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Abstract. In this paper we deal with the perception task of a wearable
navigation assistant. Specifically, we have focused on the detection of
staircases because of the important role they play in indoor navigation
due to the multi-floor reaching possibilities they bring and the lack of
security they cause, specially for those who suffer from visual deficiencies.
We use the depth sensing capacities of the modern RGB-D cameras to
segment and classify the different elements that integrate the scene and
then carry out the stair detection and modelling algorithm to retrieve
all the information that might interest the user, i.e. the location and
orientation of the staircase, the number of steps and the step dimensions.
Experiments prove that the system is able to perform in real-time and
works even under partial occlusions of the stairway.

Keywords: Stair detection, obstacle detection, segmentation, visually
impaired, RGB-D

1 Introduction

The ability of navigating effectively in the environment is natural for people, but
not easy to complete under certain circumstances, such as the case of visually
impaired people or when moving at unknown and intricate environments. A
personal guidance system must keep the subject away from hazards, but it should
also point out specific features of the environment the user might want to interact
with. In this paper we propose an algorithm which solves the detection of one of
the most common features any person can come across during his daily life: the
stairs. Finding stairs along the path has the double benefit of preventing falls
and advertising the possibility of reaching another floor in the building.

To accomplish that we use a RGB-D sensor mounted on the chest, able to
provide simultaneously color and depth information of the scene. The algorithm
takes advantage of the depth perception to find the ground automatically and to
dynamically recalibrate the ground position in order to project the 3D coordi-
nates to a user-centered system. There is a segmentation process of the projected
scene where the resulting segments are tentatively classified among floor, walls,
random shapes and possible steps. Then the stairs detection algorithm outputs
if the step candidates constitute a stairway, a single step or none. If a stairway
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is found, the algorithm retrieves how it is positioned with respect to the subject,
how many steps can be seen and their approximate dimensions.

What we present here is a new algorithm for human navigation in indoor
environments that serve as base for future add-ons to help us to understand
better the scene. Our main contribution is a new stair detection and modelling
module that provides full information of the staircases present before the sub-
ject. Experiments with video recordings in different indoor environments have
accomplished great results in terms of accuracy and time response. Besides, a
comparison of our results with the ones from other publications like [15, 16] has
been performed, showing that the algorithm not only reaches state of the art
performance but also includes further improvements. Specifically, our algorithm
is the first known to the authors to be able to obtain the measurements of
staircases even with people obstructing the view, allowing the extension of the
information of the few steps detected to complete the staircase.

2 Related Work

Stairways are inevitably present in human-made environments and constitute a
major problem in robot and human navigation. Many different types of sensors
e.g. monocular and stereo cameras or laser scanning have been used for detecting
stairs, all of them having intrinsic advantages and disadvantages. Some of the
most outstanding publications on stairs detection using conventional cameras are
[2], [5, 6] and [14], and using stereo vision [8] and [13]. Other authors preferred the
use of laser scanning for stairs finding, most of them focused on robot navigation,
such as [1], [10] and [12].

In recent years, RGB-D cameras, such as Microsoft Kinect or Asus Xtion
Pro Live, have entered the consumer market at a reduced price (around 150e)
causing great impact on the fields of computer vision and robotics. Their main
feature is that they capture color and depth information of the scene simultane-
ously. The depth sensor can help perceiving the shape of a staircase more easily
and as a consequence it can help performing a more robust detection. More-
over, the depth perception is independent of textures and lightning conditions.
On the other hand, depth cameras do not work well outdoors or even indoors
with strong sun reflections. In our recent work we have mostly focused on the
depth sensing capacities of the RGB-D camera, but the combined use of color
and depth information would overcome most limitations, and will be subject for
further research. Some authors who choose RGB-D as main sensor use machine
learning algorithms to perform staircase detection [4], [17] while others prefer
using geometrical reasoning, like [15, 16] and [3]. The later is the approach we
also consider to solve this problem.

