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Abstract. A prototype wearable visual aid for helping visually impaired
people find desired objects in their environment is described. The system
is comprised of a head-worn camera to capture the scene, an Android
phone interface to specify a desired object, and an attention-biasing-
enhanced object recognition algorithm to identify three most likely ob-
ject candidate regions, select the best-matching one, and pass its location
to an object tracking algorithm. The object is tracked as the user’s head
moves, and auditory feedback is provided to help the user maintain the
object in the field of view, enabling easy reach and grasp. The implemen-
tation and integration of the system leading to testing of the working
prototype with visually-impaired subjects at the Braille Institute in Los
Angeles (demonstration in the accompanying video) is described. Results
indicate that this system has clear potential to help visually-impaired
users in achieving near-real-time object localization and grasp.
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1 Introduction

The World Health Organization estimates that there are 285 million visually
impaired people in the world [1]. Studies by Nau et al. [2] have concluded that
locating items is one of the prime tasks for which visually impaired persons con-
tinue to depend on sighted helpers. This paper describes a prototype wearable
visual aid, currently under development, which provides near-real time object
recognition, localization, tracking, and guidance cues to help a visually impaired
user to point his or her head towards a desired object, allowing for easy reach
and grasp of the target object. The system consists of an Android-phone-based
command module, which allows the user to query for specific items of interest
via finger-touch. A two-stage computer vision algorithm next localizes and rec-
ognizes the desired item: recognition is achieved via SURF (Speeded Up Robust
Features: robust local feature detector developed by Bay et al. [26]), further en-
hanced by an attention-biasing algorithm developed at the University of South-
ern California (Attention Biased Speeded Up Robust Features, AB-SURF). This
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algorithm [5] takes inspiration from the human cognitive system’s ability to bias
attention to characteristics relevant to the desired object and uses these features
to locate the three most likely candidate regions in the scene where the object
may be present. Next, high-performing Speeded Up Robust Features (SURF)
[26] are extracted to find which one of these three possible regions best matches
images of the desired object contained in the trained database; location infor-
mation regarding this best region is passed to an object tracker [32]. The tracker
maintains position information of the object as the user’s head moves, while
auditory feedback cues are provided to help the user center the object in the
camera field of view for easy access. Visually impaired subjects were able to use
the system to grasp desired objects within 12 to 13 seconds from the time the
algorithm recognized the object, demonstrating the system’s value for improving
the independence and quality of life for visually impaired people.

2 Related Work: System Overview and Context

Object recognition devices for the visually impaired can be categorized into two
main groups: (1) wearable, camera-based systems which process the incoming
scene [6, 7] and (2) smart-phone or finger-pointing based aids that recognize
items within the field of view of the phone camera or region defined by the
finger-point [8, 9, 10, 11]. Of the first variety, Bjorkman et al. [6] have imple-
mented a system which utilizes two pairs of stereo cameras, taking inspiration
from the human visual process: one pair of cameras is for saccading to rele-
vant object regions, and the other pair is for foveating (or focusing) for finer
grained recognition within this relevant region. Furthermore, they utilize hue-
based saliency and SIFT (Scale Invariant Feature Transform) [25] based features
along with color histograms for object recognition; they also harness depth in-
formation using the stereo cameras to determine object size and filter objects
based on foreground or background location. Although this approach shows good
accuracy on household objects and functions quickly, its bulkiness makes it im-
practical for use by individuals, and there exists no means of providing guidance
or feedback to a user once an object is found. On the other hand, in the work
of Bigham et al. [8], the user captures an initial picture of the scene using a
smartphone (lightweight and easy to use, though relies on the user’s ability to
frame a well-defined scene); the image is then crowd-sourced: expert sighted
human annotators view the images on a website and provide back detailed seg-
mentation and object identity information, allowing for object localization for
the visually-impaired user (via auditory feedback) but relying on external an-
notators to obtain that goal. The OrCam [12] introduced in June of 2013 has
combined both of these approaches with an eye-level camera attached to the
user’s glasses and basic recognition capability (of traffic lights, signs, and some
objects); however, it also relies on the user having sufficient vision to point his
or her finger to relevant items of interest in the surroundings. The novelty of
the innovation described here lies in its combination of the best of both of the
above approaches while also providing a closed loop system (that can aid even
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those who are completely blind, as no localization on the part of the user is
required). The system utilizes only a single camera with lightweight, portable
algorithms (all implemented on a single MacBook Pro I5, 2.4 GHz laptop com-
puter), that attend, recognize, localize, track, and provide feedback to the user
in near real-time from the time the user provides a tactile request for an object
on an Android phone. All system components can be seen in the figure below.

