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Abstract. Many techniques have been developed in computer vision
to recover three-dimensional shape from two-dimensional images. These
techniques impose various combinations of assumptions/restrictions of
conditions to produce a representation of shape (e.g. a depth/height
map). Although great progress has been made it is a problem which re-
mains far from solved, with most methods requiring a non-passive imag-
ing environment. In this paper we develop on a variant of photometric
stereo called “Shape from color” (SFC). We remove the restriction of
known, direct light sources by exploiting mutual illumination; we sim-
ply take pictures of objects within a colourful box, hence “Shape in a
Box”. We discuss the engineering process used to develop our set-up
and demonstrate experimentally that our passive imaging environment
recovers shape to the same accuracy as SFC. A second contribution of
this paper is to benchmark our approach using real objects with known
ground truth, including some 3D printed objects.
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1 Introduction

Recovery of three-dimensional shape from two-dimensional images has been an
active area of research since the inception of computer vision. Common shape
recovery techniques include shape-from-X techniques, such as shape-from-stereo
(structure-from-stereo) [8, 6, 31] and shape-from-shading [33, 18, 12]. Other meth-
ods include recovery through the use of intrinsic image properties [2, 1] and the
focus of this paper, photometric stereo [32, 3].

Classic photometric stereo [32] recovers per-pixel surface normals of a static,
convex, Lambertian object by capturing three images (from the same camera
position) of the object illuminated by three independent lights (Fig. 1a). The
intensity of pixels in the three images forms a linear relationship with the surface
normals of the object (Fig. 1b) and thus the normals can be recovered.

We are interested in shape recovery techniques which work in a passive en-
vironment and can be performed using a single image. Our research begins with
an existing single image variant of photometric stereo, “Shape from color” [9–11]
(also known as “spectrally multiplexed photometric stereo” [14] or “photometric
stereo with colour lights” [16] - we shall hereafter refer to it as “SFC”). This
method can recover the surface normals of a Lambertian object from a single
colour image assuming the object is illuminated by three spectrally distinct lights
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simultaneously (Fig. 1d). If the colour and directions of each light source are suf-
ficiently independent, there exists a linear relationship between the colour values
of a pixel on the surface and its normal (Fig. 1e). Essentially, the three colour
channels of a single image provide the same information as the three images
used in classic photometric stereo. For both classic photometric stereo and SFC,
recovered normals are converted to x and y derivatives and this gradient field is
reintegrated to recover a height map (Fig. 1c,f).

Fig. 1. In parts a and d, light sources are labelled as l1, l2, l3 in the scene diagrams.
In a, below each diagram is the image of the object. In d, the image is to the right of
the scene diagram. Surface normals in b and e are displayed using the convention of
normal maps in graphics (red = x-axis, green = y-axis, blue = z-axis). Height maps, c
and f are in grayscale (white = maximum height, black = minimum height). The same
colour coding is used throughout this paper.

The key contribution of this paper is to demonstrate that SFC can work
without the requirement of three or more colourful lights. We make the simple
observation that the light impinging on any point in a scene is often complex
in nature: it is a combination of direct light sources and mutual illumination
(light reflected from other surfaces). Thus we propose that the SFC method can
be extended to work in any environment which provides appropriate, spectrally
varying illumination. Our “Shape in a box” (SiaB) method captures the lighting
environment of a specially engineered box by imaging a chrome sphere and uses
this information to recover shape. The motivation for our research is to move
shape recovery out of the laboratory and into a passive environment. SiaB is
presented here as a first step towards achieving this goal.

Another novel contribution of this paper is that we measure shape recovery
against “absolute” known ground truth 3D objects. First we use papercraft ob-
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jects (available to print from many websites 1). Second, we print objects using
a 3D printer. Experiments demonstrate that SiaB achieves the same level of
accuracy as SFC.

Section two contains a review of literature relevant to our work. Section
three details the engineering underlying our SiaB method. Section four contains
experimental results which compare the accuracy produced by SiaB with SFC
by benchmarking against real 3D ground truth. Section five contains a brief
conclusion and proposals for further development of our method.

2 Related work

2.1 Classic photometric stereo

In classic photometric stereo [32] Woodham proposes that the surface normals of
a convex, Lambertian object can be recovered from three images. It was shown
that if the object is illuminated by three, distant, point light sources; then there
is a linear relationship between the three sets of pixel values and the object
surface normals.

