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Abstract. This paper describes a Visual SLAM system developed on a mobile 
robot in order to support localization services to visually impaired people. The 
proposed system aims to provide services in small or mid-scale environments 
such as inside a building or campus of school where conventional positioning 
data such as GPS, WIFI signals are often not available. Toward this end, we adapt 
and improve existing vision-based techniques in order to handle issues in the in-
door environments. We firstly design an image acquisition system to collect vis-
ual data. On one hand, a robust visual odometry method is adjusted to precisely 
create the routes in the environment. On the other hand, we utilize the Fast-Ap-
pearance Based Mapping algorithm that is may be the most successful for match-
ing places in large scenarios. In order to better estimate robot’s location, we uti-
lize a Kalman Filter that combines the matching results of current observation 
and the estimation of robot states based on its kinematic model. The experimental 
results confirmed that the proposed system is feasible to navigate the visually 
impaired people in the indoor environments. 

Keywords: Visual Odometry, Place Recognition, FAB-MAP algorithms, Kal-
man Filter 

1 Introduction 

Autonomous localization and navigation are extreme desirable services for visually im-
paired people. Most commercial solutions are based on the Global Positioning System 
(GPS), WIFI, LIDAR, or fusion of them. iNavBelt uses ultrasonic sensors to procedure 
a 120-degree wide view ahead of the user [19]. GuideCane has an ultrasonic sensor 
head mounted on a long handle [3] . The EyeRing developed by MIT’s Media Lab., is 
a finger-won device that translates images into aural signals. Although such kind of 
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devices are useful to blind/visually impaired people in some environments, major draw-
backs are that they only give limited information, and require well-focused user control. 
Recent techniques in the computer vision and robotics community offer substantial ad-
vantages to overcome those limitations. This paper proposes the use of visual sensors 
mounted on an intelligent system like a mobile robot to assist the visually im-
paired/blind people in indoor environments. The proposed system aims to solve two 
problems: 1. Understanding the current environments. 2. Robot self-location. Regard-
ing the problem #1, the question is ”What does the world look like?”. Answering this 
question involves building a map of the environment.  In  contrast  to  this,  self-location 
service  relates  to  estimating  a  pose  to  a  relative  position on  the  created  map, to 
answer the second question ”Where am I?”. 

A visual SLAM method relying on the visual appearance of distinct scenes is re-
sponsible for finding solutions to both problems: it builds and maintains a map of the 
robot’s trajectory and the landmark positions. Recent approaches like FAB-MAP are 
aimed at reaching a high recall rate at 100% precision. In this work, we employ a robust 
FAB-MAP [4] that is reliable to recognize known places through autonomous operation 
in an intelligent system like a mobile robot. FAB-Map 2.0 has been applied to a 1000 
km dataset and achieved a recall of 3.1% at 100% precision (14.3% at 90% precision 
respectively). 

Although FAB-MAP approaches are reliable for recognizing places in large-scale 
environments, in indoor environments, repetitive structure and sensory ambiguity con-
stitute severe challenges for any place recognition system. Our real experiments in in-
door environments show that by setting a threshold on the probability for matching an 
observation, it is very difficult to obtain high recall rate (~ 14% at 100% precisions). 
Therefore, we focus on two improvements in this paper. We first clearly describe the 
visual dictionary of the discriminant scenes. In indoor environments, because many 
scenes has repetitive structure, the visual dictionary needs to include only representa-
tive scenes. Secondly, we deploy the Kalman filter to update vehicle position.  This 
update incorporates prior knowledge of the vehicle (e.g. velocity of the mobile robot, 
pacing of the people). 

