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Abstract. Emotion perception and interpretation is one of the key de-
sired capabilities of assistive robots, which could largely enhance the
quality and naturalness in human-robot interaction. According to psy-
chological studies, bodily communication has an important role in human
social behaviours. However, it is very challenging to model such affective
bodily expressions, especially in a naturalistic setting, considering the
variety of expressive patterns, as well as the difficulty of acquiring re-
liable data. In this paper, we investigate the spontaneous dimensional
emotion prediction problem in a child-robot interaction scenario. The
paper presents emotion elicitation, data acquisition, 3D skeletal repre-
sentation, feature design and machine learning algorithms. Experimental
results have shown good predictive performance on the variation trends
of emotional dimensions, especially the arousal dimension.
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1 Introduction

The development of assistive robots aims at designing robots that could help
humans in everyday life or on specific tasks. Among which, child companion
robot is one of the major applications. Such kind of robots are designed to
be able to interact autonomously with children. This requires the robots to
correctly interpret the social behaviours of the children, and respond accordingly.
Supported by psychological studies, affective phenomena, especially emotions,
are the key information conveyed in daily communication among humans [4, 26,
30, 31]. Thus the capability of understanding the emotional states of the children,
becomes an asset for child companion robots.

Emotions are multi-component responses that are delivered through various
channels such as facial expressions, bodily movements, speech and physiologi-
cal signals [15]. According to [12], 95% of the emotion recognition study was
conducted with facial cues, the majority of the remaining 5% with audio, while
the bodily stimuli were relatively neglected. However, recent empirical study
provided the evidence that emotional information could be not only conveyed,
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but also perceived, via the body as a single channel [2, 35, 10, 3]. Encouraged by
those findings, emotion recognition from bodily information attracted increasing
interests in recent years, yet most of the work in the literature was focused on
acted expressions of adults [7, 20, 38, 23, 6, 9, 32, 19]. The main drawback of these
studies is the loss of naturalness in the expressions, which makes them not suit-
able to be utilized in assistive robot applications, especially on child companion
robots.

In this paper, we introduce a framework and its preliminary results, for spon-
taneous emotion recognition from bodily expressions in a child-robot interaction
setting. The framework involves natural emotion elicitation, expressive data ac-
quisition, emotion annotation, body feature design and learning models. The
remainder of the paper is structured as following: Section 2 reviews different
emotion models and gives the explanation of our choice. Section 3 describes
our emotion elicitation data acquisition experiments, as well as the annotation
scheme. Section 4 gives the details of the features and the recognition model for
emotion prediction. We then give some experimental results in Section 5 and the
discussion in Section 6.

2 Emotion Modelling

The representation of emotions could be mainly divided into two groups, referred
to as categorical models and dimensional models. The categorical representations
are based on selected vocabulary of emotions such as happy, sad, feared, angry
etc [11]. These discrete labels of emotions have specific social meanings which
are, to a large extent, accepted universally by people despite of the regions,
cultural backgrounds or genders. Thus, they could be intuitively understood
among us. Moreover, categorical models are inherently advantaged to represent
simultaneous emotions that occur occasionally in real life [21]. However, the
capability to describe the comprehensive emotional states is highly dependent on
and constrained by the selected labels. Furthermore, categorical models normally
consider the emotions as static temporal segments, which is in conflict with
the intrinsic continuity of emotions, and limits the feasibility to describe the
variation trends. The dimensional models, on the other hand, were advocated to
meet the fact that mental states are much more complicated than the so-called
basic emotions [4]. Moreover, they can better cope with the continuous nature
of affect. The drawback is that those dimensions are less explicitly interpretable,
compared to the categorical labels.

In this work, we use the circumplex space [29], specifically, the arousal and
valence dimensions, to model the emotional states of children in their interac-
tions with a robot. Arousal values indicate the external expressions between
relaxed and aroused, while valence values reveal pleasant (positive) or unpleas-
ant (negative) status. This choice was made mainly based on the consideration
of natural interaction, by letting the robot continuously adjusting its reactions
based on the perceived emotion of the child. More precisely, in our settings it
is not necessary for the robot to interpret semantically the child’s expressions,
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while it is essential that it responds quickly according to the changes (even when
they are subtle) of the emotional states of the children.

