
Vision-based SLAM and moving objects tracking for the
perceptual support of a smart walker platform

Paschalis Panteleris? and Antonis A. Argyros??

Institute of Computer Science (ICS)
Foundation for Research and Technology - Hellas (FORTH)???

Abstract. The problems of vision-based detection and tracking of independently
moving objects, localization and map construction are highly interrelated, in the
sense that the solution of any of them provides valuable information to the solu-
tion of the others. In this paper, rather than trying to solve each of them in iso-
lation, we propose a method that treats all of them simultaneously. More specifi-
cally, given visual input acquired by a moving RGBD camera, the method detects
independently moving objects and tracks them in time. Additionally, the method
estimates the camera (ego)motion and the motion of the tracked objects in a co-
ordinate system that is attached to the static environment, a map of which is pro-
gressively built from scratch. The loose assumptions that the method adopts with
respect to the problem parameters make it a valuable component for any robotic
platform that moves in a dynamic environment and requires simultaneous track-
ing of moving objects, egomotion estimation and map construction. The usability
of the method is further enhanced by its robustness and its low computational
requirements that permit real time execution even on low-end CPUs.

Keywords: Visual Tracking; Human Detection and Tracking; Mapping; Egomo-
tion Estimation; SLAMMOT; Smart Walker

1 Introduction

Tracking an unknown number of unknown objects from a camera moving in an un-
known environment, is a challenging problem whose solution has important implica-
tions in robotics. In this work, we investigate how moving object tracking, ego-motion
estimation and map construction can be performed simultaneously using 3D informa-
tion provided by an RGBD sensor.

Our work is motivated by the perceptual requirements of the DALi c-Walker plat-
form. The c-Walker is a device that aims to safely guide people with cognitive im-
pairments through public spaces like airports and shopping centers. Using its on-board
sensors, this “cognitive navigation prosthesis” monitors the environment in real time to

? Paschalis Panteleris is with the Insitute of Computer Science (ICS), FORTH, N. Plastira 100,
Vassilika vouton, GR70013, Heraklion, Crete, Greece. padeler@ics.forth.gr

?? Antonis Argyros is with ICS/FORTH and also with the Department of Computer Science,
University of Crete, Greece. argyros@ics.forth.gr

??? This work was partially supported by the European Commission, through the FP7 project
DALi (FP7-288917)



2 P. Panteleris and A.A. Argyros

Fig. 1. Method overview. Top left: an RGBD frame. Top middle: The current map of the en-
vironment. Top right: A sparse set of 3D points used for egomotion estimation. Bottom left:
registration of the whole point cloud with the current map of the environment. Bottom middle: a
top view showing the camera position, the local environment map and the independently moving
objects. Bottom right: The point cloud of the foreground moving object.

figure out a path that poses little risk for the user. It can also perform active replanning
when, for example, passages are blocked because of groups of standing people.

To create such a smart walker that can function reliably, a number of challenges
associated with its perceptual capabilities must be addressed effectively and efficiently:

– Independently moving objects need to be detected and tracked so that a safe path
that avoids collision can be planned.

– Egomotion needs to be estimated so that the platform can be localized in its envi-
ronment.

– The map of the environment which is required for platform localization, cannot be
assumed to be known a priori but must be constructed on the fly. This is because
the structure of the environment may be subject to frequent changes that render an
offline map construction process very impractical.

– All the above needs to be available in unprepared environments, even in the absence
of other technologies. Thus, the above perceptual tasks need to be supported strictly
by sensors integrated onto the platform.

– To reduce costs and energy consumption, the computational requirements of the
sensory processing modules should fit low-end computers that are on-board the
platform.

In this paper, we present a solution that addresses simultaneously, robustly and ef-
ficiently all the above issues. The proposed method is designed to track moving objects
such as humans, estimate camera egomotion and perform map construction based on
visual input provided by a single RGBD camera that is rigidly attached to the moving
platform. From a computational point of view, the method performs in real time even
with limited computational resources.

