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Abstract. In many real-world applications (e.g. social media applica-
tion), data usually consists of diverse input modalities that originates
from various heterogeneous sources. Learning a similarity measure for
such data is of great importance for vast number of applications such as
classification, clustering, retrieval, etc.
Defining an appropriate distance metric between data points with mul-
tiple modalities is a key challenge that has a great impact on the perfor-
mance of many multimedia applications. Existing approaches for multi-
modal distance metric learning only offer point estimation of the distance
matrix and/or latent features, and can therefore be unreliable when the
number of training examples is small. In this paper we present a novel
Bayesian framework for learning distance functions on multi-modal data
through Beta Process, by which we embed data of different modali-
ties into a single latent space. Moreover, using the flexible Beta process
model, we can infer the dimensionality of the hidden space using training
data itself. We also develop a novel Variational Bayes (VB) algorithm to
compute the posterior distribution of the parameters that imposes the
constraints (similarity/dissimilarity constraints) directly on the posterior
distribution. We apply our framework to text/image data and present
empirical results on retrieval and classification to demonstrate the effec-
tiveness of the proposed model.

Keywords: Metric learning, Multi-modal data, Beta process, Varia-
tional inference, Gibbs sampling

1 Introduction

Recently, multi-modal data has been grown explosively thanks to the ubiquity of
the social media (e.g. Facebook, Flicker, Youtube, iTuens, etc). In such data, in-
formation comes through multiple input channels (images contain tags and cap-
tions, videos are associated with audio signals and/or user comments). Hence,
each modality can be characterized by different statistical features which reveals
the importance of the fact that the modality corresponding to a distinct input
source, carries different kinds of information.
In many applications including classification [6], retrieval [7], clustering [8], and
recommendation systems [9], choosing a proper similarity measure between items
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is a crucial task. To address this problem, a wide range of Distance Metric Learn-
ing (DML) methods have been proposed [1],[2],[3],[4],[5]. Although the perfor-
mance of DML methods have been promising on similarity search problems, most
existing DML algorithms are designed to work on single-modal data, hence, they
are limited in that they do not effectively handle the distance measure of multi-
modal data which may originate from totally different resources.
Recently, the multi-modal distance metric learning has been received an in-
creasing attention [11],[18]. In this paper, we propose a Bayesian framework for
multi-modal distance metric learning based on the Beta process [19] that takes
into account the distance supervision (similarity/dissimilarity constraints). Our
method embeds data of arbitrary modalities into a single latent space with the
ability to learn the dimensionality of the latent space by the data itself. Given
supervisory information (labeled similar and dissimilar pairs), we develop a novel
Variational Bayes (VB) algorithm which incorporates such information into the
proposed Bayesian framework by imposing the constraints directly on the pa-
rameters of the posterior distribution of the latent features.
The rest of this paper is organized as follows. Section 2 introduces some related
work in metric learning area. In Section 3, we briefly review the Beta process.
We present the propose multi-modal distance metric learning framework based
on Beta process model in Section 4. In Section 5, we introduce a novel VB al-
gorithm to compute the posterior distribution of the parameters and the hidden
variables. Experimental results are presented in Section 6. Finally, we conclude
our work in Section 7.

2 Related Work

Metric Learning has become a very active research area over the last years
[1],[2],[3],[4],[5]. In this problem, we intend to learn an appropriate dissimilar-
ity measure from the data samples when some similarity and dissimilarity con-
straints on data points are available. Xing et al. [10] introduced a metric learning
method by formulating the learning task into the following constrained convex
optimization problem.

A∗ =argmin
A

∑
(xi,xj)∈S

(xi − xj)TA(xi − xj),

s.t.
∑

(xi,xj)∈D

(xi − xj)TA(xi − xj) ≥ 1, A � 0, (1)

where A is a Mahalanobis distance matrix (A must be positive semidefinite
matrix to satisfy the non-negativity and triangle inequality conditions), and S
and D denote the set of positive and negative constraints respectively.