We believe that the existing algorithms using this technology are incomplete
and can be improved. In [15] it is not taken into account the possibility of one
or two steps, quite common in doorways or other special constructions. In both
[15, 16] they do not model and retrieve the actual measurements of the steps,
information which can be used to verify the detection, to give indications to
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the user or to analyse the traversability of the staircase. They use a RANSAC
approach for finding planes in the scene that outcomes of each step a set of points
at certain height (which in [15] even extends beyond the actual step) not using
any other shape constraint but the sum of sufficient points. Also, our algorithm
uses no other sensor than the RGB-D camera itself, instead of an accelerometer
to calculate the relative position and orientation of the scene. Our automatic
floor finding algorithm is able to find the floor with one single frame and then
orient the scene accordingly for the succeeding stages not being deceived by other
possible dominant planes in the scene.

Delmerico et al. proposed an ascending stairway modelling that introduces
some interesting ideas [3]. Their goal is to localize and model stairways to check
for traversability and enable autonomous multi-floor exploration. In order to
build up a complete model of the stairway they align the point clouds from
different views relying on the robot’s estimated pose, which is complicated in
human navigation. In addition, the stair edge detection, which is the starting
point of their algorithm, is based on abrupt changes in depth that only appears
in ascending staircases when the sensor is lower than the steps, i.e. a small robot.
However, that collapses with our idea of a chest-mounted sensor. Moreover, the
incapacity of the algorithm to detect descending stairs and their requirement of a
minimum of three steps for detecting a stairway leaves a margin of improvement.

3 System Setup and Floor Detection

The first module of the proposed algorithm is presented in this section. In Sec-
tion 3.1 it is explained how the system is intended to be worn and the data
acquired. The floor finding algorithm and the coordinates projection is the sub-
ject of the Section 3.2.

3.1 Setup Configuration and Data Acquisition

There are different options to locate the camera in a wearable navigation system.
Mayol-Cuevas et al. [9] presented an extensive research about this topic. The two
most common choices are head-mounted and chest-mounted. The first one has
the advantages of being intuitive as it resembles the eyes location, allows the
subject to simply stand and scan the environment and makes harder to have
the field of view obstructed. On the other hand, it is continuously moving and
it adds more complexity to implement a robust and stable navigation system.
Moreover, it is less secure as the user might be looking away from his most
immediate hazards, as it cannot be controlled. A chest-mounted system remains
fixed to the body in a comfortable and secure manner, allowing the user to move
freely knowing that the assistant will warn of any danger along the path. For
these considerations we have chosen a chest-mounted system as the best option.

The camera will be slightly pointing downwards, at approximately 45◦ down.
As the RGB-D sensor employed has a 45◦ of vertical field of view, it should be
enough to locate the obstacle-free path in front of the subject and to easily
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Fig. 1: Wearable camera location and axis position before (XY Z) and after (X ′Y ′Z′)
the projection to the ground in a 3D render (left). Point clouds from a real case scenario,
where the white points on the floor are those which form the best floor candidate plane
and the yellow arrow is the corresponding normal (right).

detect stairs in the scene. Currently, all the computations are operated on a
laptop which could be carried in a backpack. A scheme of the configuration is
shown in Fig. 1 (left).

The basic type of data used by our system are the so-called point clouds,
consisting on a set of data of each pixel which contains the 3D location with
respect to the camera and the RGB information. We have used Robot Operating
System (ROS) as framework and the Point-Cloud Library (PCL) as our main
library to deal with this type of data. Video sequences or single point clouds can
also be stored to work offline. Capturing the data once the system is running is
not highly time-consuming (about 30 Hz).

The amount of data generated by each point cloud is too large to be entirely
used and thus the first operation will be filtering. For this we use a 3D voxel grid
filter, a common algorithm widely used for downsampling point clouds, which
also helps removing noise and smoothing the surfaces. The sizes of the edges of
the voxels are determined by balancing time consumption and accuracy of the
data. The filtered cloud will be used in the remaining stages.

3.2 Floor Detection

The point clouds have 3D Euclidean measurements of its location in front of the
camera, but it is necessary to calculate the relative position between the sensor
and the subject in order to convert the raw information acquired to oriented
data that would help knowing the absolute position of the objects in the scene.
The axis of the coordinate system will be transformed as shown in Fig. 1.

This projection requires to find the plane that most likely corresponds to
the floor, which may not be the most dominant. No other sensor has been used
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for this task, so the only previous knowledge is the approximate location of
the camera on the chest, which can vary due to the movement and the height
of the subject. A RANSAC procedure is used to find planes, and the relative
distance and orientation of each plane with respect to the camera are then tested
to determine whether it is floor or not. A pass-through filter in z − axis can
additionally be used to restrict the search to the proximity of the user (Fig. 1
in the right). If the floor is not found with the first cloud, a new one will be
captured and the process will be repeated. As the camera is pointing downwards
and the user is supposed to be standing on the floor, the process should not last
long.

