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Abstract. Saliency detection is a useful tool for video-based, real-time
Computer Vision applications. It allows to select which locations of the
scene are the most relevant and has been used in a number of related
assistive technologies such as life-logging, memory augmentation and ob-
ject detection for the visually impaired, as well as to study autism and the
Parkinson’s disease. Many works focusing on different aspects of saliency
have been proposed in the literature, defining saliency in different ways
depending on the task. In this paper we perform an experimental anal-
ysis focusing on three levels where saliency is defined in different ways,
namely visual attention modelling, salient object detection and salient
object segmentation. We review the main evaluation datasets specifying
the level of saliency which they best describe. Through the experiments
we show that the performances of the saliency algorithms depend on
the level with respect to which they are evaluated and on the nature
of the stimuli used for the benchmark. Moreover, we show that the eye
fixation maps can be effectively used to perform salient object detection
and segmentation, which suggests that pre-attentive bottom-up infor-
mation can be still exploited to improve high level tasks such as salient
object detection. Finally, we show that benchmarking a saliency detec-
tion algorithm with respect to a single dataset/saliency level, can lead to
erroneous results and conclude that many datasets/saliency levels should
be considered in the evaluations.

Keywords: saliency detection, visual attention modelling, salient ob-
ject detection, salient object segmention, saliency levels, datasets for
saliency evaluation

1 Introduction

During the last decades, we have observed the wide spread of affordable elec-
tronic devices capable of acquiring and processing images. This has virtually
enabled a series of real-time Computer Vision applications which can rely on the
large amount of data constantly gathered from the environment. Among these
technologies, in particular, wearable devices provided with both computational
power and a number of sensors (often including one or more cameras) are re-
cently gaining more and more popularity. Since they involve egocentric vision,
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Fig. 1. Some sample images (a,c) and the related saliency maps (b,d).

wearable devices are rapidly changing the way we used to intend Computer Vi-
sion and are paving the way to a number of applications tightly coupled with
the user’s everyday life experience. Some of these applications are related to
assistive technologies such as egocentric video summarization for life-logging [1]
and memory augmentation [2, 3], object recognition for the visually-impaired [4],
quality of life assessment and sensory substitution. Visual saliency has also been
used for studying autism [5, 6] and Parkinson’s disease [7].

In order to be able to manage all this incoming information in real-time,
a mechanism able to select the parts of the image which are the most relevant
with respect to the selected task, is needed to speed up the computation. Several
studies argue that such a mechanism is likely to be present in the human system
of attention [8–11]. Specifically, the human attentional phenomenon is believed
to happen in at least two stages: 1) pre-attentive stage: is performed over the
entire field-of-view (25 to 50 ms per item [9]) in order to select the locations which
are sufficiently distinctive; 2) attentive stage: high level entities like objects are
recognized through the combination of different features [12]. The first stage
is an involuntary bottom-up process where the features automatically pop out
according to their relationship with the surrounding (e.g., a red can on the
grass is highly distinctive due to its red colour) [9, 13]. The second stage is
a volitional top down process in which many different factors, including the
subject’s expectations (often related to the subject’s knowledge of the scene)
and the given task (e.g., free-viewing vs. object-search), are involved [9, 13].
These two stages of visual attention are usually modelled separately and tackled
as different tasks, which gives rise to the distinction between bottom-up and
top-down approaches. Methods aiming at exploiting both mechanisms fall into
the class of integrated methods [14].

Building on this connection, Koch and Ullman [15] introduced the first bio-
logically plausible model of attention, together with the concept of saliency map.
A saliency map is a two dimensional topological map encoding the spatial loca-
tions conspicuousness, which can be directly exploited to select the most relevant
regions of the scene (see Fig. 1 for some examples). An important result of such
a connection is that weighting the importance of the acquired information using
a biologically plausible model of attention allows a representation of the scene
which is likely to be close to the human one. Many different approaches to visual
saliency have been proposed through the last decades (see [13, 14] for compre-
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hensive reviews) and some of them have been used to model visual attention
in complex systems [4]. Some saliency models are biologically plausible [16–18],
some are purely computational [19, 20], while others are mainly computational
but still based on some biological cues [21–23].