 The proposed system is implemented in two phases. The first phase is an off-line 
process including two main functions: building a map and learning (indexing) places in 
the environment. We simultaneously collect visual data for the off-line process by a 
self-designed image acquisition system. For building a map of the environment, we 
utilize a robust visual odometry proposed in [8]. This is an interesting method because 
it is able to build a trajectory using only one consumer-grade camera. Furthermore, in 
order to improve quality of the constructed map, we adapt the algorithms in [8] with 
contexts  of  the  indoor  environments. In order to learn places in the environment, we 
utilize so-called loop closure detection methods [4], [14]. The main idea for learning 
the visited places is that loop constraints can be found by evaluating visual similarity 
between the current observation and past images captured in one (or several) trials. The 
second phase is an online process. The current observation is matched to a place in the 
database. This matching procedure is similar to place recognition. A probabilistic 
model of FAB-MAP algorithms [4] is utilized to find the maximal likelihood. It is ob-
served that the proposed system is not able to update new positions against the created 



map. We simply past new places using a simple motion model that is based on positions 
of the closest neighbor places. 

We evaluate results of the proposed method through travels of a mobile robot which 
moves along corridors of a large building. The experimental results show succesful 
matching of places on the map with 74% precision and 88% recall. This demonstrates 
the possibility of guiding blind people with the mobile robot. The remainder of the 
paper is organized as follows: in Section 2, we briefly survey the related works. In 
Section 3, we present our vision-based system for automatic map building and locali-
zation tasks. We report the experimental results in Section 4. Finally, we conclude and 
give some ideas for future work. 

2 Related Works 

Localization and navigation assistance tools for visually impaired people have received 
much attention in the autonomous robotics community [5]. Most of the works focus on 
finding efficient localization solutions based on positioning data from different sensors 
such as GPS, laser, Radio Frequency Identification (RFID), vision or the fusion of sev-
eral of them. Loomis et al. [12] surveyed efficiency of GPS-based navigation systems 
supporting visually impaired people. The GPS-based systems share similar problems: 
low accuracy in urban-environments (localization accuracy is limited to approximately 
20 m), signal loss due to multi-path effect or line-of-sight restrictions due to the pres-
ence of buildings or even foliage. Kulyukin et al. [10] proposed a system based on 
Radio Frequency Identification (RFID) for aiding the navigation of visually impaired 
people in indoor environments. The system requires the design of a dense network of 
location identifiers. Helal et al. [9] proposed a wireless pedestrian navigation system. 
They integrated several signals such as voiced, wireless networks, Geographic Infor-
mation System (GIS) and GPS to provide the visually impaired people with an opti-
mized route.  

Recent advanced techniques in computer vision offer substantial improvements with 
respect to localization and navigation services in known or unknown environments. 
The vision-based approaches offer not only safe navigation, but also provide a 
very rich and valuable description of the environment. For example, [2] develops an 
application named LocateIt, which helps blind people locate objects in indoor envi-
ronments. In [22], ShelfScanner is a real-time grocery detector that allows online detec-
tion of items on a shopping list.  

With respect to visual mapping and localization, Alcantarilla [6] utilizes well-known 
techniques such as Simultaneous Localization and Mapping (SLAM) and Structure 
from Motion (SfM) to create a  3-D Map of an indoor environment. He then utilizes 
visual descriptors (such as Gauge- Speeded Up Robust Features, G-SURF) to mark 
local coordinates on the constructed 3-D map. Instead of building a prior 3-D map, 
Lui et al. [11] utilize a pre-captured reference sequence of the environment. Given 
a new query sequence, their system attempts to find the corresponding set of indices 
in the reference video. 



Some wearable applications based on visual SLAM have also been proposed. Pradeep  
et  al. [17] present  a  head-mounted stereo-vision platform for detecting obstacles in 
the path and warn subjects about their presence. They incorporate visual odometry and 
feature based metric-topological SLAM. Murali et al. [13] estimate the users location 
relative to the crosswalks in the current traffic intersection. They develop a vision-based 
smart-phone system for providing guidance to blind and visually impaired travelers at 
traffic intersections. The system of Murali et al. in [13] requires supplemental images 
from Google Map services, therefore its applicability is limited to outdoor travel.  