To understand how shape can be recovered, let us denote the direction of
each light as a vector e, we have three (by assumption linearly independent)
vectors e1, e2 and e3. With respect to Lambert’s law, a point on a surface with
normal n = [nx ny nz]t illuminated by light source e results in a pixel value p,

p = α(e · n), (1)

where α accounts for surface albedo (assumed to be constant, so we shall
hereafter absorb it into the e term). Let us use the notation pi to denote the
ith triple of pixel responses (one for each light) and ni denote the corresponding
ith scene surface normal. We group the image responses, the lighting directions
and the scene surface normals into matrices P , E and N respectively,

P =
[
p1 p2 . . . pn

]
, Et =

[
e1 e2 e3

]
, N =

[
n1 n2 . . . nn

]
. (2)

Under the assumption that the surface in question has uniform, Lambertian
reflectance, there exists a linear relationship between the light reflected at each
point on the surface (captured pixel values) and the orientation of the surface
at each point,

P = E N. (3)

Since we know E and P , Woodham observed, we can recover N:

N = E−1P. (4)

Even when all the underlying assumptions hold, fine-tuning of the experi-
mental design [29, 4] is essential for the best recovery. Of course for real data

1 e.g. ”Paper Models of Polyhedra” - http://www.korthalsaltes.com/
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the underlying assumptions may not hold, for example the presence of shadows
and specular highlights are problematic. Methods exist in the literature which
in essence, extend the classic Woodham approach so that shape can be recov-
ered for more general conditions [3, 17]. However, we do not comment on them
further here, except to remark that the same extensions are applicable to the
method developed in this paper. The focus of our work is only to present a simple
algorithm for shape recovery in a passive environment.

2.2 Shape from color (SFC)

Again let e1, e2, e3 denote light direction vectors. Additionally let us denote the
colour of reflected light as b1,b2,b3. Values of bi are given by

bi =
∫
Ii(λ) S(λ) q(λ) dλ, (5)

where Ii(λ) is the spectral power distribution of the ith light, S(λ) is the
spectral reflectance function of the (Lambertian) surface and q(λ) represents
the camera sensitivities. In effect bi is the RGB of a flat, frontally presented
calibration surface with the same albedo as the object to be measured under the
ith light.

Taking the values of ei, bi and the surface normal at a pixel n, it follows
that the RGB camera response c at that pixel is given by

c = (e1 · n) b1 + (e2 · n) b2 + (e3 · n) b3. (6)

Grouping vectors e and b into matrices E and B

E =
[
e1 e2 e3

]t
, B =

[
b1 b2 b3

]
. (7)

Then equation (6) can be rewritten as

c = F n ≡ B E n. (8)

As F and c are known, the surface normals can be recovered:

n = F−1 c. (9)

Using SFC, only one image is required to recover shape. Another advantage
of this method is that B and E do not have to be determined separately. Rather,
a perfect Lambertian reflector of known shape can be placed in the scene and
the linear relationship between recorded camera RGBs and surface normals can
be recovered directly. Thus F can be found via a calibration step.

SFC can estimate shape for smooth objects and can be performed in real-
time without the need for processing of temporal information. Accordingly it has
found applications in face capture [30] and shape recovery in video sequences
of non-rigid surfaces [16, 5]. Though we note that as with photometric stereo,
finely-tuned experimental design is again necessary for optimal recovery [22].
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3 Shape in a Box (SiaB)

A key idea in this paper is to substitute the multiple lights used in SFC (and
the related lab-based restrictions on shape measurement) using the scene illu-
mination environment directly in a modified SFC algorithm. Crucially, we need
to ensure the environment is sufficiently varying to support shape recovery. We
achieve this by using the mutual illumination from the coloured walls of a simple
triangular box. In section 3.3 we carry out a graphics-based simulation to deter-
mine the required geometry of the box). Our long-term ambition is to recover
shape in a room with suitable mutual illumination (e.g. a room with colourful
walls - see figure 3b).

3.1 Calibration

In theory calibration is simple. Like Johnson and Adelson [20] we could simply
place a perfect, spherically shaped Lambertian reflector in a scene (a “spherical
probe”) and take an image. We could then solve for the linear transform relating
the image RGBs to the surface normals of the sphere (section 2.2). However,
this approach is not used directly here. No surface is perfectly Lambertian and
unlike SFC we cannot choose lighting directions to - for example - minimise the
appearance of specular highlights in the calibration image.

Instead we propose taking a picture of a chrome sphere to measure the light
from all angles. Then we use spherical harmonic basis functions [26, 27, 15] to
simulate the graphical model of a perfectly spherical, perfectly Lambertian re-
flector with the illumination environment from the chrome sphere (Fig. 2). Given
the known spherical shape and synthesised image the linear transform relating
image colour to surface normals is easily found [9].

