their
original feature spaces into a common latent space. Then, we transfer
training samples from source to target views by back-projecting their
CCA features from latent to view-dependent spaces.
We experiment this cross-view sample enrichment process for action clas-
sification and we study the impact of several factors including kernel
choices as well as the dimensionality of the latent spaces.

Keywords: Action recognition, kernel methods, canonical correlation
analysis, viewpoint knowledge transfer, sample enrichment.

1 Introduction

Human action recognition is highly important for video understanding. In a
wide range of applications (such as robotic vision, autonomous driving, video
surveillance and retrieval), automatic solutions are necessary in order to recog-
nize several categories of human actions. To achieve this goal, machine learn-
ing and classification methods are used to obtain models from existing labeled
video collections. However, with the fast growth of industrial applications, action
recognition solutions should handle realistic scenarios in challenging condition-
s including outdoor environment, moving platforms, cluttered background and
viewpoint change. As learning and classification methods usually require labeled
data, which are scarce and expensive to collect, making use of training data
adequately becomes essential.

Under these constraints, enhancing the generalization ability of learning mod-
els is necessary, even when labeled training data are scarce. In current literature,
action recognition solutions are categorized according to their data represen-
tation and learning methods. These works include but not limited to design-
ing discriminative and robust features [7, 19, 31], building compact and effective
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representations [37, 28], modeling context and hierarchies [14, 22] and designing
kernels [4, 5, 33]. However, even advanced action recognition models have limit-
ed generalization power if training data are scarce; indeed, insufficient training
samples do not capture enough the inherent variability due to several factors
including viewpoint changes.

One possible solution to address this issue is to increase the size of training
data by providing larger datasets that sufficiently cover the variability in action
recognition; for instance [17, 16, 30, 10] provided around 100 video clips for each
action. As training needs to process more videos, this opens a direction to large
scale video processing, where models should sufficiently cover the variability.
Alternative solutions, based on transfer learning and domain adaption [26], rely
on another principle; knowledge learned in one task is applied to another different
task in order to make best use of current data. In this framework, no new data
needs to be collected, knowledge, however, is added.

In this work, we are interested in solutions that enrich training video data by
transferring knowledge about their acquisition conditions (mainly viewpoints).
Inspired from the observation that cross-view video features are highly and non
linearly correlated, we use a kernel version of canonical correlation analysis (C-
CA), in order to learn cross-view transfer mappings that take video features
from existing (source) to new (target) views.

1.1 Related Work

As action recognition is usually based on appearance and motion features, it
is well understood in the literature that large viewpoint change usually causes
large variation in these features and reduces the generalization ability of recog-
nition models. The issue of viewpoint change has received a particular attention
in action recognition research (see for instance [11, 1]) and several existing tech-
niques [35, 15, 20, 39, 13] focus on building view invariant representations while
others combine models learned for different source views [3, 34]. In studies of fea-
tures through different viewpoints, appearance and motion patterns are shown to
be very correlated. In [23], view-dependent vocabularies are connected through
corresponding action pairs to build a new dictionary which is more tolerant to
view changes. Recently, existing methods make effort to transfer knowledge be-
tween viewpoints; several works [21, 38, 36] explore linear relationship between
features in fixed source view - target view pairs. Combination models are al-
so needed for view-independent classification. Still, these methods require large
quantity of stereo vision data and adequate labeling and annotation information
through different viewpoints which are very expensive. Other techniques trans-
fer knowledge through different types of databases. For example, [8] builds a
multi-view spatio-temporal AND-OR graph model from 3D human skeleton da-
ta and [32] aligns video trajectories with the projected trajectories from a large
3D motion capture database and synthesizes multi-view training data.
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1.2 Motivation and Contribution

Again, recognizing actions in video is usually based on local appearance and
motion features. However, the latter are subject to strong variations due to ac-
quisition conditions (viewpoint in particular). Features, especially motion ones,
are not viewpoint invariant, so models learned with insufficient training sets are
clearly unable to capture the inherent viewpoint variability and thus have weak
generalization power on test data. A straightforward solution to overcome this
limitation, is to synthesize large training sets of videos, to better model vari-
ability due to viewpoint changes, for instance, by horizontally flipping frames
with symmetric views or by using still or animated 3D models. In contrast to
our proposed method (see §2), this large scale video synthesis process makes the
pre-processing step (prior to train action classifiers) very time demanding as the
whole feature extraction pipeline needs to be applied on all the newly generated
videos. Furthermore, and regardless processing time issues, this process may hit
two majors limitations: i) the insufficiency of the simple flipping operations, ii)
and the possible unrealistic aspect of (rendered and animated) 3D models.