It is clear from these works that a SLAM-based approach is ideally suited to the task 
of guiding the visually impaired, because SLAM combines the two key elements re-
quired for a user-friendly and widely applicable system: map building and self-location. 
However, the complexity of the map building task varies in function of environment 
size. In some case, a map can be acquired from the visual sensor, but in other cases, the 
map is such that it must be constructed from other sensor modalities such as GPS, WIFI 
[4]. Furthermore, matching a current view to a position on the created map seems to be 
the hardest problem in many works [1], [7]. Important work towards appearance-based 
place recognition has been conducted in [20] which borrowed ideas from text retrieval 
systems and introduced the concept of the so called visual vocabulary. The idea was 
later extended to vocabulary trees by [15], allowing to efficiently use large vocabular-
ies. [18] demonstrated city-scale place recognition using these tree structures. 

Recently, Maddern et al. report an improvement to the robustness of FAB-Map by 
incorporating odometric information into the place recognition process. [21] propose 
BRIEF-Gist, a very simplistic appearance-based place recognition system based on the 
BRIEF descriptor. BRIEF-Gist is much easier to implement and its performance is 
comparable to FAB-MAP. In our point of view, an incremental map is able to support 
us in improving matching results. Therefore, different from the  systems mentioned 
above, we attempt to create a rich map as good as possible through many trials. When 
new observations arrive, these new observations must be locally and globally consistent 
with the previously constructed map. To this end we employ the the loop closure algo-
rithms from [4], [14]. Furthermore, we pay significant attention to the creation of the 
visual dictionary. We deploy the GIST features [16], a holistic representation of the 
natural scenes. Selection of the most representative frames helps to construct a robust 
visual dictionary of the environment. 

3 The Proposed Approaches 

3.1 Imaging acquisitions system 

We design a compact imaging acquisition system to capture simultaneously scenes and 
routes in the indoor environments.  

A schematic view of the data collection scheme is shown in Fig. 1(a). The proposed 
acquisition system has two cameras. One camera captures scenes around the environ-
ments. The second one aims at capturing road on the travels. The camera setting is 
shown in Fig. 1 (b). These cameras are mounted on a vehicle, as shown in Fig. 1(c). 



The details of the collected images are described in the experiments. The vehicle will 
be only at offline phase to build the map of the environment and capture scene images. 
The design of such vehicle avoids the vibration of the camera system. As a conse-
quence, it permits a more accurate reconstruction of the route.   

 
Fig. 1. (a) A schematic view of the visual data collection scheme. (b) The proposed imaging ac-
quisition system in which a mobile phone camera is attached on rear of a hand-hold camera. (c) 

The image acquisition system attached on a wheel vehicle.   

3.2 The proposed framework 

General proposed system is shown in Fig. 2, the proposed system has two phases, as 
described below: 

 Off-line learning: Using the collected visual data, this phase creates trajectories and 
learns the places along the travels. The techniques to construct the map and learning 
the places are described in Sec.3.4, Sec.3.6 respectively. Because scenes and route 
images are captured concurrently, the constructed map contains learnt places in cor-
responding positions of the travel. 

 Online localization: A current view of image is described using a visual dictionary. 
These data associate matching the current view to a place what is labeled in the da-
tabase through a probabilistic function. The current observation thus is able to match 
to a corresponding position on the constructed map. 

 



 
Fig. 2. The framework of the proposed system 

3.3 The map building based on Visual Odometry techniques. 

To build route of the travel, we utilize a visual odometry method proposed by Van 
Hamme et al [8]. The method is based on the tracking of ground plane features. Partic-
ularly, it is designed to take into account the uncertainty on the vehicle motion as well 
as uncertainty on the extracted features. 

 
Fig. 3.  The collection databases on Road. 

Our system setups the acquisition camera so that it is perpendicular to the ground 
plane, as shown in Fig. 3(a). Well-known issues for visual odometry techniques are that 
they need to estimate precisely correspondences between the features of consecutive 
frames. Once the feature correspondences have been established, we can reconstruct 
the trajectory of the vehicle between the two frames. Due to the floor characteristic of 
the corridor environment, the number of feature points detected by the original work 



[8] is quite limited that lead to a very poor reconstruction of the travel. To solve these 
issues, we utilize the man-markers in the whole journey as shown in Fig. 3(b-c). Be-
cause the detected features are projected on a ground plane, it is more accuracy for 
detecting and matching features. 