The proposed method (see Fig. 1) segments and tracks objects that move indepen-
dently in the field of view of a moving RGBD camera. The camera is assumed to move



Vision-based SLAM and moving objects tracking 3

with 6 degrees of freedom (DOFs), while moving objects in the environment are as-
sumed to move on a planar floor. This last assumption is the only a priori knowledge
made regarding the environment, and is exploited in order to reduce the computational
requirements of the method since the primary goal of this work is to support perceptu-
ally an indoors smart walker platform. Motion is estimated with respect to a coordinate
system attached to the static environment. In order to segment the static background
from the moving foreground, we first select a small number of points of interest whose
3D positions are estimated directly from the sensory information. The camera motion
is computed by fitting those points to a progressively built model of the environment.
A 3D point may not match the current version of the map either because it is a noise-
contaminated observation, or because it belongs to a moving object, or because it be-
longs to a structure attached to the static environment that is observed for the first time.
A classification mechanism is used to perform this disambiguation. Based on its output,
noise is filtered, points on independently moving objects are grouped to form moving
object hypotheses and static points are integrated to the evolving map of the environ-
ment.

Experimental results demonstrate that the proposed method is able to track cor-
rectly moving objects. Interestingly, the performance of egomotion estimation and map
construction aspects practically remains unaffected by the presence of independently
moving objects, demonstrating the robustness of the ego-motion estimation module to
noise as well as the capabilities of the foreground segmentation pipeline. From a com-
putational point of view, the method performs at a frame rate of 50 fps on a laptop
with an “Intel i7” CPU without the use of GPU acceleration, and can perform at near
real-time speeds on ARM based embedded hardware.

2 Related Work

Our work is related to three fundamental and heavily researched problems in computer
vision and robotics, that of multi-target tracking, camera egomotion estimation / local-
ization and 3D scene structure estimation / map construction. A complete review of the
related work constitutes a huge task even for any of the individual subproblems and is
beyond the scope of this paper.

For the problem of object tracking in RGB images Yilmaz et al. [30] provides a
comprehensive review. A number of methods try to address the problem of the chang-
ing appearance of the tracked objects through learning on-line the appearance model of
a specific target and using it to track that target [4,24]. Several algorithms are specific
to humans, as the detection and tracking of moving people is very important in several
applications. Such algorithms [28,31,9,14,13] have improved a lot and provide reliable
results when applied to simple scenes, especially from static cameras. The methods
by Ferrari et al. [14] and Felzenszwalb et al. [13] are able to detect humans in non-
pedestrian (i.e. sitting) poses with reasonable accuracy. However, camera motion in
real-world, crowded environments which include large amounts of occlusion and clut-
ter, as well as wide pose variation still poses a lot of challenges. Additionally, most of
these methods are mainly concerned with the detection of people and not their temporal
tracking. To address the challenges of tracking from a moving platform, several ap-



4 P. Panteleris and A.A. Argyros

proaches [11,12,6,7] have recently been proposed that combine multiple detectors and
work with various sensor configurations. These works perform data association to track
people and are capable of estimating the camera motion. In our work we are limited to
a single RGB-D sensor fixed on our target platform and thus we need to conform with
the limitations of the hardware.

For the problem of simultaneous localization and mapping (SLAM), a recent re-
view is provided in [15]. Most of the works depend on the assumption of a static en-
vironment. Deviations from this can be tolerated at different degrees, depending on the
internals of the methods used. The consideration of SLAM in dynamic environments
formulates the so called SLAMMOT problem. As stated in [21], SLAMMOT involves
SLAM together with the detection and tracking of dynamic objects. SLAMMOT was
introduced by Wang [5]. Their approach combines SLAM and moving object tracking
that are performed based on a 2D laser scanner. Although conceptually very interest-
ing, the practical exploitation of the method is limited by the 2D nature of laser scans
and by the relatively high costs of the employed sensor. On top of the usage of a 2D
laser scanner, Gate et al. [16] introduces a camera that aid the classification of mov-
ing objects. A purely vision-based method was proposed by Agrawal et al. [1] who
employ a calibrated stereo configuration of conventional RGB cameras. Dense stereo
3D reconstruction builds local 3D models of the environment whose rigidity is tested in
consecutive frames. Deviations are attributed to moving objects. The corresponding pix-
els are filtered for noise, grouped, and tracked based on Kalman filtering. The problem
of deciding whether an object is static or moving has also been addressed by Sola [27]
who employed contextual rules for that purpose. Wangsiripitak et al. [29] track a single,
known 3D object. This information is used to safeguard an independent SLAM method
from observations that are not compatible to the rigid world assumption.

The recent introduction of RGBD sensors has provided a cheap way of acquiring
relatively accurate 3D structure information from a compact sensor. This has enabled
the development of SLAM [18,17,10] and object tracking [20] methods with impressive
results. The goal of our work is to address the combined SLAMMOT problem by in-
vestigating the coupling of the individual subproblems under the limited computational
resources of the target smart walker platform.