Once a set of points belonging to a good floor candidate plane are found, the
transformation matrix is computed. The normal of the plane has to be parallel
to the direction of the y − axis, and the origin of coordinates is placed on the
floor, at height 0. The fundamental plane equation is Ax + By + Cz + D = 0,
being the normal vector n = (A,B,C) and D the perpendicular distance from
the origin to the plane. The rotation angles of interest are those corresponding
to the x− axis (α) and to the z − axis (γ). It is possible to get those angles by
computing the rotation needed to make n parallel to j = (0, 1, 0) as shown in
(1). The entire transformation matrix is shown in (2).

RzRxn
T =

 cosγ −sinγ 0
sinγ cosγ 0

0 0 1

1 0 0
0 cosα −sinα
0 sinα cosα

A
B
C

 =

0
1
0

 = j (1)

T =


cosγ −sinγcosα sinγsinα 0
sinγ cosγcosα −cosγsinα −D

0 sinα cosα 0
0 0 0 1

 (2)

4 Segmentation of the Scene

Segmentation has been an essential issue in robot and human navigation through
the years. In order to perform any relatively complex task it is necessary to recog-
nize the features of your surroundings. Our case of study is indoor environments,
where, like in most human-made scenarios, the basic structure of the scene is
a combination of planes at different orientations. Range sensors have proven to
be extremely helpful for this mission, and many different algorithms have been
developed to perform the segmentation [7].

In this work a region-growing strategy has been used, enhanced with some
refinement functions. Regions are afterwards classified as planar and non-planar
using a RANSAC algorithm. We prefer this approach instead of using directly
plane detection algorithms, such as RANSAC or Hough transform, because with
region-growing the planes found form already a closed region corresponding to
one single element and are not a set of uncorrelated points scattered in the scene
[15]. The remaining points are later merged into existing planes or associated to
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(a) Normal estimation (b) Region-growing (c) Planar test

(d) Planes extension (e) Cluster extraction (f) Classification

Fig. 2: Example of segmentation and classification from a single frame.

different clusters of points. In particular, the segmentation module is divided in
the following stages:

Normal estimation (Fig. 2a): The normal estimation problem is solved
using an algorithm derived from the Principal Component Analysis. For each
point and a group of K neighbours, the third component obtained from the
analysis corresponds to the normal direction, flipped towards the viewpoint. In
this process the curvature of the surfaces is also computed.

Region-growing (Fig. 2b): This algorithm starts from a seed, which is the
point with minimum curvature, and then expands the region towards the neigh-
bouring points that have small angle between the normals and similar curvature
value. The neighbouring points which satisfy the normal and curvature thresh-
old became the new seeds and repeats until the region cannot expand anymore.
Then, a new initial seed is chosen among the remaining points, and the process
starts over until the regions are smaller than a certain threshold.

Planar test (Fig. 2c): Because of how the region-growing algorithm works,
most regions are planes or have a high degree of flatness, but they can also be
a curved surface with smooth transitions. As the ground, walls, doors or steps
are all planes, it is important to test this condition. A RANSAC algorithm looks
for the biggest plane in each region and, if most of the points are inliers, it will
be considered a planar surface with the plane equation obtained. Otherwise, the
regions will be considered as arbitrary obstacles of the scene.

Planes extension (Fig. 2d): The points not belonging to any region are
included in a planar region if they have small angle between their normal and
the plane normal, they have a small perpendicular distance to the plane and
they are situated near the region.
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Euclidean cluster extraction (Fig. 2e): The points not belonging to any
region go through a cluster extraction algorithm which establish connections and
form separate entities, considered obstacles.

Plane classification (Fig. 2f): Once the segmentation stage has succeeded
the planes are classified among different classes according to the orientation
and the relative position of the planes. The orientation of the plane normals is
compared to the normal vector of the floor. If the angle between the planes and
the ground is close to 90◦, they are tentatively classified as walls, whereas planes
whose angles are close to 0◦ are considered horizontal. Any other circumstance is
considered obstacle. In this case the term walls simply defines a vertical planar
structure as no further reasoning has been done yet.