Many different categorizations of the saliency detection methods are available
in literature [13, 14], but most of the authors agree on the fact that visual atten-
tion depends on the task [12–14]. Evidences of this task-dependency date back to
the seminal works on eye movements and vision performed by Yarbus in the late
60s [24]. Considering that saliency detection is an useful instrument which can
be integrated into a wide variety of real-time, video-based applications [1–7], we
argue that attention should be paid to the level with respect to which saliency is
considered. Specifically we distinguish three different levels of saliency, namely
Visual Attention Modelling (VAM), Salient Object Detection (SOD) and Salient
Object Segmentation (SOS). In this paper we show that algorithms designed to
deal with a specific level have different performances on the other levels. This
fact has to be taken into account during the testing phase of a saliency detec-
tion method. We also show that the datasets used for the evaluations should be
chosen carefully in order to properly assess the algorithms’ performances with
respect to one or more of the selected levels. For the evaluations, we select 8 rel-
evant saliency detection algorithms [16, 19–23, 25] which we divide into the three
aforementioned categories: visual attention modelling, salient object detection
and salient object segmentation. We assess the performances of each method
against different public datasets provided with different kinds of ground truth
(eye fixation maps for visual attention modelling, bounding boxes for salient
object detection and pixel-wise object masks for salient object segmentation).
We show the results in the form of ROC curves [13] and AUC values [13] and
compare them yielding a discussion.

The contributions of our work are the following: we review the most relevant
datasets which can be used to evaluate the performances of saliency detection
algorithms with respect to the considered levels; we show through experimental
evidences that the performances of saliency detection algorithms depend on the
considered saliency level and on the nature of the stimuli; we show that eye
fixation maps can be effectively used to perform salient object detection and
segmentation, which suggests that bottom-up cues are important even for higher
level tasks as object detection; finally we show that a given algorithm should be
evaluated with respect to different datasets/saliency levels in order to obtain
correct evaluations.

The remainder of the paper is organized as follows: in Section 2 we discuss
the three saliency levels we focus on in this paper; in Section 3 we present
some related works and review the most relevant datasets with respect to the
considered saliency levels; Section 4 defines the experimental settings and the
used evaluation scores; whereas in Section 5 the results are discussed. Finally
Section 6 concludes the paper and gives insights about further research.
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Visual Attention Modelling (VAM)

Input Image Saliency Maps

Salient Object Detection (SOD)

Salient Object Segmentation (SOS)

Fig. 2. An example of three different levels at which saliency should be considered in
designing a saliency detection algorithm. The input image is shown on the left, whereas
the “ideal” saliency maps related to the three different levels are shown on the right.

2 Saliency Levels

As already mentioned we focus on three saliency levels, which are closely related
to three different tasks. In the following we describe each level discussing which
stages of the attentional phenomenon are mainly involved. Fig. 2 shows some
examples of saliency maps which should be computed by an algorithm with
respect to different levels. Since we argue that the datasets used for the evaluation
should be differentiated according to the task, we also mention which type of
ground truth is best used to evaluate the algorithms’ performances with respect
to the considered levels.

– Visual Attention Modelling (VAM) refers to the ability of the saliency
map to predict the human eye fixations. This level is related to the pre-
-attentive stage where the most distinctive spatial locations are selected in
a bottom-up manner, basing on the relationship of their features with the
surroundings. To benchmark this ability, the saliency maps are compared
with eye fixation maps (see Fig. 3 (b) for some examples) which are acquired
by tracking the eye movements of many subjects looking at the stimuli [13].
No special task, but free viewing is generally assigned to the subjects;

– Salient Object Detection (SOD) refers to the ability of the saliency
map to detect the salient objects in the scene. Some cues from both the pre-
-attentive (e.g., local features distinctiveness) and the attentive (e.g., prior
knowledge about the object features) stages are generally involved in this
task. Algorithms aiming at salient object detection are best benchmarked
against datasets provided with bounding boxes (see Fig. 3 (c) for some ex-
amples) annotating for each stimulus the position of the objects [26];