Some other well-known algorithms in this area include Relevant Component
Analysis (RCA) [12], Discriminative Component Analysis (DCA) [13], Information-
Theoretic Metric Learning (ITML) [14], Large Margin Nearest Neighbor (LMNN)
[15], Regularized Metric Learning [16], Laplacian Regularized Metric Learning
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(LRML) [17] that learn a Mahalanobis distance metric.
The problem with all of the above methods is that they are primarily designed
for data with single modality and are not appropriate for multi-modal data.
One very simple approach to remedy this problem is to join the features from
different modalities into a single representation and learn an appropriate metric
using that representation. Unfortunately, this naive solution does not consider
the incompatibility of heterogeneous information sources and subsequently, ig-
nores the dependency relationships between various modalities that could lead
to suboptimal performance.
Attempting to address this issue, some researchers have introduced some met-
ric learning methods for multi-modal data. McFee and Lanckriet [11] proposed a
multi-modal distance metric learning method based on Multiple Kernel Learning
that learns each kernel for a different modality of the data. This algorithm learns
for features of each modality a Mahalanobis distance metric in the reproducing
kernel Hilbert space (RKHS), that can be solved by semidefinite programming.
Very recently, Xie and Xing [18] have combined multi-wing harmonium model
(MVH) [20] for multimodel integration and the metric learning method intro-
duced in [10] for incorporating supervisory information into the proposed model.
More precisely, this method tries to embed data of different modalities into a sin-
gle latent space by imposing the similarity/dissimilarity constraints on the latent
features. This is done by minimizing the distance of similar pairs while separating
dissimilar pairs with a certain margin in the latent space. Although the results
of this algorithm is promising, there are two problems with this method. First,
this algorithm only provides point estimation of the latent features which could
be sensitive to the choice of training examples, hence the algorithm tends to
be unreliable when the number of training examples is small. Second, the di-
mensionality of the latent space must be specified a priori that could be a hard
assumption.
To address the above problems, in this paper, we present a Bayesian framework
for Multi-Modal Distance Metric Learning (MMDML) based on the Beta pro-
cess that targets tasks where the number of training examples is limited. Indeed,
using the full Bayesian treatment, the proposed framework is better suited to
dealing with a small number of training examples than the non-Bayesian ap-
proaches. Moreover, using the flexible Beta process, we are able to infer the
number of latent features from the observed data.

3 Beta Process

The Beta process B ∼ BP (c,B0) is an example of completely random measures
[22] which is defined as a distribution on positive random measures over a mea-
surable space (Ω,F) [19]. It is parameterized by a base measure B0 which is
defined over Ω and a positive function c(ω) over Ω which is assumed constant
for simplicity (c(ω) = c). This process is an example of a Lévy process with the
Lévy measure as

ν(dπ, dω) = cπ−1(1− π)c−1dπB0(dω). (2)
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For generating samples from B ∼ BP (c,B0), first, a non-homogeneous Pois-
son process is defined on Ω ×R+ with intensity function ν. Then, Poisson(λ)
number of points (πk, ωk) ∈ [0, 1] × Ω are drawn from the Poisson process
(λ =

∫
[0,1]

∫
Ω
ν(dω, dπ) = ∞). Finally, a draw from B ∼ BP (c,B0) is con-

structed as

Bω =

∞∑
k=1

πkδωk
, (3)

where δωk
is a unit point measure at ωk (δωk

equals one if ω = ωk and is zero
otherwise) . It can be seen from equation 3, that Bω is a discrete measure (with
probability one), for which Bω(A) =

∑
k:ωk∈A πk, for any set A ⊂ F .

4 Proposed method

In this section, we present our Bayesian framework for multi-modal distance met-
ric learning which directly imposes the constraints on the posterior distribution
of the latent features.

4.1 Problem Formulation

Let T = [X̄, Ȳ ] be the observed bi-modal data matrix (for simplicity, we as-
sume we have two-modal data, but our method can be easily extended to multi-
modal data) where X̄ = [X1, X2, ..., Xd]M×d denotes the first modality data
matrix, where Xi = [x1i, ...xMi]

T is the i-th data point of the first modality,
and Ȳ = [Y1, Y2, ..., Yd]N×d denotes the second modality data matrix, where
Yi = [y1i, ...yNi]

T is the i-th data point of the second modality. We also denote
H̄ = [H1, H2, ...,Hd]K×d as the latent feature matrix, where Hi = [h1i, ...hKi]

T

is the latent feature for the i-th data point. We are also given two sets of pairwise
constraints which are defined as