13 cm ≤ Riser ≤ 18.5 cm

Tread ≥ 28 cm

54 cm ≤ 2 risers + 1 tread ≤ 70 cm

Htol = 6cm

Step candidates

Fig. 3: Representation of the measurements of a step according to the Technical Edifi-
cation Code from Spain (left). In green, the portion of the ground which can be walked
over as it has no obstacles above (right).

Horizontal planes can be ground, steps or other obstacles that should be
avoided (e.g. a table). It is common that the floor or steps are composed by
more than one planar region as occlusions can happen. The height of the cen-
troid of the planes is then considered: The regions with height close to zero
are classified as floor, whereas the regions with positive or negative height are
classified as step candidates if they satisfy the minimum height requirements reg-
ulated by the current Technical Edification Code valid in Spain [11] (see Fig. 3
left). According to the Code, the height of the steps ranges from a minimum
Hmin = 13cm to a maximum Hmax = 18.5cm. Horizontal regions will be con-
sidered as step candidates if they are situated above (in ascending stairways) or
below (in descending ones) Hmin − Htol/2 = 10cm from the ground. It is nec-
essary to add a tolerance as the measurements can be too noisy. The existence
of a set of at least one step candidate activates the stair detection algorithm.
Other size and shape restrictions are kept to a minimum at this point because
they could discard valid portions of steps which might be useful for a better
modelling of staircases.
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As a result of the segmentation and classification algorithm, the obstacles
position can be projected to the ground to remove the non-walkable area from
the ground detected (Fig. 3, right). Additionally, if the floor plane equation has
significantly changed, a new transformation matrix is computed to not lose track
of the orientation of the scene.

5 Stair Detection and Modelling Algorithm

In Section 4 it has been explained how the step candidates are obtained. Our
stair detection and modelling algorithm is the next phase, using these step can-
didates as input, and providing the full characteristics of the staircase as output.
At this moment, the algorithm is functional with both ascending and descending
staircases, being capable of detecting one of each at a time. There is no restric-
tions about the number of steps belonging to a staircase, making also isolated
single steps detectable during navigation. Our work goes beyond simple detec-
tion and models the staircase even with partial occlusions such as people walking
the stairs. That means that every step can be found split in different regions.
Spiral staircases can be detected but the modelling part has not been addressed
yet.

5.1 Stair Detection

The detection algorithm establishes connections among the candidates to discard
the ones that do not belong to the staircase and to group the stair planes in levels
according to the distance in steps to the floor. The candidates are analysed one
by one in a bottom-up strategy, for which it is necessary to select a first step. The
candidates whose centroid is closer than Hmax+Htol/2 = 21.5cm to the ground
constitute first step candidates. If there are more than one, the connectivity
to the levels above and below must be tested, otherwise it is immediate. The
connectivity between regions has been computed using neighbour search and
Kd-trees. The first step must also be connected to the floor if it is present in the
image, i.e. if the user has not walked too close to the staircase. In a live video
sequence, when there is no floor in sight, as the relative position of the camera
and the user has already been computed and we know where the ground is, the
connection to the ground does not need to be tested. If no first step candidate
satisfies neighbouring conditions, the algorithm determines there is no staircase.

A special case occurs when there is only one possible step. It might either
actually be the first step of a staircase, or be just a single step on the way. But it
also can be an object which should be considered an obstacle. Here, strict area
and shape conditions can be applied in order to determine in which case we are.
In Fig. 4a we show an example where the ground at another level is detected.

Once there is a first step, the algorithm takes the remaining step candidates
by height and starts testing connectivity and height conditions to determine
whether they belong to the current or to a new level. If they have no connection
to previous levels (e.g. a horizontal plane correspondent to a table) they are
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(a) (b)

Fig. 4: (a) Floor at another level examples. (b) Connectivity between step candidates
to previous levels: Ascending and descending staircases (left), more than one region
per level (right).

classified as obstacles. As a result, a set of connected regions corresponding to
different levels is obtained (Fig. 4b). When all the candidates have been checked,
if the number of levels is greater than one, the algorithm starts the modelling of
the staircase.