– Salient Object Segmentation (SOS) refers to ability of the saliency
map to detect and segment the salient objects present in the scene. Also in
this case, the integration of the bottom-up and top-down levels is generally
involved. The performances of salient object segmentation algorithms are
generally assessed using datasets containing pixel-wise object masks [21] (see
Fig. 3 (c) for some examples).
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Acronym Study Year Level

1 IT Itti et al. [16] 1998 VAM

2 IS Hou et al. [20] 2011 VAM

3 GB Harel et al. [22] 2007 VAM

4 AWS Garcia et al. [23] 2012 VAM

5 SR Hou et al. [19] 2007 SOD

6 CA Goferman et al. [25] 2012 SOD

7 FT Achanta et al. [21] 2009 SOS

8 CB Jiang et al. [27] 2011 SOS

Table 1. The saliency detection algorithms used in the experiments. VAM = Visual
Attention Modelling, SOD = Salient Object Detection, SOS = Salient Object Segmen-
tation.

3 Related Work

Many saliency detection algorithms are available in the literature. Here we con-
sider some of the available methods and organize them into the three considered
levels (see Section 2) taking into account what stated by the authors in the
related publications or the type of the ground truth data used to assess the algo-
rithm’s performances. Moreover we review the most relevant datasets introduced
in the literature, associating each dataset with one or more of the discussed lev-
els.

3.1 Saliency Methods

We consider 8 algorithms for our analysis. We chose them according to their
popularity ([16, 19, 21]), the variety of their approaches ([16] is biologically plau-
sible, [19, 20] are purely computational, [22] uses a probabilistic framework, [27]
integrates object-level shape priors), and the performances exhibited in other
benchmark papers ([22, 23, 27, 25] have good performances in [28, 29]).

The first computational model capable of producing saliency maps from input
images was introduced in 1998 by Itti et al. [16]. Due to its biological plausibility,
the model has been widely used as a benchmark for comparisons. In [22] Harel
et al. introduce a saliency method which employs a graph-based probability
model. Hou et al. have worked on spectral based approaches [19, 20] exploring
the connections between information redundancy and the spectral content of the
input image. In [23], Garcia et al. present a visual saliency method which relies
on a contextually adapted representation produced through adaptive whitening
of colour and scale features. In [25], Goferman et al. introduce an approach
which aims at detecting the image regions that represent the scene, building
on four principles observed in the psychological literature. In [21], Achanta et
al. present an approach based on the analysis of the frequency content of the
image. Jiang et al. [27] concentrate on salient object segmentation considering
both bottom-up cues and object-based shape priors. Table 1 summarizes the
algorithms considered in this paper with the related saliency level for which
they have been designed.
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Fig. 3. Some examples of different types of Ground Truth. The stimuli (a), Eye Fixation
Maps (b), Bounding Boxes annotations (c) and Pixel-Wise masks (d).

3.2 Datasets

In this subsection we review some of the most relevant datasets which have
are used in the experiments. We analyse them with respect to different factors
including the nature of the provided stimuli (e.g., natural images or images
always containing a salient object), the nature of the ground truth and the way
the ground truth is generated (e.g., how many labellers or subjects are employed).
In particular we consider three types of ground truth:

– eye fixation maps, which are obtained using eye tracking data gathered from
different subjects watching the stimuli;

– bounding boxes annotating the position of the salient objects of interest;
– pixel-wise masks of the salient objects depicted.

In Fig. 3 some examples of the different types of ground truth are provided. The
considered datasets have been selected according to their popularity, the number
of the stimuli, their diversity and the quality of the provided ground truth.