3 Method

The approach we propose is outlined graphically in Fig. 1 while Fig. 2 shows a detailed
flow diagram. The top left images in Fig. 1 show an RGBD frame from an indoors
sequence. Using the RGBD input we generate a point cloud Pc and we select a number
of sparse 3D points Pg (top right) that is used for localization. Although Pg could be
identical to Pc, it is shown that a limited number of carefully selected points suffice
to retain the information about the structure/map of the environment, M. This allows
camera localization that does not rely on expensive feature descriptors and matching.
The output of the registration process is the motion of the camera (egomotion) measured
in the coordinate system of M. P′c is the registered point cloud on M (bottom left in
Fig. 1). All points that do not correspond to a point on the model are considered outliers.
By clustering these outliers and monitoring their temporal behavior, these are further



Vision-based SLAM and moving objects tracking 5

RGB-D

Pre-process
● Resize input
● Detect corners
● Create Point Cloud

Camera Motion
Estimation

Outlier Filter
● Project outliers on plane
● Group outliers to blobs
● Keep blobs that fit size 

criteria

Environment Model
Point cloud 

with color information

Temporal Filter
● Create hypotheses for 

moving objects
● Assign detected blobs 

to hypotheses

ego-motion estimation

Segment Background
Point cloud containing 
only background points

Segmentation & tracking

Fig. 2. Flow diagram of the method, see text for details.

characterized as noise, parts of independently moving objects or features that belong
to the static environment. Hypotheses H about the moving objects are generated and
tracked in subsequent frames. Points that belong to H are removed from P′c and the
resulting point cloud P′bg is used to update M for the next frame. The rest of this section
describes the steps of the employed approach in more detail.

3.1 Preliminaries

We consider point clouds P that consist of sets of colored 3D points p = (D(p),C(p)).
D(p) denotes the 3D coordinates of p in some coordinate system and C(p) its associated
color. Since we want to be able to compare points based on their color values, we
represent color in the YUV space and perform comparisons in the UV dimensions. This
reduces the influence of luminance changes to our comparisons. Contemporary RGBD
cameras provide all necessary information to extract the (D(p),C(p)) representation
for each point p they observe.

For two 3D points p and q we first define their distance in space

DE(p,q) = ||D(p)−D(q)||2

and in color
DC(p,q) = ||C(p)−C(q)||2.

Given a point p, and a point cloud P, we define p to be depth-compatible to P if there ex-
ists a point q in P within a distance threshold τd from p. In notation, depth-compatibility



6 P. Panteleris and A.A. Argyros

is expressed with a boolean function DC(p,P) defined as

DC(p,P) =
{

1 ∃q ∈ P : DE(p,q)< τd
0 otherwise. (1)

Similarly, we define the notion of color compatibility:

CC(p,P) =
{

1 DC(p,P)∧∃q ∈ P : DC(p,q)< τc
0 otherwise. (2)

It should be noted that, according to Eq.(2), color compatibility is judged only for depth-
compatible points.

3.2 Camera motion estimation

Given a dense 3D point cloud M that represents the environment and an RGBD frame
that gives rise to another dense 3D point cloud Pc, a first goal is to register Pc to M. Since
Pc is measured at a camera-centered coordinate system, this registration process gives,
as a result, the rigid 3D motion that relates Pc to M which is the camera egomotion.
We formulate this as an optimization (maximization) problem that is solved with a gen-
erative, hypothesize-and-test optimization framework. More specifically, if the camera
motion with respect to M is mRT then the transformed point cloud P′c defined as

P′c = mRT Pc, (3)

should be registered to M. In Eq.(3) mRT is a 4x4 transformation matrix modeling the
motion of the camera with 6 degrees of freedom (3 for rotation and 3 for translation)
and Pc is a 4xN matrix with the points in the observed point cloud in homogeneous
coordinates. One way to evaluate the quality of a camera motion candidate solution
mRT is by measuring how effectively this motion registers P′c with M. A quantification
of the quality of registration is provided in the following objective function:

O(mRT ) = ∑
p∈P′c

DC(p,M)+ ∑
p∈P′c

CC(p,M). (4)

Intuitively, the first term of O(mRT ) measures the number of points in P′c that are depth-
compatible to the environment model M and the second term measures the number of
points that are also color-compatible. Thus, a motion hypothesis mRT that scores higher
in O(mRT ) represents a motion that brings P′c in better registration to M.