Fig. 1. All components of system shown as they are typically set during an experiment
with a visually impaired subject.

3 Implementation Details

3.1 Android User Command Interface

This section describes the implementation of the front-end user interface that
the visually impaired user employs to provide input to the system as to which
item he or she is interested in locating. A User Datagram Protocol (UDP) server-
client model was chosen to allow communication between a Java-based tactile
interface application on an Android phone [27], which acts as the client, and a
Neuromorphic Robotics Toolkit (NRT) C++ module on the MacBook Pro lap-
top mentioned earlier, which acts as the server and houses all computer vision
algorithms for the system (NRT is the modular toolkit developed at the Univer-
sity of Southern California [34] that is used for system integration throughout
this paper). The Android device transmits messages in the form of strings (the
name of the user’s object query, e.g. “SPLENDA”), while the server module
receives this string information and transforms it into a form that can be un-
derstood and processed by the rest of the object recognition chain (also built
within separate NRT modules, discussed in more detail in Section 4).
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3.2 Object Recognition

Alternate Recognition Techniques Although several smart-phone based ap-
plications and electronic travel aids exist (including [9, 10, 12]) that provide
recognition and navigation assistance to blind and low vision users, they require
the user to select a ‘frame’ or region as input to the system. This is a real chal-
lenge for visually impaired users [2, 3, 4]. Thus, a computer vision system that
can localize a desired region or object within a scene and provide recognition
of the contents of that region is invaluable. Taking inspiration from the human
cognitive system, the guided visual search model introduced by Jeremy Wolfe
[13, 14] explains that humans locate items of interest in their surroundings by
focusing attention on ‘targets’ (key features relevant to the current query item)
and paying less attention to ‘distractors’. While other object recognition algo-
rithms exist that rely on modulating attention [15], recognition is restricted to
certain dataset types (cars, faces). Specifically to help the visually impaired in
their grocery shopping, Winlock et al. [16] have designed a system to recognize
several grocery store items using a combination of mosaicing, SURF descriptors,
and Bayesian statistics; they have also established certain objects that are easier
to recognize than others. While achieving near real-time recognition, their sys-
tem does not contain an explicit closed-loop feedback component for localization
after recognition. We accomplish this by harnessing attention biasing to fixate
on regions most relevant given a user’s query for a specific item among objects
from a trained database, followed by SURF (Speeded Up Robust Features) for
object recognition in the chosen regions. As another alternative, sensory substi-
tution devices (SSDs) are a unique class of aids for the blind that use a modality
other than vision to convey visual information to the user. An example of an
SSD is the vOICe system. The vOICe SSD represents the camera-captured scene
via an auditory soundscape. The vOICe conversion program [17] transforms a
scene into auditory information (‘soundscapes’) based on three rules: the verti-
cal axis (i.e., elevation of the object) is represented by frequency, the horizontal
axis by time and stereo panning, and the brightness of the image is encoded by
loudness. Although these conversion rules appear relatively simple, explicit and
quite extensive training is required to learn how to interpret even simple shapes.
Learning to use the vOICe SSD requires months of training before independent
utility can be achieved [18].

While SSDs, electronic travel aids, and smart phone applications may pro-
vide some form of scene understanding, they suffer from various disadvantages:
excessive reliance on human neuroplasticity and learning before a blind person
can use them productively, inability to locate the relevant regions where desired
objects may be present in a scene, and potentially uncomfortable latency times
before a recognition response is provided to a user. Our work, Attention-Biased
Speeded Up Robust Features (AB-SURF), provides both localization and recog-
nition and is optimized for integration into a closed loop system which also
tracks the recognized object and provides real-time feedback, allowing the user
to independently query, seek, and reach out to grasp a desired object in the
surroundings.
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Traditional computer vision object recognition models rely on sliding-window
detectors (i.e. application of object recognition algorithms on overlapping subim-
ages of the scene, tessellating the whole scene, a computationally intensive and
time consuming process) [19, 20]. To enhance efficiency, we have replaced this
technique by an attention-based mechanism that narrows down regions of inter-
est by biasing the search toward statistical features consistent with the query
object. Attention mechanisms are broken into three different types: (1) those
stemming from bottom-up cues [21, 22], e.g. inherently conspicuous regions, (2)
those influenced by top-down (task-driven) motivation, e.g. knowledge of the tar-
get item [24], and (3) those resulting from a blend of bottom-up and top down
forces [23, 24]. The bottom-up saliency maps are computed via the method
of Itti and Koch [24]. Specifically, in our top down approach, we use 30 hues
and 6 saturations within the color dimension, 12 intensities within the lumi-
nance dimension, and 8 orientations. Overall, this narrows the space over which
recognition must compute, yielding a five-fold speedup as compared to SURF
performance alone on 640 x 480-pixel images. In addition, we achieve object
recognition accuracy with AB-SURF in simple cluttered scenes comparable to
the recognition accuracy of SURF on single, isolated objects (more quantitative
results discussed in next section).