– Microsoft Research ASIA Dataset (MSRA) [26] is composed of 25000
images each containing a salient object of interest. The images are gathered
from forums and image search engines. The dataset has been introduced for
salient object detection and the ground truth consists in bounding boxes
annotations. Each image is labelled by three users which are asked to draw
a rectangle to specify a salient object. Considering the bounding boxes an-
notations, the dataset is related to the salient object detection level (SOD);

– MIT Eye Fixations Dataset [30] contains 1003 natural indoor and out-
door images which are viewed by 15 subjects in order to obtain eye fixations
data. No particular instruction but free-viewing was given to the observers.
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Dataset Study Year Images Ground Truth Level

1 MSRA Liu et al. [26] 2011 10000 BB SOD

2 MIT Judd et al. [30] 2009 1003 EF VAM

3 THUS10000 Cheng et al. [31] 2011 10000 PW SOS

4 DUT-ORMON Yang et al. [32] 2013 5168 All All

Table 2. The considered datasets. EF = Eye Fixation Maps (corresponding to the
visual attention modelling level), BB = Bounding Boxes (corresponding to the salient
object detection level), PW = Pixel Wise Masks (corresponding to the salient object
segmentation level).

The saliency level related to this dataset is the visual attention modelling
(VAM);

– THUS10000 Datasets [31] is derived from the MSRA [26] dataset by
picking a subset of 10000 images. Each image is hand labelled at pixel accu-
racy level by a single subject in order to obtain a mask of the salient object
depicted. The dataset is suitable for assessing the performances of the algo-
rithms with respect to the level of salient object segmentation (SOS);

– DUT-ORMON Dataset [32] contains 5168 high quality images. Three
kinds of ground truth are provided with this dataset: 1) the pixel-wise masks
of the salient objects, 2) the bounding boxes annotations of the salient ob-
jects and 3) the eye fixations data. The instructions given to the labellers are
similar to the ones given for the other datasets. The ground truth is built
employing 5 participants per image. Considering the three types of ground
truth provided, the dataset is suitable for all the three considered saliency
levels: visual attention modelling (VAM), salient object detection (SOD) and
salient object segmentation (SOS);

Table 2 reports a summary of the considered datasets, providing information on
the number of images, the type of the ground truth and the related levels.

3.3 Other Saliency Benchmark Works

At least two other saliency benchmark papers are related to the present work.
In [28] the authors examine several salient object detection approaches with
respect to different salient object detection and segmentation datasets. They
also discuss the dataset properties, the evaluation measures to be used and the
effects of the aggregation of different saliency methods. In [29] the same authors
benchmark several fixation prediction algorithms against different eye fixations
datasets, discussing which measures are best used for such evaluations.

Differently than the works in [28, 29], which analyse the two main levels of
saliency (salient object detection and visual attention modelling) separately, in
this paper we compare the results of the selected algorithms with respect to
different types of ground truth. In addition, we take advantage of the DUT-
ORMON dataset introduced in [32] which contains different types of ground
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truth for the same stimuli in order to yield more consistent and comparable
evaluations of the saliency algorithms considered in this paper.

4 Experimental Settings

For the experiments we considered the 8 algorithms which have been presented
in Section 3 and summarized in Table 1 and the 4 datasets which have been
reviewed in Section 3.2 and reported in Table 2. In order to produce saliency
maps for the evaluations, we used the original code provided by the authors,
which is publicly available. For sake of fairness we don’t tune the parameters of
the algorithms, hence using the standard ones which are provided by the authors.

The first dataset we consider is the DUT-ORMON [32] dataset. It is useful
to compare the performances of algorithms with respect to the three different
saliency levels, since it contains all the three types of ground truth for the same
stimuli. The second one is the MIT [30] eye fixations dataset, which we use to
benchmark the algorithms with respect to the level of visual attention modelling.
The third one is the MSRA [26] dataset, which has been introduced to evaluate
salient object detection algorithms and contains bounding boxes annotations for
each image. The fourth dataset is the THUS10000 [31] dataset which contains
10000 images taken from the MSRA dataset but provides pixel-level ground truth
and is suitable to evaluate salient object segmentation algorithms. Since the
THUS10000 dataset is derived from MSRA by picking a subset of the provided
stimuli, for comparison sake, when benchmarking against the MSRA dataset, we
consider that subset of stimuli and refer to this modified dataset as MSRA10000.