5.2 Stair Modelling

For modelling staircases we consider the following global geometric parameters:
the width of the steps, the length of the tread, the height of the riser and the
number of steps. To achieve that we use the Principal Component Analysis
(PCA). This analysis is applied to each set of points corresponding to the tread
of the step in each level of the staircase. Usual staircases have rectangular steps
with much more width than length. The first component obtained from the PCA
corresponds to the longitudinal direction (width), the second component follows
the direction along the length of the step and the third component is orthogonal
to the previous two, matching the normal direction of the tread (Fig. 5 left).

Mathematically, it consists in calculating the centroid of the data points,
which is the mean value on each axis µx = (µx, µy, µz) and the covariance
matrix of the data Σ, which is a 3 × 3 matrix as we are in 3D coordinates. The
eigenvectors of the covariance matrix are the principal components φ1, φ2 and φ3,
being the correspondent to the highest eigenvalue the first component (width),
the second highest the second component (length) and the lowest eigenvalue the
third component (vertical). If we form a matrix with these vectors in columns we
obtain the transformation matrix Φ = [φ1, φ2, φ3] which transforms our points
Px from the initial x = (x, y, z) axis system to Pφ in the principal direction axis
(φ1, φ2, φ3) with the equation:

Pφ = (Px − µx) · Φ (3)

Once we have our cloud transformed to the new axes it is easy to get the
minimum and maximum coordinate in each direction to obtain the oriented
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Principal components

Points

Centroid

Bounding rectangle

Concave hull

Bounding rectangle area
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Fig. 5: Principal components for each step coloured in order (blue-green-red) and
bounding rectangle in white (left). Illustrative sketch of the different components
(right).

bounding box of the step. As the height is small it can be considered negligible,
considering the step as a two-dimensional rectangular bounding box (Fig. 5
right). The difference between the maximum and the minimum in the first and
second component are the width and the length respectively. We define extent
as the ratio of the area of the concave hull including the points and the area
of the rectangle. The extent is used to measure the quality of the detected step
as it relates the area occupied by the points with respect to the area they are
supposed to occupy.

The process is repeated with all steps, considering the addition of clouds
at the same level as the cloud of the step. Each step has different dimensions
and orientations depending on the quality of the measurements, the position of
the steps with respect to the camera or the filters performance. We will choose
the best step as the one with higher extent value among the steps within the
valid width range, and its principal components and width will be considered as
initial best guess for the model. The valid width range we choose ranges from
the maximum width value detected to that maximum value minus 25cm. The
principal direction of the staircase is corrected in two ways. Firstly, by forcing
the third principal component to be parallel to the vertical axis. Secondly, by
minimizing the sum of the area of the bounding rectangles of every step by
rotating the two principal directions of the best step.

The obtention of the bounding boxes and dimensions is repeated for each
step with the definitive staircase orientation. The steps will be modelled as par-
allelograms whose width is the width of the best step, the height is the average
vertical distance between consecutive steps and the length the mean horizontal
distance between the edge of every two consecutive steps. The definitive length
of the steps is computed this way because the vertical projection of the bounding
rectangles of two consecutive steps usually overlaps in ascending staircases (due
to inclining or non-existent risers) or leaves a gap in descending staircases (due
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Fig. 6: Estimated model of the staircase. Top images only draws the parallelograms
corresponding to the steps found, whereas at the bottom all the steps are displayed.

to self occlusions). Once we have all the parameters, we can use them to validate
the staircase detection or discard it, and in case of positive results we can trace
the model and even extend the information to non-detected steps (Fig. 6).

6 Experimental Evaluation

The experiments were carried out in a 3.4Ghz computer with 16 Gb of RAM
running Ubuntu 12.04, ROS Hydro and the library PCL version 1.7.1. With
this framework we were able to capture 640 × 480 3D point clouds in real-time
and record video sequences and single frames for later experiments. Although we
already had our own recordings from previous research,1 new scenarios including
stairs were also recorded to conduct specific experiments. With our own datasets
we could observe that the performance of the system improves when it is used
in a real-time video sequence, live or recorded. In this mode, the floor detection
algorithm is only used once, and as a result its presence in the image is not
required all the time.