Neurally-Inspired Object Recognition: Attention-Biased Speeded Up
Robust Features (AB-SURF) Here we describe implementation and perfor-
mance of an algorithm to localize as well as recognize objects contained in regions
of interest, named Attention Biased Speeded Up Robust Features (AB-SURF).
AB-SURF functions by computing a biased saliency map; unlike a bottom-up
saliency map [24], which is generated by determining the most inherently salient
regions in a scene by extracting features across channels of hue and orientation
and weighing all features equally, a biased saliency map is generated by heavily
weighing those characteristics most consistent with the item of interest, allowing
for attention to be focused to regions relevant for a given query even if they are
not necessarily the most conspicuous regions at first glance. Once these regions
are extracted, SURF-based [26] object recognition is used to evaluate these top
three regions to determine the best match given the query, outputting only the
top result as the recognized object.

Complete analysis of attention-biased SURF object recognition was carried
out on 382 10-object images and 655 5-object images in [5]; True Positive Rates
(TPRs: number of instances when the object was correctly recognized as present
out of the total number of tested images) are plotted for each object below. All
five objects present in the 5-object images exhibit true positive recognition rates
of greater than 80%, with three of the five objects having recognition rates of
greater than 99%. Overall, the 5-object case yields excellent results. Furthermore,
attention biasing significantly reduces the computation required for recognition
by eliminating the need for a brute force sliding window approach to locate a
desired object in the image. The sliding window approach (at 50% window over-
lap) would require at least 40 subwindows (or many more, if the sliding window
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overlap is greater than 50% to improve performance) to be recognized per frame,
instead of just the 3 subwindows selected by attention-biasing, requiring 7 to 8
seconds to process.

Fig. 2. Plot of true positive recognition rate for each of the five objects in 5-object
scenes.

Scenes with 10 household objects exhibit an expected reduction in accuracy
due to the presence of more objects in the same field of view, resulting in lower
resolution for each object. Accuracy for 5 of the objects ranges from 63% to
96%. However, true positive recognition rates of the other 5 objects consistently
remain less than 50%, with three of these below 10% chance level. Thus, attention
biasing is helpful for some objects (Orange, Prune, Soup, Splenda, Cereal). These
also are the largest of the 10 representative household objects chosen; hence,
they fill most of the area in the recognized subwindows, making them well-
matched to the subwindow size chosen (180 by 180 pixels). By contrast, the
5 objects for which attention-biased object recognition exhibits low accuracy
occupy only a fraction of the chosen subwindow, suggesting that conducting these
analyses with tuned subwindow sizes may improve accuracy for certain objects,
as less surrounding clutter will reduce confusion for the feature-based recognition
algorithm. Therefore, future extensions will harness depth information via input
from a PrimeSense depth sensor to obtain more accurate object segmentation,
in order to filter objects based on size and shape, enabling more robust, accurate
object recognition.

3.3 Object Localization and Tracking System (OLTS)

In the context of this system, tracking algorithms serve as a means to detect
objects in real time. Real time conditions come in to play because one of the
main purposes of the system is to give dynamic feedback to human users. Thus,
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Fig. 3. Plot of true positive recognition rate for each of the ten objects in 10-object
scenes. Seven of the ten objects exhibit classification accuracy above chance (ten per-
cent).

it was necessary to choose a state of the art tracker. There are several trackers
which track objects via assuming search areas within the frame [29, 30, 31], or
which use state prediction via particle filters to determine object trajectory.