Stereo vision is an alternative that provides knowledge in order to learn
cross-view mappings. This knowledge is transferable to new videos and may
improve classification performance. Usual methods rely on large view-specific
stereo datasets to learn transfer models, but during testing, they are not scalable
to general datasets whose views (or poses) are not known a priori. Indeed, view-
specific data transfer methods may require a preliminary step of human pose
estimation in order to decide which view-specific model to apply. Besides the
issue of learning pose-specific models1, pose estimation should also be achieved
during the transfer process (i.e., during testing). In contrast, our data transfer
solution, presented in this paper, neither requires pose estimation nor view-
specific training models for action recognition.

Research on cross-view action recognition proves that multiple-view shot-
s are highly correlated both in appearance and in motion; an assumption of
linear relationship is helpful (even though insufficient) to learn cross-view trans-
fer models [21, 38, 36]. However, when measuring canonical correlations between
cross-view features using CCA (see a particular example in Fig. 1), we observe
that they decrease fast, and only few pairs of canonical basis vectors can be
found so that projected data are well correlated. With nonlinear (kernel-based)
CCA, correlations have higher values (see again Fig. 1), and this suggests that
relationships between cross-view features are nonlinear.

Considering the above motivations, we introduce in this paper a novel method
that enriches video data by transferring their features from few existing training
videos (taken from source views) to other views. The proposed method is based
on a nonlinear version of canonical correlation analysis and it is motivated by the
fact that actions observed across views are highly and non linearly correlated.
Using this principle, we show that this feature transfer and enrichment process is
highly effective in order to improve the performance of action recognition. This

1 that may require a lot of human effort in order to label videos and their poses (which
is also subject to error).
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(a) Velocity feature (b) HOF feature

Fig. 1: A comparison between linear and nonlinear canonical correlation analy-
sis: for linear CCA, canonical correlations decrease fast and only few pairs of
canonical basis vectors have highly correlated data while for nonlinear CCA,
canonical correlations are high and decrease slowly.

allows us to obtain more training examples that cover many viewpoints especially
when the initial training data are insufficient in order to capture the variability
due to viewpoint changes. Experiments conducted show the effectiveness of our
method for action recognition.

The remainder of this paper is organized as follows: in §2, we propose our
cross-view feature transfer using kernel-based CCA; in §3, we present some ex-
periments on action recognition and we compare different kernels and the impact
of feature transfer on action recognition. Finally, we conclude our work in § 4.

2 Cross-view Feature Transfer

Consider two overlapping and synchronous video sequences, of the same scenes,
taken from two camera viewpoints (referred to as source and target views). We
assume that the target view (denoted by t) forms a relative angle θ with respect
to the source view (denoted by s). Let Vs = {xs1, . . . , xsn}, Vt = {xt1, . . . , xtn}
be the set of features (see §3.1) extracted inside the bounding boxes surround-
ing moving objects of interest in the source and target views respectively; we
assume that Vs, Vt are ordered so xsi ∈ Vs is aligned with xti ∈ Vt, i.e., the un-
derlying features belong to the same moving physical object. In what follows, we
use canonical correlation analysis (CCA) in order to learn transformations that
maximize the expected correlation of aligned data in Vs, Vt into a common latent
space. We use these learned transformations to induce (unobserved) features in
a target view, from observed video features taken from a source view.

2.1 Training with Canonical Correlation Analysis

Let X be an input space (for instance the 96 dimensional HOG space) and
consider Vs, Vt ⊆ X as two training sets of aligned features. The goal is to learn
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transformation matrices Ps, Pt that characterize features in Vs, Vt while being
viewpoint invariant. Canonical correlation analysis finds two sets of orthogonal
axes in X (also referred to as canonical basis vectors) such that the projection
of Vs, Vt, on these axes, maximizes their correlation. Again, Ps, Pt denote the
projection matrices of these orthogonal axes which respectively correspond to
views s and t. CCA finds these matrices by maximizing the following criterion
[9, 12]:

(Ps,Pt) = arg max
A,B

A′CstB

s.t. A′CssA = 1
B′CttB = 1

(1)

here A′ stands for transpose of A and Cst (resp. Css, Ctt) is the interclass
(resp. intraclass) covariance matrices of data in Vs, Vt. One can show (see for
instance [12, 9]) that (1) is equivalent to solving the following eigenproblem:

CstC
−1
tt CtsPs = λ2CssPs

Pt = 1
λ C

−1
tt CtsPs

(2)

Projection matrices Ps, Pt define a common latent space (denoted by L ⊂ Rd)
in which the correlation between (P′s x

s
i ,P

′
t x

t
i) ∈ L × L is maximized (i =

1, . . . , n). Note that cross-view transformations might not be only related to
linear geometric transformations as they include other nonlinear physical aspects
including (illumination changes, etc.), so one should consider a nonlinear version
of CCA using kernel mapping (see §2.2). Prior to describe the cross-view mapping
method in §2.3, we will review kernel mapping via kernel principal component
analysis (KPCA) in §2.2. The latter makes it possible to control dimensionality
of data and helps defining new mapping spaces so that CCA transformations
become nonlinear.

2.2 Kernel Mapping

Let Φ be an implicit mapping (defined via a kernel function K(x, z) = Φ(x)′Φ(z))
from the input space X into a high dimensional feature space H. Assume the
training set Vs is centered in H, i.e.,

∑n
i=1 Φ(xsi ) = 0. KPCA finds princi-

pal orthogonal projection axes by diagonalizing the covariance matrix M =
(1/n)

∑n
i=1 Φ(xsi )Φ(xsi )

′. The principal orthogonal axes, denoted {Ek}nk=1, can
be found by solving the eigenproblem MEk = λkEk, where Ek, λk are, respec-
tively, the kth eigenvector and its underlying eigenvalue. It can be shown (see for
instance [29]) that the solution of the above eigenproblem lies in the span of the
training data, i.e., ∀k = 1, . . . , n, ∃αk1, . . . , αkn ∈ R s.t. Ek =

∑n
j=1 αkjΦ(xsj),

where αk = (αk1, . . . , αkn) are found by solving the eigenproblem Kαk = λkαk.
Here K is the Gram matrix on the centered data in Vs in the feature space H.
In case the data are not centered, this matrix is defined as

Kij =

〈
Φ(xsi )−

1

n

∑
k

Φ(xsk), Φ(xsj)−
1

n

∑
k

Φ(xsk)

〉
, (3)
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Bench Golf

Kick Ride

Run Skateboard

Swing Walk

Fig. 2: General action recognition videos in different viewpoints [27].

where 〈·, ·〉 denotes the inner product. Each data x ∈ Vs is explicitly mapped into

ψ(x) ∈ Rp, where ψ(x) =
(
〈x,E1〉, . . . , 〈x,Ep〉

)′
(p� n). The same KPCA map-

ping process is achieved for data in Vt. CCA is now applied to ψ(Vs), ψ(Vt) ⊂ Rp
as shown subsequently.

2.3 Cross-View Feature Transfer using CCA

Fig. 2 shows video examples of actions taken from different views. A hypothesis
of cross-view transfer learning is that features in different views are drawn from
the same distribution in the latent space L. So, we assume that latent features
capture visual characteristics of moving objects/persons while being tolerant to
their viewpoint changes. Thus the features in the input space X (extracted di-
rectly from video data) are connected by the CCA latent features in L. Assuming
that mappings Ps, Pt are invertible (or utilizing Moore-Penrose pseudoinverse
[6]), we transfer features {ψ(xs)} (from the source view) to features {ψ(xt)} (in
the target view) by

ψ(xt) := (PsP
−1
t )′(ψ(xs)− ψ̄s) + ψ̄t, (4)
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here ψ̄s, ψ̄t are the estimated sample means in ψ(Vs), ψ(Vt) respectively. Notice
that Eq. (4), follows the assumption that CCA projections in the latent space L
are viewpoint invariant, i.e., P′s(ψ(xs)− ψ̄s) ' P′t(ψ(xt)− ψ̄t).

In practice, we build transformation matrices Ps, Pt using a dataset of
“source-target” view video sequences that correspond to the same moving actors
[17] (see Fig. 3; in this example, (b, c, d, e, f) correspond to the source views
while (a, b, c, d, e) correspond to the target view). This dataset includes simple
actions shot by 20 cameras with equiangular optical axes; the angle θ between
these axes is constant and relatively small (θ = 180) in order to avoid occlusions
and to obtain enough alignments across views.