We perform three comparative experiments aimed at analysing the perfor-
mances of the saliency detection algorithms at the different levels. In particular
we perform tests to assess: 1) the performances of the algorithms with respect to
the same stimuli but different levels, 2) the performances of the algorithms with
respect to the same level, but different stimuli, and 3) to what degree there’s
a connection among the different levels. The final aim of this work is to show
that the different levels of saliency should be taken into account when evaluating
the algorithms. Consequently we want to show that considering a single saliency
level or a single dataset (which is a common practice in the literature) can lead
to erroneous evaluations. For each experiment we provide ROC curves and AUC
scores as described in [13, 14, 20].

Experiment 1: in the first experiment we assess the performances of the
considered algorithms with respect to the DUT-ORMON [32] dataset and its
different types of ground truth. The evaluations produced by this experiments
are comparable with respect to the different levels, since the stimuli are the
same (i.e., the saliency maps are computed only once and benchmarked against
the different types of ground truth). Nevertheless we expect the relative ranking
among the algorithms could change; some algorithms should perform better on
some levels than on some others;

Experiment 2: in the second experiment we evaluate the performances of
the algorithms with respect to the MIT eye fixations, THUS10000 and MSRA10000
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datasets. We compare the results with respect to the performances of the algo-
rithms on the corresponding levels of the DUT-ORMON dataset. Even if the
considered saliency levels are the same, we expect some different results with
respect to Experiment 1, since the nature of the stimuli is different in some
cases;

Experiment 3: in the third experiment, we consider the eye fixations maps
included in the DUT-ORMON dataset as saliency maps and evaluate their
performances on both salient object detection and segmentation on the same
dataset. Since the eye fixation maps are likely to be sparse, in order to be fair
with respect to the other saliency detection algorithms, we first convolve each eye
fixation map with a Gaussian kernel with variance σ = 15 pixels. We compare
the results with the performances of the other algorithms on the same dataset.
This experiment tells if there is a strong connection among the different levels
(e.g., if an algorithm designed for eye fixations can detect salient objects) or if
the two tasks should be considered independent (e.g., if an algorithm designed
for eye fixations cannot be used to detect salient objects).

5 Results & Discussion

The ROC curves related to the three experiments proposed in Section 4 are re-
ported in Fig. 4. For each diagram, the AUC values related to the ROC curves
are reported in parenthesis in the legend which is sorted in descending order to
assess the algorithms’ ranking. The ROC curves line styles are related to the
algorithms’ saliency levels: solid line for VAM, dash-dot line for SOD, dashed
line for SOS. The first column of Fig. 4 contains the ROC curves related to
the performances of the algorithms on the DUT-ORMON dataset with respect
to different levels of saliency: visual attention modelling (a), salient object de-
tection (c) and salient object segmentation (e). In the diagrams (c) and (d),
the performances of the considered algorithms are also compared to the perfor-
mances of the eye fixation maps when they are used to perform object detection
and segmentation. These additional ROC curves are referred to in the legend as
the “EF” series. The second column of Fig. 4 reports the ROC curves for the
experiments performed on the other datasets.

In Fig. 5 a comparative diagram of the results is reported. The diagram visu-
alizes the AUC values for each algorithm in all the evaluation settings (referred
to in the form “Dataset - Level”). The line styles refer to the algorithms’ saliency
levels as in Fig. 4. The overall performances of the considered algorithms on all
the experimental settings are measured computing the normalized area under the
comparative curves through numerical integration. Those values are reported in
parentheses in the legend which is sorted in descending order.