A = {(i, j) | (Xi, Yi) and (Xj , Yj) are in the same class},
D = {(i, j) | (Xi, Yi) and (Xj , Yj) are in two different class},

where A is the set of similar pairwise constraints, and D is the set of dissim-
ilar pairwise constraints. In order to utilize the Beta process in the proposed
Bayesian framework, we model the latent feature matrix (H̄) as an element-wise
multiplication of a binary matrix (Z̄ = [Z1, ..., Zd]K×d) and a real weight matrix
(S̄ = [S1, ..., Sd]K×d). Hence, we have H̄ = Z̄ � S̄, where � is the element-wise
multiplication operator. To be fully Bayesian, we must define appropriate prior
and likelihood distributions for all observed (X̄, Ȳ ) and latent (Z̄, S̄) variables.
Based on the above definitions, the proposed generative model goes as follows:

– For each data point (Xi, Yi)
d
i=1, first draw corresponding features Zi, Si from

the prior distributions p(Zi|βz) and p(Si|βs) respectively.
– For each drawn feature (Zi, Si)

d
i=1, draw the data point Xi and Yi from the

likelihoods p(Xi|Zi, Si, βx) and p(Yi|Zi, Si, βy) respectively.
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where βz, βs, βx and βy are the free parameters of the proposed generative model
(to be fully Bayesian, we put appropriate prior distribution on these parameters
and infer the corresponding posterior distributions from observed data). It should
be noted that using the above generative process, we assume that elements of
each modality are independent of other modalities given the latent features.
More precisely, we have:

p(X̄, Ȳ |Z̄, S̄, βx, βy) =

d∏
i=1

M∏
m=1

p(xmi|Zi, Si, βx)

N∏
n=1

p(yni|Zi, Si, βy). (4)

We also make assumptions about the complete conditionals in the proposed
model (a complete conditional is the conditional distribution of a latent variable
given the other latent variables and the observations). We assume that these
distributions are in the exponential family,

p(Zi|Z̄−i, S̄, X̄, Ȳ , βz, βx, βy) ∝ p(Xi|Zi, Si, βx)p(Yi|Zi, Si, βy)p(Zi|βz)
∝ exp

{
ηz(Z̄−i, Si, Xi, Yi, βz, βx, βy)T tz(Zi)

}
, i = 1, ..., d, (5)

p(Si|S̄−i, Z̄, X̄, Ȳ , βs, βx, βy) ∝ p(Xi|Zi, Si, βx)p(Yi|Zi, Si, βy)p(Si|βs)
∝ exp

{
ηs(S̄−i, Zi, Xi, Yi, βs, βx, βy)T ts(Si)

}
, i = 1, ..., d, (6)

where the notation Z̄−i and S̄−i refers to the set of columns of Z̄ and S̄ except
the i-th column respectively, and the vector functions η(.) and t(.) are the natu-
ral parameter (the natural parameter is a function of the variables that are being
conditioned on) and the sufficient statistics respectively. These assumptions on
the complete conditionals imply a conjugacy relationship between the hidden
variables and the observations that implies a specific form of the complete con-
ditional for the latent features.
We put a prior distribution on the binary matrix Z̄ using the extension of the
Beta process which takes two scalar parameters aπ and bπ and was originally
proposed by [21]. A sample from the extended Beta process B ∼ BP (aπ, bπ, B0)
with base measure B0 may be represented as

Bω =

K∑
k=1

πkδωk
, (7)

where,
πk ∼ Beta(aπ/K, bπ(K − 1)/K), ωk ∼ B0. (8)

This sample will be a valid sample from the extended Beta process, if K →∞.
Bω can be considered as a vector of K probabilities that each probability πk
corresponds to the atom ωk. Now, we consider each latent binary feature Zi(i =
1, ..., d) to be drawn from a Bernoulli process Be(Bω) with Bω defined as 7 where
a sample from this process can be generated as