We generate abundant trajectories from video data by tracking densely sam-
pled keypoints [31]. As frames in different views are synchronized, we obtain
sets Vs, Vt of aligned trajectories according to their keypoint locations in corre-
sponding frames using SIFT matching [25]. In the learning process, we randomly
sample 4000 pairs of corresponding trajectories in Vs, Vt and use them to learn
KPCA mapping as well as CCA transformation matrices Ps, Pt.

2.4 Video Set Enrichment

Using the learned transformation matrices Ps, Pt, we enrich the set of training
videos across different views by transferring component features. We describe
each video with component-based features using the method in [33] that gen-
erates and groups abundant trajectories from video data by tracking densely
sampled keypoints. During video enrichment, we first map source view com-
ponent features (defined as centers of their assigned trajectory features) using
KPCA, then we generate new component features associated to a target view,
by transferring their KPCA features using Eq. (4). Again, this transfer assumes
that corresponding features in the latent space are highly correlated.

Given a set of training videos {Vi} with unknown source view angles in {αi},
the transfer process “hallucinates” a new set of video component features with
a relative angle θ (i.e., with target view angles in {αi + θ}); note that generated
video features inherit the same labels as original videos. Though we cannot
process videos in target views (as they are not available), we can generate new
training samples by the transfer process in Eq. 4. In this way, generating many
training samples covering more views is very efficient and also effective for action
recognition as shown in experiments.

3 Experimental Analysis

In this section, we measure the impact of our cross-view feature transfer method
on action recognition. We first evaluate the ability of KPCA2 in order to gen-
erate high dimensional and more discriminating features. Then, we apply CCA
on the obtained KPCA features and evaluate its performance for cross-view fea-
ture transfer. As will be shown later in this section, the generalization power of

2 with different kernel functions.
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(a) (b) (c) (d) (e) (f)

Fig. 3: Frame examples from stereo videos [24].

our feature transfer method, and its positive impact on action recognition per-
formances, increases when the dimensions of KPCA and CCA mappings reach
reasonably large values.

3.1 Evaluation Set and Setting

Dataset and features. We conduct experiments on the UCF Sport dataset [27].
The latter includes 150 videos containing 10 classes of actions shot in real en-
vironment with large viewpoint variation and background changes. In order to
evaluate the results, we use the data split protocol introduced in [18]; we build
support vector machine (SVM) classifiers on the training set (of 103 videos),
and report the classification accuracy on the remaining test set (of 47 videos).
As a preprocessing step, we first extract dense trajectories [31] from original
videos and we keep only those inside the bounding boxes provided by [18], so
that trajectories are roughly around the human body3. Then, we group these
trajectories into mid-level components using the unsupervised clustering method
in [33]. Finally, we represent each video by the set of its mid-level components
(limited to 100 components in practice) and each one is described by five feature
vectors: Velocity Shape, HOG, HOF, MBHx, MBHy (see [31] for details).

Action recognition with SVMs. We use the convolution kernel in order to
evaluate the similarity between any two given videos V , V ′; this kernel is de-
fined as K(V, V ′) =

∑
c∈V,c′∈V ′ ke(c, c

′). Here two choices are considered for the
elementary kernel ke: linear and Laplacian RBF with γ = 1 (see table 1). The
convolution kernel is computed between pairwise videos and plugged into SVMs
for training and classification. In all these experiments, the regularization pa-
rameter C in SVMs is fixed to 10 and “one vs. all” SVMs are trained for each
action class; a given test video is assigned to the action class that maximizes its
SVM score. In the remainder of this section, SVM classifiers based on linear (re-
sp. Laplacian RBF) elementary kernels will be referred to as LCK (resp. RCK).

In what follows, we study the influence of kernel choice used for KPCA on the
performance of action recognition. These performances are reported for different

3 Besides, according to our transfer settings, we only transfer knowledge on actions.
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KPCA and CCA dimensions corresponding to the p-largest eigenvalues (of the
underlying kernel matrices) and the d-largest correlations (associated to the
canonical basis vectors) respectively (see §2.2, §2.1).