3 Naturalistic Data Acquisition and Annotation

Obtaining expressive data is a vital step for spontaneous emotion modelling.
This requires proper emotion elicitation protocol, well arranged recording set-
up, as well as reliable annotation scheme. In this section, we briefly introduce
our spontaneous data acquisition and annotation framework. More details could
be found in [37].

3.1 Naturalistic Emotion Elicitation of Children

In general, traditional emotion elicitation approaches employed visual and/or
auditory stimuli to induce certain expressions. The most widely applied method
is to ask the participants to watch film segments that were pre-selected to de-
liver strong feelings [14]. The main drawback of this approach lies in its static
and passive nature: the participants are hardly expressing externally, especially
via the body, in a non-interactive environment. Dyadic interaction tasks also
attracted many research work by introducing the communication between par-
ticipants [28]. A simulated Sensitive Artificial Listener (SAL) with emotional
profiles were incorporated in [22] to enhance the affective engagement of the
participants. However, it is relatively difficult to design the conversational scope
to successfully trigger bodily expressions, specially in the case of children.

In order to deal with the above issues, we designed a child-robot interac-
tion scenario to elicit naturalistic expressions. Each participated child was asked
to play the Snakes and Ladders game against the humanoid robot NAO [24].
To better cope with the emotion elicitation purpose, we manually scripted the
unfolding of four games (the child and the robot would win two of those respec-
tively, and all the dice throws were predefined). The game steps were designed to
be dramatic and therefore produce a clear reaction from the child, either positive
or negative.

We hypothesize that a believable interaction should be maintained and hence
the robot’s verbal communication should be as natural as possible. With this in
mind, we opted for a Wizard-of-Oz (WoZ) setting, where the operator’s speech
was streamed to the robot in real-time, with the voice being modified [34] so that
it resembles the robot’s voice. Moreover, the robot could display two different
affective profiles while playing the game: one competitive, where the robot would
display self-centred emotions, and one was supportive, focusing on the child’s
performance. The profiles were displayed alternatively in different games. The
competitive profile made the robot react strongly to positive events and negative
events occurring to the robot, making the robot appearing more involved in the
game and eager to win it. The behaviours and gestures of the robot appeared
more aroused and energetic. Following the literature on empathy and sympathy
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Fig. 1. Examples of the extracted 3D skeletons. Note that in the first and forth
columns, the skeletons are well captured even some body parts are occluded.

and their importance in peer bonding and fostering trust [27], using the sup-
portive profile, the robot displayed and expressed behaviours suggesting a more
focused interest on the outcomes for the child’s. Additionally, the verbal expres-
sions of the WoZ operator were consistent with the specific affective profile of
the robot used at the time of interaction.

Before the start of the interaction, a short familiarization phase, using ani-
mated behaviours, took place so that the children would feel comfortable inter-
acting with the robot, and to familiarize the children with the robot’s movements
and emotional expressions. Simple gestures (e.g., standing up, waving hello, nod-
ding, etc.) and emotional postures (similar to the ones implemented in [5]) have
been used during this phase. These behaviours were triggered by the WoZ oper-
ator via a graphical user interface.

3.2 Bodily Data Acquisition

We arranged a dual-Kinect set-up. Two Microsoft Kinect sensors were placed in
90◦ to record the movement of the child, at the same frame rate. The 3D skeletons
were reconstructed offline from the dual recordings, using the iPi Mocap Studio
software [25]. Fig. 1 gives some examples of the skeletal representations. Note
that even when some body parts were occluded, the skeletons were still well
tracked.

For the purpose of our current research on multi-modal emotion recogni-
tion [13, 17, 36], we also recorded high-definition face and frontal body videos,
audio from both the robot and the child, and the child-robot interactions. All
recordings were synchronized.

3.3 Dimensional Emotion Annotation

A three-view video for each recording session (see Fig.2 as an example), was gen-
erated for annotation purposes. Such three-view videos give the raters a better
perception of the interaction, hence a more reliable annotation. Moreover, the
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Fig. 2. The synchronised three-view videos (with audio) for annotation purpose.

raters had the possibility to preview the videos as well as repeat the annotation
as many times as required. Fig.3 depicts some annotations.

4 Feature Design and Recognition Model

4.1 Feature Extraction

Psychological experiments and statistical analysis conducted in [35] revealed
some general relations between the bodily expressive patterns and the emotions.
Although this work used the categorical emotion labels, it actually inspired us
to design the feature set.