Zi =

K∑
k=1

zkiδωk
, i = 1, ..., d, (9)
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where zki is generated by zki ∼ Bernoulli(πk). So, we set the free parameter βz =
[π1, ..., πK ]. By letting K →∞, the number of the atoms K (the dimensionality
of the latent feature space) can be learned from the training data.
Based on the Beta-Bernoulli process prior on binary latent features Z̄, computing
the posterior distribution of Z̄ is tractable for any likelihood function. However,
for the weight latent features S̄, the prior and the likelihood distributions must
be in the conjugate exponential family as

p(Xi, Yi|Si, Zi, βx, βy) =

M∏
m=1

N∏
n=1

(
A(xmi)A(yni)exp{η(Si, Zi, βx, βy)T t(xmi, yni)− φ(Si, Zi, βx, βy)}

)
,

(10)

p(Si|βs) =

K∏
k=1

A(ski)exp{βTs t(ski)− φs(βs)}, (11)

where the scalar functions A(.) and φ(.) are the base measure and log-normalizer
respectively. Using the conjugacy relationship between Eqs. 10 and 11, the suf-
ficient statistics for ski is

t(ski) = (ηski
(Si, Zi, βx, βy),−φski

(Si, Zi, βx, βy)), (12)

where fx(.) means that we consider x as the free parameter of the function f by
considering all other parameters as constant. The parameter βs has two compo-
nents βs = (β1

s , β
2
s ). The first component β1

s is a vector of the same dimension
as ηski

(Si, Zi, βx, βy); the second component β2
s is a scalar. This form will be

important when we derive constrained variational inference in Section 5.1.
To be fully Bayesian, we also put conjugate prior distributions on the free pa-
rameters βs, βx and βy as

p(βs|as) = A(βs)exp{aTs t(βs)− φβs
(as)}, (13)

p(βx|ax) = A(βx)exp{aTx t(βx)− φβy
(ax)}, (14)

p(βy|ay) = A(βy)exp{aTy t(βy)− φβx(ay)}, (15)

where
t(βs) = (βs,−φs(βs)), (16)

t(βx) = (ηβx
(Si, Zi, βx, βy),−φβx

(Si, Zi, βx, βy)), (17)

t(βy) = (ηβy (Si, Zi, βx, βy),−φβy (Si, Zi, βx, βy)), (18)

where aπ, bπ, as, ax, by are the hyper-parameters of the proposed model. The
graphical representation of the proposed model is demonstrated in Fig. 1.
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Fig. 1. The graphical representation of the proposed Bayesian model.

5 Posterior Inference

Due to the fact that computing the exact posterior distribution of the latent
variables given the observations is intractable, in this section, we develop a new
VB algorithm, to approximate that posterior distribution.
The goal of variational inference is to approximate the true posterior distribution
over the latent variables with a variational distribution which is closest in KL
divergence to the true posterior distribution. A brief review of the VB algorithm
for the exponential family distributions provided in the supplementary Material.
In our variational inference framework, we use the finite Beta-Bernoulli approx-
imation, in which the dimensionality of the latent space (K) is truncated and
set to a finite but large number. If K is large enough, the analyzed multi-modal
data using this number of latent features, will reveal less than K components.
In the following section, we introduce our VB method which incorporates the
information of similarity/dissimilarity constraints into inferring the posterior
distributions.

5.1 Constrained Variational Inference

In the proposed Bayesian MMDML model, the latent variables are Ξ =

{
Π =

[π1, π2, ..., πK ], Z̄, S̄, βs, βx, βy

}
, and the hyper-parameters are Φ = {ax, ay, as, aπ, bπ}.

So, the joint probability of data and unknown variables are

P (X̄, Ȳ , Ξ | Φ) =

d∏
i=1

( M∏
m=1

P (xmi | Zi, Si, βx)

N∏
n=1

P (yni | Zi, Si, βy)

K∏
k=1

P (zki | πk)P (ski | βs)
) K∏
k=1

P (πk | aπ, bπ)P (βx|ax)P (βy|ay)P (βs|as). (19)
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We use a fully factorized variational distribution for the hidden variables as

q(Π, Z̄, S̄, βs, βx, βy) =

K∏
k=1

qπk
(πk)

d∏
i=1

K∏
k=1

qzki
(zki)qski

(ski)qβs
(βs)qβx

(βx)qβy
(βy).