3.4 Matching image-to-map procedure 

The learning places from the sequential images that collected along trajectories aims at 
visually presenting appearances scenes. These visual presentations need to be easy im-
plementation and efficient distinguishing scenes. To adapt with these issues, we involve 
the FAB-MAP technique [4] which is recently successful for matching places in routes 
over long period time. It is a probabilistic appearance-based approach to place recogni-
tion. Each time the image taken, its visual descriptors are detected and extracted. 

In our system, we utilize SURF extractors and descriptors for creating on a visual 
vocabulary dictionary. A Chow Liu tree is used to approximate the probability distri-
bution over these visual words and the correlations between them. Fig. 4(a)-(b) shows 
the extracted features and visual words to build visual dictionary. Beyond the conven-
tional place recognition approaches that simply compares image similarity between two 
visual descriptors. FAB-MAP involves co-occur visual word of same subject in the 
worlds. For example, Fig. 4(c) shows several windows subject, some of visual words 
are co-appearances. 

 
Fig. 4. FAB-MAP algorithm to learn places. (a) SURF features are extracted from image se-
quences. (b) Visual words defined from SURF extractors. (c). Co-occur of visual words by 

same object 

Consequently, the distinct scenes are learnt from visual training data. For updating new 
places, we implement captured images through several trials. For each new trial, we 
compare the images with the previous visited places which are already indexed in a 
place database. This procedure calls a loop closure detection, these detections are es-
sential for building an incremental map. Fig. 5(a) shows only few places are marked by 



the first travel, whereas various places that are updated after the second travel as shown 
in Fig. 5(b). 

 
Fig. 5. (a) The places are learnt and their corresponding positions are shown in the constructed 

map data. (b) Many new places are updated after second trial. 

3.5 Distinguishing scenes for improving FAB-MAP’s performances 

Although related works [8], [6] report that FAB-MAP obtains reasonable results for 
place recognition over long travels in term of both precisions and recall measurements. 
However, those experiments were implemented in outdoor environments which usually 
contain discriminate scenes. Original FAB-MAP [2] is still unresolved problems of dis-
criminating scenes to define visual dictionary. This issue affects to results of FAB-MAP 
when we deploy it in indoor environments, where scenes are continuous and not clearly 
distinct. 

 
Fig. 6. (a) Dissimilarity between two consecutive frames. A threshold value T = 0.25 is prese-

lected. (b) Two examples shows the selected key frames and their neighbor frames. 



Therefore, a pre-processing step is proposed to handle these issues. Given a set of scene 
images S= {I1, I2… In} we learn key frames from S by evaluating similarity of intra-
frames. A feature vector Fi is extracted for each image Ii. In this work, the GIST feature 
[2] is utilized to build Fi. GIST presents a brief observation or a report at the first glance 
of a scene that summarizes the quintessential characteristics of an image. Feature vector 
Fi contains 512 responses which are extracted from an equivalent of model of GIST 
proposed in [11]. A Euclidean distance Di between two consecutive frames is calculated 
to measure dissimilarity. Fig. 6(a) shows distance Di of a sequence including 200 
frames. The key-frame then is selected by comparing Di with a pre-determined thresh-
old value T. Examples of selecting two key-frames are shown in Fig. 6(b). 