From the 3D skeletal representation, we extracted both low-level postural fea-
tures and high-level kinematic and geometrical features. Human motions could
be thought of as being composed of different physical segments. Each segment
can move independently and exhibit an independent degree of activity [1]. These
body segments have a hierarchical structure. For instance, the upper body con-
sists of two arms, head, neck and torso. And the left arm is further composed
of left hand, left lower arm and left upper arm. [35] has shown that the upper
body, especially arms and head, plays the most important role for emotional
expressions. Therefore, we calculate the spatial distances among hands, elbows
and shoulders in each of the three dimensions, as well as the angles of the two
elbows and the angles between the spine and the upper arms. Moreover, we
also calculate the distance between the feet, the orientation of the feet, and the
orientation of the shoulders. All these lead to 28 postural features in total.

As for the high-level features, they are designed to represent the abstract
characteristics of bodily expressions, such as movement power, body spatial ex-
tension, head bending etc. in [35]:

– Body movement activity and power: Using the above described hierarchical
structure, along with the mass of each body segment, estimated using the
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Fig. 3. Example of annotations made by two raters.

ergonomic definitions of [18], we further calculate the force, kinetic energy
and momentum of the movements in a hierarchical manner (from the smallest
segment to the whole body):

Forcesegment = Masssegment ×Accelerationsegment (1)

KineticEnergysegment = 0.5×Masssegment × V elocity2segment (2)

Momentumsegment = Masssegment × V elocitysegment (3)

– Body spatial extension: From the positions of the body joints, we calculate
the bounding box of the whole body. The spatial extension is calculated by
considering the length proportions of the edges, i.e. x

y , x
z and y

z .

– Symmetry index : We calculate symmetry/asymmetry index in x, y, z axis,
respectively, based on the positions of two hands. These features highlight
the importance of the hands behaviours in emotional expressions.

In total, ten high-level features are extracted. Together with the postural
features, we obtain a per-frame-based feature vector of the dimension 38. The
features calculation is very computationally efficient and could be done in real-
time, provided the skeleton stream.

4.2 Recognition Model

Our prediction task could be abstracted as a time-series regression problem, with
the following requirements:
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– As demonstrated in [16], each bodily expression consists of different tem-
poral phases, and the states are dependent on the previous ones. Thus the
prediction model has to be capable of dealing with the temporal memories.

– Due to our objective to predict effective values continuously in time, sequence
segmentation is undesired. This leads to a huge amount of frame-based data
to be handled. Therefore, an on-line learning algorithm, instead of batch-
based algorithms, is preferable, considering practical issues such as memory
and computational capability. Moreover, the learning model has to be able
to select the most informative data and discard the redundant ones.

– As both skeleton data and annotations are noisy, the learning model should
be tolerant to noise.

Bearing these in mind, we decided to use Gaussian Processes (GP), a kernel-
based non-parametric algorithm that achieved great success in time series pre-
diction problems. Specifically, the recursive kernel is used to model the temporal
dynamics. In the following, we give a brief description of the GP algorithm, more
details could be found in [33].

4.3 Online Recursive Gaussian Processes

A GP is a stochastic process which can be fully determined by its mean function

µ(x) = E[Y (x)] (4)

and its covariance function

k(x,x′) = E[(Y (x)− µ(x))(Y (x′)− µ(x′))] (5)

where x ∈ X is the input vector, Y (x) is the random function on x. Normally
we assume that µ(x) ≡ 0, so the GP is only specified by the covariance function
k(x,x′), which has a kernel form. We can then write the GP as:

Y (x) ∼ N (0, k(x,x′)) (6)

Given the training samples (xi, yi) ∈ D, where yi is the target value at data
point i, the matrix of covariances between the training points K = [k(xi,xj)] is
called Gram Matrix. We also define k(x′) = [k(xi,x

′)]Ni=1, N being the number
of training samples. Then, for a new input data point x?, the distribution of the
prediction is:

p(Y ?|x?,D) ∼ N (Y ?|µ?, σ?2) (7)

where

µ? = k(x?)T (K + σ2IN )−1y (8)
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σ?2 = k(x?,x?)− k(x?)T (K + σ2IN )−1k(x?) (9)

The variance of the prediction σ?2 could be used as the uncertainty measure.
In order to update the GP with sequentially arriving data points, [8] proposed

a sparse on-line GP algorithm. The main idea is to keep the size of the model
by controlling the number of data points that are used for prediction. Those
remained data points are called “Basic Vectors”. Each sample is scored by a
“novelty” measure:

γ(x?) = k(x?,x?)− k?T
B K−1B k?