Kernel Type Formulation Parameters

1 Linear k(x, y) = x′y –

2 Polynomial k(x, y) = (γx′y + 1)d γ = 1, d = 2

3 NegDist k(x, y) = ||x− y||p p = 1

4 GHI** k(x, y) =
∑
i min(|xi|γ , |yi|γ) γ = 1

5 Gaussian RBF* k(x, y) = e
− ||x−y||

2

2γd2 γ ∈ {0.01, 1, 100}

6 Laplacian RBF*k(x, y) = e
− ||x−y||

γd γ ∈ {0.1, 1, 10}
** Generalized Histogram Intersection Kernel [2]
* In RBF like kernels, d is the mean distance between all training

samples.

Table 1: Types of kernels used in the experiments.

3.2 Influence of KPCA Mapping on Action Recognition

As discussed in §2.3, KPCA is a preprocessing step that maps data from an
input space X into a high dimensional space H so that cross-view CCA transfor-
mations can be learned and applied in H. Note that KPCA mapping is used not
only to make CCA transformations nonlinear, but also to make features more
discriminating in H. Thus, prior to evaluate the performance of CCA transfer
(see §3.3), we evaluate in this section the ability of KPCA to produce more dis-
criminating features in H by measuring its impact on the performance of action
recognition (i.e., without sample enrichment). This impact is measured for dif-
ferent kernel choices (see again table 1) and also for different values of p (the
dimension of KPCA mapping).

Table 2 shows action recognition performances for different kernel choices for
KPCA (listed in table 1); these results are obtained with linear SVM classifiers
(LCK). The results show that nonlinear KPCA mapping improves classification
performances (w.r.t linear mapping) especially when using the generalized his-
togram intersection and RBF kernels. Note that Gaussian RBF kernel is more
sensitive to the choice of parameters than Laplacian RBF and the latter has a
similar behavior compared to NegDist kernel. These results also corroborate the
fact that features in H are more discriminating when dimension p is sufficiently
(but not very) large.

3.3 Influence of CCA Mapping on Action Recognition

Considering aligned training features ψ(Vs), ψ(Vt) ⊂ Rp of the source and target
views, we use CCA projection matrices Ps, Pt (as shown in §2.1, §2.2, §2.3 and
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hhhhhhhhhhhhhhhKernels for KPCA

KPCA dim (p)
64 128 256 512 1024 2048

Linear (baseline) 53.2 57.4 – – – –

Polynomial 59.6 61.7 61.7 61.7 61.7 61.7
NegDist 61.7 66.0 68.1 68.1 68.1 68.1
GHI 68.1 68.1 72.3 72.3 70.2 70.2
Gaussian RBF (γ = 0.01) 66.0 68.1 72.3 70.2 70.2 72.3
Gaussian RBF (γ = 1) 59.6 59.6 59.6 59.6 59.6 59.6
Gaussian RBF (γ = 100) 59.6 59.6 59.6 – – –
Laplacian RBF (γ = 0.1) 66.0 68.1 70.2 70.2 72.3 72.3
Laplacian RBF (γ = 1) 66.0 68.1 68.1 68.1 68.1 70.2
Laplacian RBF (γ = 10) 63.8 66.0 68.1 68.1 68.1 68.1

Table 2: This table shows action recognition performance using KPCA mapping
and linear SVMs: features are projected into a p dimensional space. Note that
we do not explore larger values of p (i.e., p > 128) for the linear KPCA as the
dimension of the input space is bounded by 128. Similarly, we do not explore
larger values of p for the Gaussian RBF KPCA (with γ = 100) as the latter
behaves as linear KPCA for large values of γ.

in Eq. (4)) in order to enrich the training set of videos. The purpose is to show
the impact of this CCA-based enrichment process on action recognition.

Dimensionality and kernel choice. Tables 3, 4, 5 illustrate the impact of
CCA transfer on action recognition performances for different settings of kernels
in KPCA including linear, histogram intersection and Gaussian RBF respective-
ly. These tables also report performances for different values of dimensions p, d
(related to KPCA and CCA mapping respectively) and Fig. 4 shows transfer
error between generated features and those in the ground truth both in target
views, w.r.t p. From these results, it is clear that better performances and small
transfer errors are obtained with nonlinear KPCA mappings, particularly with
histogram intersection, and these performances increase as the dimensions p, d
of KPCA and CCA mappings become reasonably large, both with linear and
nonlinear SVM classifiers. Indeed, when d is small, canonical basis vectors (in
Ps, Pt) preserve accurate relationship between transferred features (i.e., high
correlations) while less knowledge is transferred. As more dimensions are taken
(i.e., as d increases), more knowledge is transferred but with more bias due to
the decrease of the canonical correlations.