3.6 Localizing a place to visited one in the constructed map 

Given a current view, its position on the map is identified through a place recognition 
procedure. We evaluate the current observation at location Li on the map by its proba-
bility when given all observations up to a location k: 

(௜|ܼ௞ܮ)ߩ  =
ఘ൫ܼ௞หܮ௜൯ఘቀܮ௜ቚܼ௞ିଵቁ

ఘቀܼ௞ቚܼ௞ିଵቁ
 (1) 

Where Zk contains visual words appearing in all observations up to k-1; and Zk presents 
visual words at current location k. These visual words are defined in the learning places 
phase. A probability p(Zk|Li) infers observation likelihood that learnt in the training 
data. In our system, a Li is matched at a place k∗ when argmax(p(Zk|Li)) is large enough 
(through a pre-determined threshold T = 0.9). The Fig. 7 shows an example of the 
matching procedure. 

 
Fig. 7. (a) Given a current observation, (b) the most matching place. (c) The probability p(Li|Zk) 

calculated with each location k among K = 350 learnt places. (d) Confusion matrix of the 
matching places with a sequential collected images (290 frames) 

Given an observation as shown in Fig. 7(a), the most matching place is found at 
placeID = 12. The probability p(Li|Zk) is shown in Fig. 7(c) with a threshold value = 
0.9 whose the maximal probability is placeID = 12. A confusion matrix of the matching 
places for an image sequence is shown in Fig. 7(d). This example shows that we can 
resolve almost places in a testing phase. 



3.7 The Kalman Filter (KF) 

In our context, the observations of the robot are images captured over time, which then 
be converted to coordinates (x, y, z) in a predefined coordinate system using above 
matching procedure. However, in indoor environment, the scene does not change 
enough. Consecutive scenes could repeat when the robot moves. Therefore, the perfor-
mance of image matching is not good enough. Sometimes, a current observation could 
be matched with a very far forward / backward image that makes incorrect localization 
of the robot. To overcome this problem, we propose to use Kalman filter to correct the 
position of the robot from observation. Kalman filter is one of the most popular tech-
niques to SLAM problem. In our context, we suppose that the robot moves in a flat 
plane, so the z coordinate of the robot is constant then we can ignore it. The state vector 
of the robot at a given time k is simply presented by its coordinates and velocity in two 
directions x and y. Observation vector is defined at each time where the image matching 
is found, the position of the robot could be estimated. We use this information as obser-
vation in Kalman filter. State transition model Fk  allows to predict the state vector at 
time k+1 : 

௞ାଵݔ  = 	 ௞ܨ ∗ ௞ݔ  ௞ (2)ݓ+

Where wk is process noise, which is assumed to follow a normal distribution with co-
variance Qk: wk ~ N (0, Qk). Observation model Hk maps the true state space into the 
observed space:  

௞ݖ  = 	H୩ ∗ ௞ݔ + v௞ (3) 

In our case: H = 	 ቂ1 0
0 1ቃ    Where vk is observation noise which is assumed to be zero 

mean Gaussian white noise with covariance Rk: vk ~ N (0, Rk) 

4 Experimental Results 

4.1 Evaluation Environments 

 Experimental environments: We examine the proposed method in a corridor envi-
ronment of a building. The evaluation environment is shown in Fig. 8(c). The total 
length of the corridor is about 60 m. 

 Database: Two camera devices are mount into a vehicle as the shown in Fig. 1(c). 
The vehicle moves at a speed of 1.25 foot/second along the corridor. We collect data 
in four times (trials), as described in Table 1 

Table 1. Three rounds data results 

Trials Total Scene images Total road images Duration 
L1 8930 2978 5:14 
L2 10376 2978 5:30 
L3 6349 2176 3:25 
L4 10734 2430 4:29 



4.2 Experimental results 

For map building, we use image acquisitions from L2, L3, and L4 trials. Results of the 
constructed map using original work of Van Hamme et al [8] is shown in Fig. 8(a), 
whereas the reconstructed travels using proposed method are shown in Fig. 8 (b). 

As shown, the results of map building from three travels are quite stable. All of them 
are matched to ground truth that are plotted in green dash-line in a model 3-D of the 
evaluation environments, as shown in Fig. 8 (c). Our results are substantial comparing 
with the ones using original method [8]. We believe that creating highly textures on 
ground plane is more efficient for detecting and matching the features. Event original 
algorithm in [8] is designed to be robust with uncertainty of the detected features, more 
precisely the features matching more higher quality creating the map. 