In general, the registration process could rely only on 3D structure information.
However, in certain indoor environments, this proves to be insufficient. For example,
if the camera moves along a long corridor, there is not enough information to infer the
egomotion just from the changes in the structure of the observed point cloud. This is
illustrated in Fig. 3, where even though the RGB input obviously changes as the camera
moves, the depth images look almost identical. The incorporation of color-compatibility
serves to disambiguate such situations.

According to Eq.(4), the registration of P′c to M is based on all the points of P′c. In
practice, a much smaller set of points Pg that captures the environment structure proves



Vision-based SLAM and moving objects tracking 7

Fig. 3. Moving in a corridor. RGB (top) and depth (bottom) input for a sequence of 3 frames.
Depth appears almost identical in all the frames, making motion estimation difficult unless scene
color information is taken into account.

enough to solve the task. The points in Pg are chosen using two methods. First, we
employ a corner detector [25] on the RGB part of the frame. These corners are then
filtered and only the ones that have a depth value are kept. We also filter out corners
that are associated with depth values but have low accuracy due to large quantization
error [26]. Since the proposed method is using the scene structure in order to extract
motion information and does not rely on feature matching, a simple corner detector is
sufficient. Indeed exploiting cheap corners as features is one of the reasons the method
requires low computational resources. Next, we choose the 3D points that are defined
on a sparse (16×12) grid that is aligned to the RGBD input. This grid provides enough
points in case there is not enough texture information in the observed RGB image.
Using these two methods, the total number of selected points in a frame for a typical
indoors scene is between 200 and 600. This represents a 0,2% of the total number of
points (640×480), a fact that reduces dramatically the computational requirements of
the method.

The problem of egomotion estimation is now converted to the problem of finding the
motion that maximizes Eq.(4). This is performed using the Particle Swarm Optimization
(PSO) algorithm. It should be stressed that this top-down, generative, hypothesize-and-
test solution to the problem is the one that remove the requirements for feature matches
and, therefore, the need for elaborate feature extraction mechanisms.

3.3 Particle Swarm Optimization

The optimization (i.e., maximization) of the objective function defined in (Eq.(4)) is
performed based on Particle Swarm Optimization (PSO) [19] which is a stochastic,
evolutionary optimization method. It has been demonstrated that PSO is a very effec-
tive and efficient method for solving other vision optimization problems such as head
pose estimation [23], hand articulation tracking [22] and others. PSO achieves opti-
mization based on the collective behavior of a set of particles (candidate solutions) that



8 P. Panteleris and A.A. Argyros

evolve in runs called generations. The rules that govern the behavior of particles em-
ulate “social interaction”. Essentially, a population of particles is a set of points in the
parameter space of the objective function to be optimized. PSO has a number of at-
tractive properties. For example, it depends on very few parameters, it does not require
differentiation of the objective function to be minimized and converges to the solution
with a relatively limited computational budget [2].

Every particle holds its current position (current candidate solution, set of parame-
ters) in a vector xt and its current velocity in a vector vt . Each particle i keeps in vector
pi the position at which it achieved, up to the current generation t, the best value of the
objective function. The swarm as a whole, stores the best position pg across all parti-
cles of the swarm. All particles are aware of the global optimum pg. The velocity and
position update equations in every generation t are

vt = K(vt−1 + c1r1(pi− xt−1)+ c2r2(pg− xt−1)) (5)

and
xt = xt−1 + vt , (6)

where K is a constant constriction factor [8]. In Eqs. (5), c1 is called the cognitive com-
ponent, c2 is termed the social component and r1,r2 are random samples of a uniform
distribution in the range [0..1]. Finally, c1 +c2 > 4 must hold [8]. In all experiments the
values c1 = 2.8, c2 = 1.3 and K = 2∣∣∣2−ψ−

√
ψ2−4ψ

∣∣∣ , with ψ = c1 + c2 were used.

In our problem formulation, the parametric space consists of the 6D space of cam-
era motions mRT . The rotation component of candidate camera moves is parametrized
in terms of yaw (θ ), pitch (φ ), and roll (ω) angles, correspondingly yielding R =
Rx(θ) ·Ry(φ) ·Rz(ω) for each parameter combination. Translation is parametrized by
the XY Z coordinates of the camera center c. Particles are initialized at a normal dis-
tribution around the center of the search range with their velocities set to zero. Each
dimension of the multidimensional parameter space is bounded in some range. Dur-
ing the position update, a velocity component may force a particle to move to a point
outside the bounded search space. Such a component is zeroed and the particle does
not move at the corresponding dimension. Since the camera motion needs to be con-
tinuously tracked in a sequence instead of being estimated in a single frame, temporal
continuity is exploited. More specifically, the solution over frame t is used to restrict
the search space for the initial population at frame t + 1. In related experiments, the
search range (or the space in which particle positions are initialized) extend ±150mm
and ±10◦ around the position estimated in the previous frame.