Tang et al. compiled a dataset in [15] which includes 148 captures made
with a Microsoft Kinect sensor. 90 of them include RGB and depth snapshots
of a set of staircases from different poses and the other 58 are normal indoor
scenes to test for false positives. The accelerometer measurements of the sensor
position were also included but they are not used in our work. From the RGB and
disparity range image the point cloud was calculated in each case, using previous

1 http://webdiis.unizar.es/%7Eglopez/dataset.html



12 A. Pérez-Yus, G. López-Nicolás, J. J. Guerrero

Fig. 7: Some examples of results obtained with the dataset. The last column are from
captures made in darkness.

information about the calibration parameters of the camera. The results of the
test with this dataset were successful even in total darkness (Fig. 7). We tested
for false positives and false negatives using this dataset and compared our results
with the ones from [15] and [16] (Fig. 8a). We achieve better results with the
0% of false negatives as in [16] but also reaching a 0% of false positives.

It is also interesting to look at the step detection ratio according to the
position of the step in the staircase (Fig. 8b). The behaviour changes when we
are facing an ascending staircase or a descending one. Due to the orientation of
the chest-mounted sensor, standing before a descending staircase allow us to see
the whole staircase but the self occlusion of consecutive steps and quality of the
measurements decreasing with the distance harms the detection of steps farther
than the third position. In ascending staircases the ratio of detection diminishes
in a less prominent way, because the steps remain almost as close to the subject
as they rise, although with the penalty of having less and less visual angle. Steps
higher than the seventh position are out of the field of view of the camera.

The computing time was also tested to analyse the performance of the system
and to compare it to the state of the art. The complete loop iteration time
ranges from 50 to 150ms, giving a rate of 7−20Hz. The variation depends on the
scene itself: close up captures provides good quality clouds and the segmentation
algorithm provide less regions and as a consequence, faster results. On the other
hand, a capture taken to a scene situated far from the camera adds more noise
and less smooth surfaces. In general, this timing should be considered fast enough
for indoor navigation assuming walking speeds around 1−1.5m/s. A breakdown
of the time distribution is shown in Table 1. This rate could be improved adding
some optimizations to the algorithm or using multi-core processing, although no
optimization efforts have been done yet.

We have also quantitatively analysed the resemblance of the model to the
real staircase. We have excluded the width from the analysis as the view of
the stairs may be partial and it is not as relevant as the other measurements.
After computing the height and length of a staircases, in both ascending and
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Fig. 8: (a) Comparison of false negatives and false positives between our work and the
presented by [15, 16]. (b) Step detection rate with the step position in the staircase.

Table 1: Average time of the stages of
the algorithm

Stage Time

Filtering 15ms

Ground extraction 3ms

Normal extraction 13ms

Region-growing 16ms

Plane extension 20ms

Cluster extraction 5ms

Classification 16ms

1 stair detection 5ms

Table 2: Average and standard deviation
(in centimetres) of the length and height
measured with and without obstacles.

No obstacles Obstacles Real
x̄ σ x̄ σ xr

Length 29 2.01 29.39 1.89 30

Height 15.4 1.36 15.56 0.59 17

descending perspectives, from different viewing angles, the results were compared
to the real measurements, as shown in the Table 2. As we can observe, the
values do not have strong deviation. Half of the experiments were conducted with
real people going up and down the stairs. Obstructing the view of the staircase
partially does not adversely affect the quality of the model. Some pictures of the
experiments with people climbing up/down the staircase can be seen in Fig. 9.

7 Conclusions and Future Work

In this paper we have presented the perception module of a wearable personal
assistant oriented to visually impaired people, although it may have applications
in other fields such as robotics or special cases of human navigation. Our main
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Fig. 9: Example of a person partially blocking the view of the staircase during ascent
or descent.

contribution is the stair detection algorithm, which is not only able to detect
but also to model staircases with their complete dimensions and position with
respect to the user. That would provide the subject with multi-floor navigation
possibilities. The experiments prove that the model quality and the computing
time are good enough to be used in real-time. The algorithm overcomes some
limitations existing in related works, such as the possibility of single step de-
tection or full modelling with partial occlusions caused mainly by other people
traversing the staircases.

More detection features are expected to be developed and added to the per-
sonal assistant, such as door detection, text sign recognition or people detection.
But first we would like to extend the possibilities that a RGB-D sensor can
bring to stair detection by combining the depth information with color images.
RGB data would help improving the model, counting the steps to extend the
staircase model, detecting possible staircases from farther distances where depth
measurements are not reliable or when the sun rays affect negatively the depth
sensing. It is also required to test the system by users in real scenarios in order
to receive feedback for improving our work.
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