It is true that the illumination environment will vary slightly according to
the object placed inside the box (due to the interaction of light between the box
and the object). At present our method does not account for any ‘bouncing’ of
light rays, though the quality of our results show that in practice, the effects of
this are small.

3.2 HDR image capture

In figure 2 we show the top of our box with the chrome sphere inside. In order
to capture the full range of environment lighting we capture the image at five
exposure levels. The reader can see that the light from the ambient environment
(white in the middle of the sphere) is very bright. The exposures are blended
into a HDR image [7, 21] prior to calculating the perfect Lambertian sphere.

3.3 The Box

Light entering through the top of the box will inevitably be of higher intensity
than the light reflected from the colourful interior of the box. Objects placed
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Fig. 2. Here we illustrate the scene calibration process. Left: The chrome sphere is
placed inside the colourful box. Centre: Examples of bracketed exposures of the chrome
sphere which are used to construct a HDR image. Right: A Lambertian sphere is
synthesised under the same lighting conditions.

at the bottom need to receive sufficient mutual illumination from the sides and
not have that illumination be lost in the strength of the light from the exterior
environment. Equally we do not wish the box to be too deep as in this case the
object placed at its bottom would be too dimly lit. So, we need a box that creates
a lighting environment which meets these colour sufficiency and light intensity
requirements.

To find a suitable box geometry we rendered a series of synthetic images
of a chrome sphere (with 15cm diameter) placed in a box where the length
and height of the triangular box walls varied. To measure the “quality” of each
lighting environment we took an image of the chrome sphere and generated its
Lambertian counterpart as described in section 3.1. From equation (8) we can
calculate the matrix F which allows us to transform RGB values to surface
normals and vice versa (i.e. c = F n). It is important that in recovering n =
F−1 c, the inverse F−1 is well conditioned. That is to say, if we perturb our
measured RGB values, c, by a small amount ε, we would like

n̂ = F−1(c + ε) ' n. (10)

The condition number of a matrix F , k(F ) ∈ [1,∞], is a measure of how good
this approximation is (i.e. if k(F ) = 1, the inverse is maximally stable). In the
worst case when k(F ) ≥ 10, then n̂ can be about 10% different from n and this
is the criteria we chose to build our box. We sought an illumination environment
that supports a condition number no more than 10. The k(F ) generated from
our synthesised boxes are shown in figure 3. As a compromise between practical
considerations and condition number we settled on a box with side length 80cm
and height 60cm.
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Fig. 3. a) An example of a synthetic chrome sphere from our box engineering experi-
ments. The graph shows the results of the synthetic experiments on triangular boxes of
various dimensions. Four different side lengths were each tested with the same varying
heights. b) A synthetic human inside a coloured room.

3.4 Recovering height

Once surface normals have been recovered they are converted into height maps.
From equation (9) we have obtained a vector field n consisting of recovered
surface normals. Each point in the vector field has three components, denoting
the direction of the surface normal in the x,y and z axis, that is to say n =
[nx ny nz]. These surface normals can be converted into a gradient field which
corresponds to some surface Z by taking the ratios of the x and y components
of the surface normals with their z component [19]

p =
∂Z

∂x
= −nx

nz
,

q =
∂Z

∂y
= −ny

nz
.

(11)

For both SFC and SiaB, it is almost certain that the underlying assumptions
(e.g. perfectly Lambertian reflectance) do not hold. Accordingly the gradients
calculated in (11) are usually not integrable. There may not exist a height map
Z(x, y) which corresponds exactly to the gradients. Thus we seek the integrable
surface function Ẑ(x, y) which is the closest approximation to Z(x, y), in the
sense that the derivatives of Ẑ(x, y) are as close to those in equation (11) as
possible. We can find Ẑ by solving Poisson’s equation [28]
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∇2Ẑ =
∂p

∂x
+
∂q

∂y
(12)

There have been many methods developed for the reconstruction of height
from gradient fields. In this paper we present results achieved by Frankot & Chel-
lappa’s Fourier-based method [13] and Kovesi’s shapelet correlation approach
[23]. We also present the results of a direct “Jacobi-type” reintegrator. Specif-
ically, since we assume that an object can be segmented from the background,
we know the occluding contour of the shape. Thus, in effect our reintegration
problem has Dirichlet boundary conditions of complex shape. Our “Jacobi-type”
method is similar to that presented in [25]).

We do not go into further detail on the methods here but remark that gradient
field reconstruction is an active area of research and direct the reader to [24] for
a review of the topic.