3.4 Handling camera motion estimation failures

A failure to estimate accurately the camera motion can be identified using the score of
the objective function. If the score at a certain frame is below a threshold τs, then the
camera motion calculated for It is considered inaccurate. This may occur in cases where
there is not enough depth information in the scene, or when there are too many moving
objects in the foreground. In our experiments we choose τs = 0.15|Pg| where |Pg| is the
number of points in Pg. If this condition holds then less than 15% of the scene features



Vision-based SLAM and moving objects tracking 9

where registed during the optimization step. In this case the camera motion estimation
is considered unreliable, and no tracking steps or environment update is performed.

3.5 Identifying and tracking foreground objects

If the motion mRT of the camera with respect to the environment model M is known, we
define a point p ∈ Pc to be an outlier when p′ = mRT ∗ p and p′ is not color-compatible
to M. Formally, the set of outliers is defined as:

Oc = {p ∈ Pc : p′ = mRT ∗ p∧CC(p′,M) = 0}. (7)

The set of outliers Oc is partitioned to the following classes:

– M-class: Independently moving foreground objects (e.g., moving humans).
– S-class: Static background objects that are not yet part of the environment model.

This is because as the camera moves in an unknown environment, new parts of the
“static” background will become visible.

– N-class: Sensor noise. Depth measurements obtained from commercial RGBD sen-
sors like the Microsoft Kinect and the Asus Xtion have a considerable amount of
noise, especially at distances greater than 3-4 meters.

The correct assignment of outliers to these classes is very important. N-class points need
to be discarded from further consideration. M-class points should support the formation
of hypotheses for objects to be tracked. Finally, S-class points need to be incorporated
in M. To perform this type of classification in a robust way, we capitalize on the fact that
the camera moves in an environment where objects move on the ground plane. Thus,
we aggregate all observations on a floor plan F of the environment defined as

F = ΠVOc. (8)

In Eq.(8), Π is a 4x4 orthographic projection matrix and V is the 4x4 camera view
matrix for a virtual camera above the scene, while Oc is the 4xN matrix of the outlier
points in homogeneous coordinates. Then, F is a 2D floor plan of the outliers which
can be efficiently grouped using a blob detector and tracker. An example F is shown
in Fig. 4 for one frame of an indoors sequence. For a blob B of outliers we define the
following properties:

– Blob height Bh: The maximum distance of a point in the blob from the ground floor.
– Blob area Ba: The area occupied by the blob on the ground plane.
– Blob size Bs: The number of outlier points that produced the blob.

Simple rules defined over the parameters Bh, Ba and Bs suffice to identify outliers and to
characterize tracking candidates for the next phase of the algorithm. When choosing the
values for the blob classification parameters one must take into account that small errors
in the camera motion estimation due to noise or accumulated drift can create relatively
large number of outlier clusters. This limits the smallest size of a moving object that
can be detected, since allowing small blobs to be considered possible candidates will
result in a great number of false positive tracks.



10 P. Panteleris and A.A. Argyros

Fig. 4. Segmentation and tracking. In the floor plan view (right image), background objects are
shown in purple and foreground objects in green. Foreground objects are segmented (bottom left)
and tagged. The RGBD camera is mounted on a prototype smart walker during trials. The current
location of the camera is on the center of the blue cross.

In our use cases we are mainly interested in tracking human-sized objects, which
is well above the size limits of the method. For our experiments the Bh was set to be
between 1.0m and 1.8m while the area of the blobs, Ba, was limited between 0.19m2

and 0.78m2. The Bs parameter was empirically chosen to be less than 500, since errors
on the egomotion tend to produce blobs with high number of outliers.

In order to track foreground objects, we create and maintain a number of hypothe-
ses about moving objects in the scene. It is assumed that at the previous frame t − 1
there have been Ot−1 object hypotheses with which the current set of blobs need to be
associated with. This is performed with a variant of the blob tracking method proposed
in [3]. The original version of that tracker was devised to track an unknown/dynamically
changing number of skin coloured blobs. Instead, our own implementation of this algo-
rithm operates on the detected blobs corresponding to moving object hypotheses.