Since all the distributions belong to the conjugate exponential families, we can
determine the form of the approximate posterior distributions, so we have:

qπk
(πk) = Beta(πk; akπ, b

k
π), k = 1, ...,K,

qzki
(zki) = Bernoulli(zki; νki), k = 1, ...,K, i = 1, ..., d,

qski
(ski) = A(ski)exp{(β̂kis )T t(ski)− φs(β̂kis )}, k = 1, ...,K, i = 1, ..., d,

qβs(βs) = A(βs)exp{âTs t(βs)− φβs(âs)},
qβx

(βx) = A(βx)exp{âTx t(βx)− φβy
(âx)},

qβy
(βy) = A(βy)exp{âTy t(βy)− φβx

(ây)}.

If we denote the set of posterior parameters byΩ, the proposed constrained varia-
tional inference then involves maximizing the lower bound on the marginal likeli-
hood (P (X̄, Ȳ | Φ) by enforcing similar/dissimilar pairs to have similar/dissimilar
posterior distributions over their latent features. This is equivalent to solving the
following optimization problem

Ω̂ =argmin
Ω

− Eq(logP (X̄, Ȳ , Ξ | Φ))−H[q] +
1

|A|
∑

(i,j)∈A

K∑
k=1

(
λz(νki − νkj)2

+ λs(β̂
ki
s − β̂kjs )2

)
, s.t. ∀(i, j) ∈ D,

K∑
k=1

(νki − νkj)2 ≥ 1,

K∑
k=1

(β̂kis − β̂kjs )2 ≥ 1,

(20)

where H[.] denotes the Entropy operator, and |A| denotes the cardinality of
the set A. In [20], the similarity and dissimilarity constraints are directly im-
posed on the latent features. In our Bayesian framework, instead of imposing
the constraints directly on latent features (Z̄, S̄), we impose them on the pa-
rameters of the posterior distributions of the latent features. It should be noted
that both P (X̄, Ȳ , Ξ | Φ) and H[q] are functions of posterior parameters (Ω).
The VB method simply tries to minimize the above objective function using the
Coordinate Descent method. Eq(logP (X̄, Ȳ , Ξ | Φ)) can be decomposed as

Eq(logP (X̄, Ȳ , Ξ | Φ)) =

K∑
k=1

Eq logP (πk | aπ, bπ) +

d∑
i=1

K∑
k=1

Eq logP (zki | πk)+

d∑
i=1

( M∑
m=1

Eq logP (xmi | Zi, Si, βx) +

N∑
n=1

Eq logP (yni | Zi, Si, βy)

+

K∑
k=1

Eq logP (ski | βs)
)

+ Eq logP (βs | as) + Eq logP (βx | ax) + Eq logP (βy | ay).

(21)
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The update equation for each distribution is as follows (due to the conjugacy
relationship for Π,βs, βx, βy and the fact that these variables do not appear in
the constraints, updating posterior distribution of these variables is straightfor-
ward and is omitted due to the lack of space).

Update for Z̄ = [Z1, Z2, ..., Zd] :
Due to the fact that there are some constraints on the posterior parameters of
the binary feature matrix Z̄, we cannot derive the update equation for the pos-
terior parameters of Z̄ in the closed form. Hence, for updating the parameters in
our coordinate descent framework, we reformulate the objective function of Eq.
20 as a function of the posterior parameters of Z̄ and directly solve the obtained
optimization problem (it should be noted that in expanding the objective func-
tion, we consider all parameters fixed but the parameters of the binary feature
matrix Z̄). For updating each posterior parameter νki(k = 1, ...,K; i = 1, ..., d),
first, we define function F (νki) as:

F (νki) = −Eq(logP (X̄, Ȳ , Ξ | Φ))−H[q]+
λz
|A|

∑
j∈{j|(i,j)∈A}

(νki−νkj)2+c, (22)

where c is the summation of all terms which are independent of νki.

Eq(logP (X̄, Ȳ , Ξ | Φ)) =

M∑
m=1

Eq logP (xmi | Zi, Si, βx)

+

N∑
n=1

Eq logP (yni | Zi, Si, βy) + Eq logP (zki | πk) + c

=

M∑
m=1

fmi(νki) +

N∑
n=1

fni(νki) + 〈log πk〉νki + 〈log(1− πk)〉(1− νki) + c, (23)

where fmi(νki) = Eq logP (xmi | Zi, Si, βx) and fni(νki) = Eq logP (yni | Zi, Si, βy)
and 〈.〉 indicates the expectation operator. For the entropy, we have:

H[q] = −Eq log qzki
(zki) + c = −νki log νki − (1− νki) log(1− νki) + c. (24)

We can update the parameter νki by solving the following optimization problem

ν̂ki =argmin
νki

M∑
m=1

fmi(νki) +

N∑
n=1

fni(νki) + 〈log πk〉νki + 〈log(1− πk)〉(1− νki)

+ νki log νki + (1− νki) log(1− νki)
s.t. (νki − νkj)2 ≥ 1 ∀j ∈ {j|(i, j) ∈ D}. (25)

It is worth noting that the above optimization problem is a one dimensional
problem that can be solved efficiently. Similarly, we can update the posterior
parameters ({β̂kis }(i = 1, ..., d; k = 1, ...,K)) of the feature matrix S̄ using the
same procedure.
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5.2 Latent feature prediction

After computing the posterior distribution of the latent features of the training
data, in order to compute the posterior distribution of the latent feature for a
new instance (Xt, Yt), we must compute P (Ht|Xt, Yt, T ) by integrating out the
variables βx, βy, βs, and Π as

P (Ht|Xt, Yt, T ) =

∫∫∫∫
P (Zt, St, βx, βy, βs, Π|Xt, Yt, T )dβxdβydβsdΠ

=

∫∫∫∫
P (Zt, St|βx, βy, βs, Π,Xt, Yt, T )P (βx|T,Xt, Yt)P (βy|T,Xt, Yt)×

P (βs|T,Xt, Yt)P (Π|T,Xt, Yt)dβxdβydβsdΠ. (26)

Since the above expression cannot be computed in closed form, we resort to Gibbs
sampling to approximate it. In other words, we estimate P (Zt, St|Xt, Yt, T ) as

P (Zt, St|Xt, Yt, T ) ≈ 1

L

L∑
l=1

δz,s(Z
l
t, S

l
t), (27)

where L and rl denote the number of samples and the l-th sample of the latent
variable r. To sample from P (Zt, St|Xt, Yt, T ), we sample from
P (Zt, St, βx, βy, βs, Π|Xt, Yt, T ) based on the Gibbs sampling method [23]. Then,
we simply ignore the values for βx, βy, βs, Π in each sample (it is worth noting
that for generating samples for βx, βy, βs, Π, we consider the approximate pos-
terior distributions q(βx), q(βy), q(βs), q(Π) as the prior distributions for these
variables respectively).
Due to assumption that the posterior distribution of the latent features belong
to the exponential famiy (Eqs. 5,6,13,14,15), deriving Gibbs sampling equations
is straightforward.
In order to compare a test data point (Xt, Yt) with a training data point (Xj , Yj)
based on their latent features, we first generate L samples ({Zlt, Slt}Ll=1) for the
latent features Zt, St based on the Gibbs sampling method. Then, we simply
use Euclidean distance between the empirical mean of the generated samples
( 1
L

∑L
l=1 Z

l
t�Slt) and the mean of the posterior distribution of the latent feature

of (Xj , Yj):

d
(
(Xt, Yt), (Xj , Yj)

)
= ‖ 1

L

L∑
l=1

H l
t−Eq[Hj ]‖2 = ‖ 1

L

L∑
l=1

Zlt�Slt−Eq[Zj ]�Eq[Sj ]‖2,

where d(., .) and Eq[x] denote the distance function and the mean of the posterior
distribution of the random variable x respectively.

6 Experimental Results

In this section, we verify the performance of the proposed Bayesian framework
on tagged images data (images are associated with user textual tags such as title,
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description, comments, etc) which is ubiquitous in many photo sharing websites
such as Instagram and Flickr.
Following [18], for image data modality, we first extract SIFT features from
images. Then, we represent each image (Xi) using normalized bag-of-words on
SIFT features. We also consider a discrete bag-of-words representation for text
(Yi) data [18].
To specialize our general Bayesian framework to tagged images data, we propose
the following model for this bi-modal data:

P (zki | πk) ∼ Bernoulli(πk), k = 1, ...,K, i = 1, ..., d,

P (πk; aπ, bπ) ∼ Beta(aπ/K, bπ(K − 1)/K), k = 1, ...,K,

P (ski | γs) ∼ N (0, γ−1s ), k = 1, ...,K, i = 1, ..., d,

P (xmi | Zi, Si,Wm, γx) ∼ N (WT
m(Si � Zi), γ−1x ) m = 1, ...,M, i = 1, ..., d,

P (yni | Zi, Si, Un, θn) =
1

1 + exp(−yni(UTn (Si � Zi) + θn))
n = 1, ..., N, i = 1, ..., d,

P (Wm | γw) ∼ N (0, γ−1w I), m = 1, ...,M,

P (Un | γu) ∼ N (0, γ−1u I), n = 1, ..., N,

P (γs; as, bs) ∼ Gamma(as, bs), P (γx; ax, bx) ∼ Gamma(ax, bx),

P (γw; aw, bw) ∼ Gamma(aw, bw), P (γu; au, bu) ∼ Gamma(au, bu),

P (θn) ∼ N (0, 1), n = 1, ..., N,

where we assume that each element of Yi is a binary random variable with
logistic function distribution (yni = +1 if the n-th term of a tag dictionary
appears around the i-th image and yni = −1 otherwise). We also assume that
each element xmi of Xi is a Gaussian variable denoting the normalized bag-of-
words representation based on the SIFT feature.
Since the non-conjugacy of sigmoid function and Gaussian function violates our
conjugacy assumption of posterior distribution over latent features S̄, we use the
local lower bound to the sigmoid function [24], which states for any x ∈ R and
ξ ∈ [0,+∞]

1

1 + exp(−x)
≥ σ(ξ)exp

(
(x− ξ)/2− λ(ξ)(x2 − ξ2)

)
, (28)

where,

λ(ξ) =
−1

2ξ

( 1

1 + exp(−ξ)
− 1

2

)
. (29)

So, we replace each sigmoid factor with the above lower bound, then we opti-
mize the factorized variational distributions and free parameters ({ξni}N,dn=1,i=1)
using the EM algorithm (the constrained VB algorithm and the Gibbs sampling
equations for this model is available in the Supplementary Material).

6.1 Experimental setup

We report the results of the proposed method (PM) on NUS-WIDE-1.5K: a sub-
set selected from NUS-WIDE dataset which was used in [18]. The images of this
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Table 1. k-NN classification accuracy on NUS-WIDE-1.5K dataset.

Method O-Xing O-ITML MVH-Xing MVH-ITML MKE SMVH-Xing PM

1-NN 87.34 89.74 89.60 92.67 81.20 92.80 95.34

3-NN 82.26 68.27 87.47 89.07 70.94 90.54 93.07

5-NN 67.46 49.87 84.53 84.94 57.60 88.13 90.14

10-NN 46.27 26.14 74.40 71.74 46.14 84.93 88.26

20-NN 13.74 7.07 60.53 46.80 19.07 71.86 77.74

dataset is from Flicker and each image is associated with more than one user
tag. For this dataset, we selected 30 classes and choose 50 images for each class
(the total number of images is 1500). The 30 classes are food, glacier, bridge,
buddha, cliff, clouds, building, car, cathedral, leaf, monks, forest, com-
puters, desert, flag, mushrooms, flowers, hills, lake, moon, motorcycle,
actor, butterfly, camels, airplane, bicycle, ocean, police, and pyramid.
We randomly choose half of the images for training and the other half for testing.
For the text modality, 1000 tags with top frequency are selected to form the tag
dictionary. For image modality, we extract SIFT based bag-of-words representa-
tion with a codebook of size 1024. We need to generate side information in the
forms of pairwise training instances. Following [1], we sample ”similar” pairs by
picking up two instances from the same class and ”dissimilar” pairs by choosing
two instances from different classes. We randomly sample about 10K ”similar”
pairs and 10K ”dissimilar” pairs from the training set.
For comparison purposes, we compare our method with the O-Xing (we concate-
nate original feature vectors of text modality and image modality into a single
representation and subsequently learn a Mahalanobis distance using the metric
learning method proposed in [10]), O-ITML (we combine features of text and
image into a whole and feed it to the ITML [1] method), MVH-Xing (we use
the unsupervised MWH model to embed data from text and image modalities to
the latent space and learn distance measure on the latent representations using
the method proposed in [10]), MVH-ITML (we use ITML [1] to learn distance
on the latent feature vectors obtained from MWH model), MKE (We compare
with the multiple kernel embedding method proposed in [11]), and SMVH-
Xing (we use the supervised MWH model based on ”similar” and ”dissimilar”
pairs to embed data from text and image modalities to the latent space and
learn distance measure on the latent representations using the method proposed
in [18].
In the experiment, all Gamma priors are set as Gamma (10−6, 10−6) to make the
prior distributions uninformative. The parameters aπ, bπ of the Beta distribution
are set to aπ = K and bπ = K/2. A preset large dimensionality of the latent
features K = 120 is used for this dataset. The regularization parameters are also
set as λz = 1000; λs = 1000. For the Gibbs sampling inference, we discard the
initial 200 samples (burn-in period), and collect the next 300 samples to present
the posterior distribution over the latent feature of a test instance.
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Table 2. Average precision (AP) of image retrieval on NUS-WIDE-1.5K dataset.