Fig. 6 shows some sample saliency maps computed on images taken from the
fourth considered datasets for visual assessment. For each image the saliency
maps computed by all the considered algorithms and the related ground truth
data are reported.
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Fig. 4. The ROC curves for the performed experiments. The ROC line styles refer
to the algorithms’ saliency levels: solid line for VAM, dash-dot line for SOD, dashed
line for SOS. The corresponding AUC scores are reported in parenthesis in the leg-
ends. Each legend is sorted by AUC score in descending order to highlight the ranking
of the algorithms in the considered settings. The first column (a, c, e) reports the
performances of the same algorithms with respect to different saliency levels on the
DUT-ORMON dataset. Each row (a-b, c-d, e-f) compares the performances of the
same algorithms with respect to the same level but different datasets. The effects of
performing salient object detection and segmentation using the ground truth fixation
maps on the DUT-ORMON dataset, are reported in (c) and (e) and refer to series
“EF”.
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Fig. 5. The diagram visualizes the AUC evaluations of the different algorithms whit
respect to different dataset/ground truth combinations. The line styles refer to the
algorithms’ saliency levels: solid line for VAM, dash-dot line for SOD, dashed line for
SOS. The “EF” series represents the performances of the eye fixations maps on the
SOD and SOS level in the DUT-ORMON dataset. As an overall evaluation among
the different evaluation settings, the normalized areas under the shown curves are
reported in parenthesis in the legend, which is sorted in descending order. No overall
evaluation of the “EF” series is provided since it is not extended to all the experimental
configurations.

5.1 Discussion on Experiment 1

In Fig. 5, looking at the transitions between the “DUT-VAM” configuration,
the “DUT-SOD” configuration and the “DUT-SOS” configuration, it can be
noted that the ranking of the algorithms generally changes according to the
saliency level. Since in the considered experimental configurations each algo-
rithm is benchmarked against the same stimuli, we can assert that the change of
ranking is entirely due to the different levels at which saliency is defined by the
different types of ground truth. The ranking related to salient object detection
(“DUT-SOD”) and salient object segmentation (“DUT-SOS”) is unchanged and
the AUC scores slightly change according to the algorithms. This suggests that
the SOD and SOS levels are closely related. A further analysis could be aimed
at assessing this intuition in a more rigorous way. Moreover, it can be noted
that some algorithms which are tailored to object detection or segmentation
(e.g., CB, FT, SR and CA) have higher (or similar) performances in the SOS
and SOD levels than in the VAM level. Whereas, the algorithms tailored to the
VAM level (e.g., GB, AWS, IS) have generally lower performances on the SOS
and SOD levels. The IT algorithm is the only exception to this scheme, giving
better results on the SOD and SOS levels even if tailored to the VAM level.
The GB algorithm has the best performances with respect to all the considered
saliency levels on the DUT-ORMON dataset, which means that it is capable
at the same time of predicting the eye fixations and performing salient object
detection and segmentation. Some examples are available in Fig. 6 for visual
assessment.
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Fig. 6. Some sample saliency maps computed by the considered algorithms. Six images
(first column) with the corresponding ground truths (last three columns) are reported
for each dataset. The THUS and MSRA datasets are grouped since the stimuli are the
same. EF = Eye Fixations maps, BB = Bounding Boxes annotations, PW = Pixel-Wise
masks.
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5.2 Discussion on Experiment 2
The transition between the “DUT-SOS” and the “THUS-SOS” configurations in
Fig. 5, shows that most of the algorithms perform much better on the THUS1000
dataset. The only exception is the IT algorithm whose performances are lower
on the THUS0000 dataset. The transition between the “DUT-SOD” and the
“MSRA-SOD” datasets shows a general increase in the performances except
for the IT aglorithm. Moreover the CB algorithm performs better than GB on
the THUS10000 dataset, even if it performed worse with respect to the same
level on the DUT-ORMON dataset (see Experiment 1). In our opinion, this
change of ranking is due to the different nature of the stimuli contained in the
two datasets. The THUS dataset has been derived from the MSRA dataset,
which was introduced for the task of salient object segmentation, so the stimuli
often contain a clearly distinguishable salient object of interest. The stimuli of
the DUT-ORMON dataset are more general (and hence more “difficult”) and
don’t always contain a clearly distinguishable salient object of interest. A visual
example of this statement is provided in Fig. 7. Since the CB algorithm has been
explicitly designed for salient object segmentation and makes use of context and
shape prior, it is likely to work better when this information can be exploited (see
Fig. 6 for visual assessment). This leads to the conclusion that, if the tackled task
is the salient object detection in very controlled conditions (where the object is
clearly distinguishable from its context), the THUS dataset is probably good for
the evaluations, while the DUT-ORMON dataset is a more challenging dataset
which can be used to assess the performances of an algorithm which is designed
to work in less constrained settings.