3.6 Updating the environment model

The environment model is built and maintained on the fly, without any prior knowledge.
In order to bootstrap the process, the point cloud Pc produced in the first frame I0, is
used as the initial model M and the location of the sensor on this frame is set to be the
world origin. To update the environment model we use the background points of frame
In created on Sec. 3.5 registered on the environment model M of frame In−1 using the
camera motion mRT (Eq. 3).

The environment model should be updated only when there is high confidence on
the quality of the calculated mRT . In our experiments, we set the minimum threshold for
the quality of the camera motion estimation as explained in Sec. 3.4 to be τu = 0.30|Pg|.



Vision-based SLAM and moving objects tracking 11

Fig. 5. The resulting point cloud (with color) created from a sequence grabbed using the prototype
smart walker. The method produces an accurate model of the environment.

(a) (b)

Fig. 6. (a) A floormap of an environment built in the absence of moving objects. The estimated
platform trajectory shown in green. (b) The map of the environment that was built in presence of
moving objects. Camera (green) and moving object (orange) trajectories are also shown.

Choosing this value for τu means that when less than 30% of the scene features where
registered during the optimization step, the ego-motion estimation may not be accurate
enought to update the scene model.

The resulting environment model is used in order to detect moving objects in the
next frame. In Fig. 5 the point cloud of a full environment model from a test dataset is
shown. In practice, there is no need to keep the whole environment model in memory in
order to perform object tracking. As the camera moves in the environment, older parts
of the model can be discarded once they are far enough from the platform or when they
get older than a pre-set age. In our experiments, the environment model is discarded
every 40 frames but the knowledge about the moving objects in the scene is kept during
the reset. This way, we reduce the amount of resources required to maintain a constantly
expanding model, without loosing information about the foreground in the scene.



12 P. Panteleris and A.A. Argyros

(a) (b)

Fig. 7. View of the calculated camera trajectory (green) aligned with the ground truth trajectory
(blue) in two experiments without MOT (a) and with MOT (b). The trajectories of the moving
objects for the second experiment are also shown in orange. The user of the walker was asked to
follow the same track in both experiments.

4 Experiments

The proposed approach has been evaluated quantitatively and qualitatively in a number
of experiments. The experiments were performed in an indoors environment whose
reconstructed top down view is shown in Fig. 6. The environment consists of a hallway
and a room with a total area of 120m2. A number of way-points were set in order to
create a closed path. The location of each way-point was measured and used to compute
a ground truth trajectory that the user of the walker was asked to follow. The error on
the real world location of the way-points was measured to be around 30mm. A total of
9 way-points (marked from W0 to W8) were set creating a 9 segment closed path that
goes through the corridor and around the room. That way the system was evaluated on
a demanding real world scenario similar to the cluttered indoor environments that the
actual device will operate in.

In a first experiment, we assessed the SLAM aspects of the proposed method, that is,
we performed simultaneous localization and map construction in the absence of moving
people. A user moved with the walker along the pre-planned track. The results of the
reconstruction as well as the computed camera trajectory is shown in Fig. 6(a).

Figure 7(a) shows the ground truth trajectory of the walker (blue color) and the one
estimated by the proposed method (green color). In the same figure, the locations of the
way-points are marked along the path. Table 1 shows the ground truth measurements
for the distances of these points (first column) and those estimated by the proposed
method (second column). It can be verified that the estimation of these distances are
rather accurate.

The same experiment was repeated in the presence of moving people. The rightmost
column of Table 1 shows the estimated distances in this case. The actual reconstruction,
moving object trajectories and camera trajectory are shown in Fig. 6(b). It can be ver-
ified that camera and object motion trajectories are rather accurate. Additionally, the
independently moving objects did not affect considerably the SLAM process. This is



Vision-based SLAM and moving objects tracking 13

Fig. 8. Tracking moving targets. Three frames from a lab sequence. On the top row: The RGB in-
put for each frame is shown with the points selected for the ego-motion estimation superimposed
with green. Middle row: The environment model M and the foreground moving objects H from
the point of view of the camera. Bottom row: The top down view of the scene. An orthographic
projection of both the environment (purple) and the tracked objects (green).

also illustrated in Fig. 7(b) that shows the estimated track of the camera and the mov-
ing objects, aligned with the ground truth trajectory. Further intermediate results are
illustrated in Fig. 8.

For the whole course of the experiments, we also measured the average distance
of the walker position as estimated by the method, to the corresponding line segment
(ground truth). Table 2 shows these localization errors in the experiments with and
without moving objects. It can be verified that, on average, the errors are comparable.
A full run of the experiments is also shown on the supplementary material of this paper1.