Method O-Xing O-ITML MVH-Xing MVH-ITML MKE SMVH-Xing PM

AP 52.24 42.48 74.85 68.89 51.26 84.42 88.61

6.2 Classification and Retrieval Experiments

We apply the learned distance measure for k-nearest neighbor (k-NN) clas-
sification on the dataset. Table 1 summarizes the classification accuracy for
k = 1, 3, 5, 10, 20.
This table shows three major points. First, the proposed method (PM), SMVH-
Xing, MVH-Xing, and MVH-ITML significantly outperform the two other meth-
ods, because these methods capture the correlation and complementary rela-
tionships between the modalities by transferring two different modalities into a
shared single modality (latent space).
Second, MVH-Xing, and MVH-ITML are less accurate than SMVH-Xing, and
PM. The reason is that in MVH-Xing, and MVH-ITML, feature embedding and
metric learning are performed separately, while SMVH-Xing, and PM embed
multi-modal data into the latent space and learn distance metric simultaneously
to achieve the overall optimality that leads to better performance.
Third, our method has better performance than the SMVH-Xing due to the fact
that the number of the training data points are small. More precisely, SMVH-
Xing uses Maximum Likelihood (MAP estimation from probabilistic point of
view) which can overfit to small-size training data. In contrast, the proposed
method uses Bayesian learning that is relatively immune to overfitting.
In order to demonstrate the ability of the proposed method to learn the dimen-
sionality of the latent space as well as the latent features, we plot the sorted
values of 〈Π〉 for the NUS-WIDE-1.5K dataset, inferred by the algorithm (Fig.
2). As it can be seen, the algorithm inferred approximately 83 number of fea-
tures, fewer than the 120 initially provided.
For the retrieval task, we treat each test image as query and we rank the other
images of the test set according to their distances with the given query. We con-
sider an image relevant to query if both images share the same class label.
We use the standard Average Precision (AP) [18] to evaluate the retrieval result.
The AP value is the area under precision-recall curve for a query. The recall
is the ratio of the relevant examples retrieved over the total relevant examples,
and the precision value is the ratio of relevant examples over the total retrieved
examples in the database.
The AP result is summarized in Table 2 from which, we can see that our methods
have better performance than the other methods.

6.3 Sensitivity Analysis

We test the sensitivity of the proposed method to different choices of the pa-
rameter λz. Fig. 2 shows the variation of average precision (AP) with varying λz



14 B. Babagholami-Mohamadabadi et al.

Fig. 2. Left: Inferred 〈Π〉 for the NUS-WIDE-1.5K dataset, Right: Retrieval perfor-
mance sensitivity with respect to λz.

(while evaluating λz, the parameter λs is fixed). As can be seen, by increasing λz
from 0.1 to 1000, AP is improved. Moreover, further increasing λz reduces the
average score mildly (the AP drops from 88.61 to 87.78). The possible reason is
that using Bayesian learning prevents the model from overfitting to the training
data.

7 Conclusion

In this paper, we propose a general Bayesian framework of multi-modal distance
metric learning. This framework embed arbitrary number of data modalities
into a single latent space with the ability of learning the dimensionality of the
latent space from observed data itself. Moreover, a new Varitional Inference
algorithm is introduced that is capable of encoding distance supervision of data
points. Empirical results on tagged image retrieval and classification applications
demonstrated the benefits inherited from the proposed fully-Bayesian method.
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