The transition between the “MIT-VAM” and “DUT-VAM” shows that the
AUC values for the eye fixations in the DUT-ORMON are consistent with (and
generally higher than) the values obtained on the MIT dataset. This is justified
by the fact that for both datasets the task assigned to the observer was free-
viewing and the stimuli included in the two datasets are similar (natural images
with variable contexts). Moreover, this finding emphasizes that predicting the
eye fixations is a “less ambiguous” task than predicting the salient objects of
interest, where other factors like the subject knowledge or the context of the
scene are involved. Moreover the increase of the results in the “DUT-VAM”
configurations underlines that the MIT dataset is generally more challenging for
the visual attention modelling level.

5.3 Discussion on Experiment 3

The series “EF” in Fig. 5 shows the performances of the eye fixation maps con-
tained in the DUT-ORMON dataset when used to perform salient object detec-
tion and salient object segmentation on the same dataset. It can be observed that
the eye fixations are suitable for detecting and segmenting the salient objects of
interest, performing better than all the considered algorithms. The performances
of the eye fixation can be considered as an upperbound to the performances of
algorithms designed for predicting the eye fixations when applied to the other
levels of saliency. This leads us to the conclusion that there is more room for
improving the results of the salient object detection/segmentation algorithms
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(a) DUT-ORMON

(b) THUS10000

Fig. 7. Some images from the DUT-ORMON dataset (a) and from the THUS10000 (b)
dataset. As can be noted, the THUS10000 images always contain a clearly distinguish-
able salient object of interest, while most of the images from the DUT-ORMON dataset
contain natural images where the salient objects are not always easily distinguishable.

still relying on low level bottom-up cues. However it should be considered that
the DUT-ORMON dataset contains natural images, where the salient objects
are not always clearly distinguishable or present, and so they are more likely to
correspond with the eye fixations. It would be certainly interesting to assess the
performances of the eye fixations on a dataset conceived for the object detection
task like the MSRA dataset, but, considering that this data is not available, this
is out of the scope of the present work.

6 Conclusion

We have studied saliency at three different levels, namely visual attention mod-
elling, salient object detection and salient object segmentation. We have shown
through experimental evidence that the performances of the algorithms gener-
ally depend on the saliency level with respect to which they are benchmarked.
Comparing the performances of the algorithms with respect to datasets pro-
vided with different stimuli but same type of ground truth, we have assessed
that the performances also depend on the nature of the stimuli. In particular, a
closer look to Fig. 5 would reveal that using a single dataset can lead to erro-
neous evaluations (e.g., THUS-SOS vs DUT-SOS/DUT-SOD). We have noted
that visual attention modelling is a “less ambiguous task”, since the evaluations
agree for different eye fixation datasets. We have shown that there is a strong
relationship between visual attention modelling and salient object detection and
segmentation, since the eye fixation maps can be successfully used for such tasks.
Considering that the eye fixation maps yield the best results with respect to the
considered algorithms, we argue that there is more room for improving object
detection and segmentation still relying on bottom-up pre-attentive information.
Moreover, we have reviewed the main datasets available in the literature, asso-
ciating them to the analysed saliency levels according to the provided ground
truths.

Future works will be devoted to extend our analysis to a larger number of
saliency detection algorithms and datasets. We will study how saliency algo-
rithms perform with respect to datasets composed of search arrays and psycho-
logical patterns [19]. Moreover, the level of visual attention modelling will be
studied in both the dynamic and the static domain as suggested in [33].
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