4 Experiments

In our experiments we wished to measure the accuracy of recovered shape against
ground truth. Often this is achieved through comparison against an existing
shape recovery method deemed to be accurate or through the use of synthetic
data. Novelly, here we benchmark on recovery of objects whose actual 3D shape
is a priori known to good accuracy.

Fig. 4. Top row: a simple papercraft object. Bottom: a 3D-printed object. a) Source
files, a papercraft template and a 3D model file. b) Captured images. c) left = true
normal map, right = recovered normal map. d) left = true height map, right = recovered
height map (using Jacobi iteration method).

4.1 Ground truth

Our first object dataset is built from “papercraft” templates. These consist of
templates which can be printed and fabricated. While the true 3D shape of
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the papercraft object is known, there may be some small fabrication errors. We
benchmark against the perfect 3D model.

Our second ground truth set comprises of 3D printouts of custom meshes.
Our ZCorp 450 3D printer prints objects by binding together successive layers
of a proprietary powder (resulting in approximately Lambertian reflectance). As
with the papercraft objects, there can be small discrepancies between the printed
object and the source file. We benchmark against the actual 3D model source
files. Examples of both types of object can be seen in figures 4 and 5.

4.2 Results

A chrome sphere is placed in the box and the linear relationship between image
RGBs and sphere normals is found (section 3.1). Then an object is placed in the
same location and its captured RGB values mapped to surface normals (object
images can be seen in figure 5). Normals are converted to a gradient field which
is reintegrated to give a height map (section 3.4).

Fig. 5. Images of our experiment subjects (3D-printed objects in italics, papercraft in
normal type). Top row, left to right: Bust, Cone, Face, Pyr4, Pyr5. Bottom row, left
to right: Pyr6, Sph, Star, Tetra, Trach.
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Object
SiaB Accuracy (%) SFC Accuracy (%)

Shapelet FC Jacobi Shapelet FC Jacobi

Bust 89.14 88.13 92.94 87.59 89.04 82.25
Cone 84.01 86.00 95.90 92.71 92.01 97.36
Face 92.05 89.79 85.75 88.09 88.17 80.95
Pyr4 81.47 90.85 97.18 94.45 93.19 97.44
Pyr5 85.19 88.72 97.39 93.92 92.80 97.50
Pyr6 88.41 85.25 97.09 94.72 91.06 95.78
Sph 87.51 91.06 89.42 88.41 91.14 84.03
Star 85.76 77.56 94.62 94.74 89.94 94.06
Tetra 85.26 84.23 95.38 96.08 95.03 96.54
Trach 79.63 76.71 81.45 76.84 77.29 60.32

Average 85.84 85.83 92.71 90.76 89.97 88.61
Table 1. Height map accuracies as percentage values. “Shapelet” is Kovesi’s method
[23],“FC” is Frankot & Chellappa’s algorithm [13] and “Jacobi” is our Jacobi-type
method [28].

In table 1 ground truth and recovered height maps were both scaled to unit
height and root mean squared error was calculated. The recovery percentage
accuracy is calculated as shown in equation 13, where i and j refer respectively
to the rows and columns of the true height map Z and the recovered height map
Ẑ; m and n are the row and column lengths.

accuracy(Ẑ) = 100− 100

√√√√√ n∑
i=1

m∑
j=1

(Z(i,j) − Ẑ(i,j))2

nm
(13)

The average over all three reintegration methods yields a figure of 88.13%
accurate height recovery from SiaB and 89.78% using the SFC experimental set-
up. In the majority of cases, the iterative Jacobi reintegration method achieves
the most accurate result of the three. An example of a recovered height map can
be seen in figure 6.

5 Conclusion

Inferring 3D shape from images remains a much studied problem in computer
vision. In this paper we have extended a photometric stereo technique, “Shape
from color” [9] to achieve accurate shape recovery of Lambertian objects without
the restriction of spectrally-varied, direct light sources. We have instead designed
a passive imaging environment (the titular box) which generates a sufficiently
spectrally-varied lighting environment through the effects of mutual illumination.
We calibrate our set-up by imaging a chrome sphere inside the box and then
recover the surface normals of unknown objects in the same environment. With
our “Shape in a box” method we recover shape to the same accuracy as shape
from color. It is expected that by enlarging the box (e.g. to the size of a small
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room) it will be possible to recover the shape of an entire person; indeed initial
simulations show this to be a promising course for future research (Fig. 3b).

Fig. 6. Renders of recovered height maps for the Bust object, using the Jacobi iteration
reintegration method. Left is the ground truth, centre is Shape in a Box and right is
using Shape from Color.
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