Motion vs. appearance features. In order to understand the importance of
transferred (motion4 and appearance5) features, we compare two settings: in the
first one i) we transfer only motion features and we consider appearance features

4 Velocity Shape, HOF, MBHx, MBHy.
5 HOG.
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Linear SVMs (LCK) Nonlinear SVMs (RCK)
noenrich enrich perfs w.r.t d noenrich enrich perfs w.r.t d

p\d d = 64 d = 128 d = 64 d = 128

p = 64 53.2 59.6 - 76.6 80.9 -
p = 128 57.4 55.3 61.7 78.7 80.9 80.9

Table 3: This table shows action recognition performances (%) with and without
the enrichment process for different values of p (related to linear KPCA mapping)
and d (related to CCA).

Linear SVMs (LCK) Nonlinear SVMs (RCK)
noenrich enrich perfs w.r.t d noenrich enrich perfs w.r.t d

p\d 64 128 256 512 1024 2048 64 128 256 512 1024 2048

64 68.1 59.6 – – – – – 78.7 83.0 – – – – –
128 68.1 70.2 66.0 – – – – 74.5 80.9 76.6 – – – –
256 72.3 72.3 76.6 68.1 – – – 74.5 76.6 78.7 78.7 – – –
512 72.3 74.5 74.5 70.2 68.1 – – 74.5 70.2 72.3 78.7 70.2 – –
1024 70.2 74.5 72.3 70.2 74.5 68.1 – 74.5 76.6 74.5 76.6 76.6 70.2 –
2048 70.2 70.2 70.2 72.3 72.3 70.2 72.3 74.5 72.3 72.3 74.5 72.3 66.0 66.0

Table 4: This table shows action recognition performances (%) with and without
the enrichment process for different values of p (related to histogram intersection
KPCA mapping) and d (related to CCA). Note that d ≤ p as the dimension of
CCA cannot exceed that of KPCA.

Linear SVMs (LCK) Nonlinear SVMs (RCK)
noenrich enrich perfs w.r.t d noenrich enrich perfs w.r.t d

p\d 64 128 256 512 1024 2048 64 128 256 512 1024 2048

64 66.0 59.6 – – – – – 70.2 72.3 – – – – –
128 68.1 68.1 63.8 – – – – 72.3 72.3 72.3 – – – –
256 72.3 72.3 70.2 66.0 – – – 72.3 76.6 74.5 76.6 – – –
512 70.2 70.2 72.3 70.2 72.3 – – 72.3 74.5 76.6 80.9 72.3 – –
1024 70.2 76.6 76.6 74.5 72.3 70.2 – 72.3 74.5 74.5 74.5 72.3 72.3 –
2048 72.3 72.3 74.5 74.5 74.5 76.6 72.3 72.3 74.5 80.9 68.1 70.2 70.2 70.2

Table 5: This table shows action recognition performances (%) with and without
the enrichment process for different values of p (related to Gaussian RBF KPCA
mapping, with γ = 0.01) and d (related to CCA). Note that d ≤ p as the
dimension of CCA cannot exceed that of KPCA.
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(a) HOG feature (b) HOF feature

(c) Velocity feature (d) MBH feature

Fig. 4: This figure shows the trend of transfer error between generated and
ground truth features in target views when increasing the dimension p of KP-
CA mapping; for fixed p, dim d is set to obtain the full rank p. This transfer
error is measured using the average relative distance defined as dist(x, z) :=
1
n

∑n
i=1 ||xi − zi||/||zi||.