A prototype walker implementation has also been exhibited in the Vilnius ICT’2013
Conference2 with great success. In that context, the DALi c-Walker had to detect and
track people moving in very crowded environments.

5 Summary

In this paper, we presented a new approach to the problem of simultaneous object track-
ing, localization and map construction. The proposed method exploits the visual input
provided by a single RGBD camera. The method can handle an arbitrary and tempo-
rally varying number of moving objects which it localizes on a map of the environment

1 http://youtu.be/RnKFCypUk9U
2 http://ec.europa.eu/digital-agenda/en/ict-2013

http://youtu.be/RnKFCypUk9U
http://ec.europa.eu/digital-agenda/en/ict-2013


14 P. Panteleris and A.A. Argyros

Table 1. Localization errors (in mm)

Segment Average error Average error
without MO with MO

W0-W1 45 32
W1-W2 125 121
W2-W3 68 200
W3-W4 333 233
W4-W5 197 444
W5-W6 136 431
W6-W7 118 286
W7-W8 101 127
W8-W2 140 253
All 140 236

Table 2. Actual and measured distances (in
mm)

Segment Actual Measured Measured
length without MO with MO

W0-W1 3222 3144 3121
W1-W2 3816 3886 3968
W2-W3 3643 3668 3639
W3-W4 2713 3011 3141
W4-W5 3559 3599 3719
W5-W6 1423 1183 1374
W6-W7 4032 4067 3760
W7-W8 1999 1923 1986
W8-W2 2150 1954 1877

which is progressively built from scratch. The obtained quantitative experimental results
demonstrate that the method is capable of handling effectively challenging SLAMMOT
scenarios. It has also been shown that the SLAM accuracy of the method is not affected
significantly by the presence of moving objects which are also tracked accurately. The
computational requirements of the method are rather low as its implementation on con-
ventional contemporary architectures performs at super real time frame rates while be-
ing able to achieve near real time performance on ARM based embedded systems. Thus,
with the proposed method, we achieve a robust solution to several interesting problems
under loose assumptions and with limited computational resources. A practical proof
of the above has been the successful deployment of the approach in use cases using the
DALi c-Walker prototype.

References

1. M. Agrawal, K. Konolige, and L. Iocchi. Real-time detection of independent motion using
stereo. In IEEE WACV/MOTIONS ’05, volume 2, pages 207–214, 2005.

2. P.J. Angeline. Evolutionary optimization versus particle swarm optimization: Philosophy
and performance differences. Evolutionary Programming VII, LNCS, 1447:601–610, 1998.

3. Antonis A. Argyros and Manolis I. A. Lourakis. Real-time tracking of multiple skin-colored
objects with a possibly moving camera. In In: ECCV, pages 368–379, 2004.

4. Charles Bibby and Ian Reid. Robust real-time visual tracking using pixel-wise posteriors.
In David A. Forsyth, Philip H. S. Torr, and Andrew Zisserman, editors, ECCV (2), volume
5303 of Lecture Notes in Computer Science, pages 831–844. Springer, 2008.

5. Chieh chih Wang, Charles Thorpe, Martial Hebert, Sebastian Thrun, and Hugh Durrant-
whyte. Simultaneous localization, mapping and moving object tracking. International Jour-
nal of Robotics Research, 2004.

6. Wongun Choi, Caroline Pantofaru, and Silvio Savarese. Detecting and tracking people using
an rgb-d camera via multiple detector fusion. In ICCV Workshops, pages 1076–1083. IEEE,
2011.



Vision-based SLAM and moving objects tracking 15

7. Wongun Choi, Caroline Pantofaru, and Silvio Savarese. A general framework for tracking
multiple people from a moving camera. IEEE Trans. Pattern Anal. Mach. Intell., 35(7):1577–
1591, 2013.

8. M. Clerc and J. Kennedy. The particle swarm - explosion, stability, and convergence in a mul-
tidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1):58–73,
2002.

9. N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA,
2005.

10. F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard. 3d mapping with an RGB-D
camera. IEEE Transactions on Robotics (T-RO), 2013.

11. Andreas Ess, Bastian Leibe, Konrad Schindler, and Luc J. Van Gool. A mobile vision system
for robust multi-person tracking. In CVPR. IEEE Computer Society, 2008.