 
Fig. 8. (a) The travel reconstructed using original works [8]. (b) Results of three time travels 
(L2, L3, and L4) using proposed method. (c) A 3-D map of the evaluation environment. The 

actual travels also plotted in green dashed line for comparing results between (a) and (b). 

We continue evaluating the proposed system with aspects of the place recognition rate 
on the created map. To define visual word dictionary as described in Sec.3.4, we use 
collected images from L1 trial. About 1300 words are defined in our evaluation envi-
ronments. We then use dataset from L4 travel to learn place along the travel. Totally, 
K = 140 places are learnt. The visual dictionary and descriptors of these places are 
stored in XML files. The collected images in L2 and L3 travels are utilized for the 
evaluations.  
Visually, some matching places results from L3 travel are shown in Fig. 9. Two demon-
strations are shown in details in Fig. 9 (around position A and position B). Case a shows 
a query image (from L3 travel) is matched to a learnt place. Therefore, its corresponding 
positions on the map is able to localize. A zoom-in version around position A is shown in 
the top panel. Case b show a “no place found” that query image was not found from 
learnt place database. For the qualitative measurement, we then evaluate the proposed 
system using two criteria: Precision is to measures total place detected from total query 
images, whereas Recall is to measure correct matching places from detected places. We 
setup a predetermined threshold for matching place (T = 0.9). 
 



 
Fig. 9. (a) Results of the matching image-to-map with L3 trial. Two positions around A and B 

are given. (b)-(c): current view is on the left panel (query image); matching is on the right 
panel. Upper panel is a zoom-in around corresponding positions. 

Table 2. Result of the matching places (FAB-MAP algorithms)  
without and with Scene discriminations 

Travels Without scene discrimination With scene discrimination 
Precision Recall Precision Recall 

L2 12% 90% 67% 82% 
L3 36% 85% 74% 88 % 

 
The Table 2 shows precision and recall with L2 and L3 travels with/without scene 
discriminant step. For learning place (using original FAB-MAP, without scene discrim-
ination), the recall of L3 travel is clearly higher than L2. The main reason is that some 
“new” places where were not learnt from L4 are able to update after L2 running. There-
fore, more “found” places is ensured with L3 travel. Table 2 also shows efficient of 
scene discriminations step, the performances of image-to-map matching obviously in-
creasing and stable for precisions measurement with scene discrimination step, whereas 
high confidence of the recalls is still consistent. 

To show effectiveness of the applying Kalman filter, Fig. 10 demonstrates naviga-
tion data without and with using Kalman filter. Using only results place recognition 
(Fig. 7- left panel), the directions supporting navigation services obviously uncon-
trolled. Some matching place (show in numbers) are mess and unordered in this case. 
Main reasons are some places are wrong matching (e.g., place ID = 11, shown in bottom 
panel). By using Kalman Filter, directions supporting navigation services is ordered. 
We can clearly observe the effectiveness on Fig. 7- right panel. 



 
Fig. 10.  Vehicle moving without/with Kalman Filter. Top row: Left panel: vehicle positios on 
the map using only results of the matching image-to-map procedures. The arrows show directions 
to guide vehicle. Numbers on left of each red box show placeID of the current observation. Right 
panel: positions of the vehicle are updated using Kalman filter. Bottom row: Left panel: This 
result shows wrong direction to vehicle.  Right panel: is a good matching with Kalman filter. 

5 Conclusions 

In this paper, we presented a visual SLAM system on mobile robot supporting locali-
zation services to visually impaired people. We successfully created the map of the 
indoor environment using the visual odometry and learning places. The results of 
matching image-to-map are high confidence for navigation service thanks to Kalman 
filter. The proposed system therefore is able to provide us deploying navigating services 
in the indoor environments. The proposed system support blind/visually impaired peo-
ples. The evaluations on the visually impaired/blind people direct us to future works. 
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