B (10)

where k?T
B = [k(bi,x

?)] and KB = [k(bi,bj)], with bi,bj ∈ B, the basic vectors.
The highly scored new sample will be absorbed in the set of basic vectors, while
the lowest scored one will be discarded from the set. The number of basic vectors,
as a global hyperparameter, plays the role to balance the prediction strength and
the computational efficiency, which is generally determined by the calculation
capacity. Refer to [8] for more details.

To cope with the temporal dynamics in a systematic way, a recursive kernel
is applied on the GP, to form a recursive GP [33]. For the widely used squared
exponential kernel:

kSE(x,x′) = exp(−||x− x′||2

2l2
) (11)

the corresponding recursive version is:

κ(t)(x,x′) = exp(−||x
(t) − x′(t)||2

σ2
)exp(

(κ(t−1)(x,x′)− 1)

ρ2
) (12)

5 Experimental Results

The 3D skeletal frames, annotations (arousal and valence separately), as well as
the video recordings of face and frontal body, were synchronised and temporally
aligned to have the same frame rate of 30Hz. The feature vectors, as described
in section 4.1 were generated from the skeletal frames, on a frame basis, and all
values of the features were normalised to have the same order of magnitude.

Firstly, we evaluated the emotion prediction model with same-subject se-
quence. The model was trained with a full recording sequence, using the on-line
updating. Then the same sequence was tested on the model. The size of the GP
basic vector was set to 300 (maximally 300 samples in the training set were kept
in the model for prediction calculation). The results are shown in Fig. 4.

As it can be seen, both the arousal and valence dimensions were well pre-
dicted, with the 300 training samples stored in the GP. This result proved the
effectiveness of the proposed features to describe bodily expressions.

To evaluate the generalization ability of our approach, we applied the trained
model on a sequence performed by another child. Fig. 5 illustrates the obtained
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Fig. 4. Same-subject prediction. The red and green curves are the prediction and
the annotation, respectively. The first and second sub-figures are arousal and valence
dimension, respectively. Ten frames (A-J) are marked, the corresponding facial and
bodily expressions are given in the third sub-figure.

results. For the arousal dimension, as shown in the first sub-figure, the trends
were well followed. The vertical shifts could be explained by the slightly dif-
ferent scales used for the annotations of the two sequences. As for the valence
dimension, the result was less good compared to the arousal predictions. There
were several opposite predictions. For instance, around point D in the figure,
the annotated negative expression was predicted as positive. However, if we re-
view the recorded videos, the negative emotion was actually delivered via the
facial and vocal expressions, while the “jump and turn-around” body motion
alone could be interpreted as a positive expression, that happened occasionally
in other recordings. Another interesting pattern in both the arousal and va-
lence prediction is that we can see a clear lag between the ground-truth and the
prediction. This is due to the delay of the annotation (normally less than one
second) reported by the raters. This delay had been compensated by the model
during the prediction, which is a merit in real-time applications, as child-robot
interaction.

6 Discussion

In this work, we present our initial attempt to recognize children’s affective states
from their spontaneous bodily expressions, in child-robot interactions. The pre-
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Fig. 5. Cross-subject prediction. The layout is the same as in Fig. 4

dicted child’s arousal and valence values, are used by the robot’s behavioural
control system, so as to achieve a more natural and comfortable interaction.
We designed an emotion elicitation scenario. The preliminary experiments have
shown encouraging results for both arousal and valence predictions from the
stand-alone bodily cues, which has been widely recognised as a very challeng-
ing problem, especially under naturalistic settings. Moreover, our experiments
further demonstrated the importance of bodily information in emotion mod-
elling tasks. For example, position E in Fig. 5, where the face shows a positive
expression that is similar to the one at position H, while the body displays a
strongly negative state, which is consistent with the interaction circumstance at
that moment.

Similar to the conclusion in [23], the valence dimension is much more dif-
ficult to model, as shown in our preliminary results. Therefore, in future work
we planed to fuse different modalities including bodily, facial and vocal/verbal
signals. Additionally, considering the fact that spontaneous emotion annotation
is a very subjective task that has strong dependency on individual’s perception,
modelling the emotional changes instead of the absolute values might be more
practical. Last but not least, a more sophisticated sample selection algorithm,
could benefit the predictive performance, by keeping the most informative and
contributing data frames in the model.
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