Linear SVMs (LCK) Nonlinear SVMs (RCK)
p\d 64 128 64 128

64 59.6/61.7 - 80.9/78.7 -
128 55.3/61.7 61.7/57.4 80.9/78.7 80.9/80.9

Table 6: This table shows a comparison between “motion and appearance trans-
fer” vs. “motion transfer only” for different values of p, d. In these results linear
kernel is used for KPCA. Note that d ≤ p as the dimension of CCA cannot
exceed that of KPCA.
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Linear SVMs (LCK) Nonlinear SVMs (RCK)
p\d 64 128 256 512 1024 2048 64 128 256 512 1024 2048

64 59.6/59.6 – – – – – 83.0/80.9 – – – – –
128 70.2/68.1 66.0/63.8 – – – – 80.9/80.9 76.6/76.6 – – – –
256 72.3/68.1 76.6/68.1 68.1/66.0 – – – 76.6/78.7 78.7/80.9 78.7/78.7 – – –
512 74.5/68.1 74.5/70.2 70.2/72.3 68.1/66.0 – – 70.2/76.6 72.3/80.9 78.7/83.0 70.2/74.5 – –
1024 74.5/70.2 72.3/70.2 70.2/70.2 74.5/68.1 68.1/70.2 – 76.6/78.7 74.5/80.9 76.6/80.9 76.6/78.7 70.2/70.2 –
2048 70.2/72.3 70.2/70.2 72.3/68.1 72.3/66.0 70.2/68.1 72.3/72.3 72.3/76.6 72.3/74.5 74.5/78.7 72.3/70.2 66.0/66.0 66.0/66.0

Linear SVMs (LCK) Nonlinear SVMs (RCK)
p\d 64 128 256 512 1024 2048 64 128 256 512 1024 2048

64 59.6/66.0 – – – – – 72.3/72.3 – – – – –

128 68.1/66.0 63.8/66.0 – – – – 72.3/70.2 72.3/72.3 – – – –

256 72.3/72.3 70.2/68.1 66.0/70.2 – – – 76.6/74.5 74.5/72.3 76.6/74.5 – – –

512 70.2/72.3 72.3/72.3 70.2/70.2 72.3/72.3 – – 74.5/74.5 76.6/74.5 80.9/78.7 72.3/72.3 – –

1024 76.6/74.5 76.6/70.2 74.5/68.1 72.3/72.3 70.2/70.2 – 74.5/74.5 74.5/76.6 74.5/72.3 72.3/72.3 72.3/72.3 –

2048 72.3/74.5 74.5/74.5 74.5/76.6 74.5/76.6 76.6/74.5 72.3/72.3 74.5/76.6 80.9/78.7 68.1/68.1 70.2/70.2 70.2/70.2 70.2/70.2

Table 7: This table shows a comparison between “motion and appearance trans-
fer” vs. “motion transfer only” for different values of p, d. In these results his-
togram intersection kernel (top) and Gaussian RBF kernel, with γ = 0.01 (bot-
tom) are used for KPCA. Note that d ≤ p as the dimension of CCA cannot
exceed that of KPCA.

viewpoint invariant, while in the second setting ii) we transfer both motion and
appearance features. Tables 6 – 7 compare the impact of these two settings on
the accuracy of action recognition; each cell in these tables corresponds to a
pair - (“motion and appearance transfer” vs. “motion transfer only”). We ob-
serve that the setting (i) (i.e., assuming viewpoint invariant HOG features) is
relatively accurate but globally the setting (ii) is more accurate especially when
dimensions p, d are not large.

Overall performances. Finally, Fig. 5 compares the overall action classifica-
tion performance of sample enrichment against no enrichment. For each kernel,
we show the best results (corresponding to the best setting of p and d). This
figure clearly shows that training SVM classifiers for action recognition, on en-
riched training set makes performance better than the initial setting that trains
classifier without enrichment. Moreover, as shown in Fig. 6, when enough data
is used for enrichment, the improvement becomes noticeable.

4 Conclusions

In this paper, we proposed a method to enrich training samples by transferring
their features from source to target views. Inspired from the observation that
cross-view features are highly and non linearly correlated, we used kernel-based
canonical correlation analysis in order to map features across views. Experi-
ments conducted show the positive impact of this enrichment process on action
recognition and the influence of different (mainly nonlinear) kernels on the per-
formances.
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(a) Linear SVMs (LCK)

(b) Nonlinear SVMs (RCK)

Fig. 5: This figure shows action recognition performances with and without the
enrichment process for different kernels.

(a) Linear SVMs (LCK) (b) Nonlinear SVMs (RCK)

Fig. 6: This figure shows the evolution of action recognition performances w.r.t
the fraction k of original training data involved in enrichment (k = 0% stands
for no enrichment while k = 100% means that all original data are used for
enrichment, thereby the size of training set doubles). These results correspond
to the average classification accuracy of 100 runs. Each run corresponds to a
fraction k of random training samples used for enrichment.
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