12. Andreas Ess, Bastian Leibe, Konrad Schindler, and Luc J. Van Gool. Robust multiperson
tracking from a mobile platform. IEEE Trans. Pattern Anal. Mach. Intell., 31(10):1831–
1846, 2009.

13. Pedro F. Felzenszwalb, Ross B. Girshick, David A. McAllester, and Deva Ramanan. Object
detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach.
Intell., 32(9):1627–1645, 2010.

14. V. Ferrari, M. Marin-Jimenez, and A. Zisserman. Progressive search space reduction for hu-
man pose estimation. In Proceedings of the IEEE Computer Vision and Pattern Recognition,
Alaska, 2008.

15. Jorge Fuentes-Pacheco, Jos Ruiz-Ascencio, and JuanManuel Rendn-Mancha. Visual simul-
taneous localization and mapping: a survey. Artificial Intelligence Review, pages 1–27, 2012.

16. G. Gate, A. Breheret, and F. Nashashibi. Fast pedestrian detection in dense environment with
a laser scanner and a camera. In Vehicular Technology Conference, 2009. VTC Spring 2009.
IEEE 69th, pages 1–6, 2009.

17. Peter Henry, Michael Krainin, Evan Herbst, Xiaofeng Ren, and Dieter Fox. Rgb-d mapping:
Using kinect-style depth cameras for dense 3d modeling of indoor environments. Int. J. Rob.
Res., 31(5):647–663, April 2012.

18. Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard Newcombe, Push-
meet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew Davison, and Andrew
Fitzgibbon. Kinectfusion: real-time 3d reconstruction and interaction using a moving depth
camera. In In Proc. UIST, pages 559–568, 2011.

19. J. Kennedy, R.C. Eberhart, and Yuhui. Shi. Swarm intelligence. Morgan Kaufmann Publish-
ers, 2001.

20. Matthias Luber, Luciano Spinello, and Kai O. Arras. People tracking in rgb-d data with
on-line boosted target models. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), San Francisco, USA, 2011.

21. David Marrquez-Gomez and Michel Devy. Active visual-based detection and tracking of
moving objects from clustering and classification methods. In Proceedings of the 14th Inter-
national Conference on Advanced Concepts for Intelligent Vision Systems, ACIVS’12, pages
361–373, Berlin, Heidelberg, 2012. Springer-Verlag.

22. Iason Oikonomidis, Nikolaos Kyriazis, and Antonis A. Argyros. Tracking the articulated
motion of two strongly interacting hands. In CVPR. IEEE, June 2012.

23. Pashalis Padeleris, Xenophon Zabulis, and Antonis A. Argyros. Head pose estimation on
depth data based on particle swarm optimization. In IEEE CVPRW - HAU3D 2012, 2012.

24. Deva Ramanan, David A. Forsyth, and Andrew Zisserman. Tracking people by learning their
appearance. IEEE Trans. Pattern Anal. Mach. Intell., 29(1):65–81, 2007.



16 P. Panteleris and A.A. Argyros

25. Edward Rosten and Tom Drummond. Machine learning for high-speed corner detection. In
Ale Leonardis, Horst Bischof, and Axel Pinz, editors, Computer Vision ECCV 2006, volume
3951 of Lecture Notes in Computer Science, pages 430–443. Springer Berlin Heidelberg,
2006.

26. Jan Smisek, Michal Jancosek, and Toms Pajdla. 3d with kinect. In ICCV Workshops, pages
1154–1160. IEEE, 2011.

27. Joan Solà. Towards Visual Localization, Mapping and Moving Objects Tracking by a Mobile
Robot: a Geometric and Probabilistic Approach. PhD thesis, Institut National Polytechnique
de Toulouse, 2007.

28. P. Viola, M. Jones, and D. Snow. Detecting pedestrians using patterns of motion and appear-
ance. In Proceedings of the 9th IEEE International Conference on Computer Vision, Nice,
France, 2003.

29. Somkiat Wangsiripitak and David W. Murray. Avoiding moving outliers in visual slam by
tracking moving objects. In IEEE ICRA’09, pages 705–710, Piscataway, NJ, USA, 2009.
IEEE Press.

30. Alper Yilmaz, Omar Javed, and Mubarak Shah. Object tracking: A survey. ACM Comput.
Surv., 38(4), 2006.

31. Tao Zhao and Ramakant Nevatia. Tracking multiple humans in crowded environment. In
CVPR (2), pages 406–413, 2004.


	Vision-based SLAM and moving objects tracking for the perceptual support of a smart walker platform