The aforementioned trackers yield desirable results; however, their flaws are
exposed in videos exhibiting abrupt motion, frame-cuts, or objects leaving the
field of view [32]. These are all constraints necessary for the OLTS. While em-
ploying the OLTS, the user wears a head mounted camera with a 100 degree
field of view (FOV); thus, abrupt motion or objects leaving the FOV may occur.
These considerations led us to utilizing the Context Tracker [32].

The system utilizes the Context Tracker and an auditory feedback module,
the Sound Map. The system only requires one video frame with a bounding box
enclosing the object to be tracked. Once this bounding box has been provided
to the tracker, the tracker continually detects the object in the following frames,
and the position of the object is updated within the control loop of the program.
This position is then passed to the auditory feedback algorithm. The feedback
algorithm then provides speech-synthesized commands to the user based on the
position of the aforementioned object. The specifics of the vision algorithm and
feedback module will be explained below.

Context Tracker The Context Tracker, which makes use of the P-N tracker
[32], was the tracker of choice for the OLTS, as it is a basic target tracker. In
addition to P-N learning, the Context tracker utilizes contextual information
to robustly track objects. This contextual information is categorized into two
entities: supporters and distracters. Supporters are features that consistently
occur around the object; distracters are regions that have similar appearance to
the actual target/object [4]. The addition of supporters and distracters allows
the context tracker to deal with frame cuts, similar objects, and abrupt motion.
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Fig. 4. OLTS hardware. A camera mounted to glasses sends visual input to the com-
puter. The computer houses the vision and feedback algorithms. The bone conduction
headphones relay information to the subject.

Auditory Feedback The feedback algorithm, the Sound Map, yields speech-
synthesized feedback to the user based on the position of the desired object.
It does so by discretizing the camera field of view into 9 regions (Figure 5).
Depending upon the region in which the object resides, the computer synthesizes
spoken words back to the user.

Fig. 5. Sound Map for auditory feedback mechanism. The grid represents a camera
field of view (FOV). The position of the object in 3D space is mapped to the 2D
FOV above. Once the object is mapped to this FOV, it falls into one of the 9 grid
cells. Depending upon the grid to which the object belongs, the computer conveys the
corresponding word. The size of this entire grid covers 640 x 480 pixels.

The user’s goal is to listen to voice feedback, and turn his or her head based
on the synthesized words. Once the object is within the “Center” region of
the camera, the computer conveys the synthesized word “Center” to the user
through bone conduction headphones. The user then reaches and grasps the
desired object. A central angle of 23.4 degrees was chosen, as this was determined
to allow for optimal grasp based on another study [33].
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4 System Integration

The modular components of the system were integrated within the Neuromorphic
Robotics Toolkit developed at the University of Southern California [34]. The
attention-biasing, recognition, user interface, tracking, and feedback modules are
shown below in Figure 6 with their corresponding input and output ports. These
ensure correct information is passed between modules as needed to allow for their
functionality, much like arguments can be passed from function to function in a
computer program.

Fig. 6. System integration in Neuromorphic Robotics Toolkit; system components are
labeled; links between modules represent inputs and outputs needed for functioning of
each subpart based on information from other subparts.

5 Methods

The prototype system was taken to the Braille Institute in Los Angeles, Cali-
fornia (USA) for testing with visually impaired subjects. Subjects were seated
in front of one, two, or three household objects either positioned at the center,
left, or right of the visual field. They were provided with an Android phone in-
terface with the “Talk Accessibility Mode” turned on (upon one tap of a button
on the screen, the function of the button is spoken out loud; two quick taps in
succession are required to execute the command controlled by the button). The
Android interface employs software developed in [27], which allows the user to
“Find” a specific item and then shows a screen of ten possible objects (images
of the Android interface screens are shown in Figure 7); we restricted search
in this experiment to a box of Splenda or a carton of Orange juice. Subjects
were instructed to double-tap the name of a single pre-specified object in front
of them and then wait to hear cues as to where the object was located; when



10 K. Thakoor, N. Mante, C. Siagian, J. Weiland, L. Itti, G. Medioni

the ‘center’ or ‘stay’ command was given, they were instructed to reach out
with their hand in a straight line from their nose until they touched the object
situated approximately arm’s length (0.45m to 0.61m, 1.5ft to 2ft) away. It is
noteworthy that currently the computer vision algorithms are implemented on a
laptop, for development and testing purposes, that may be placed in a backpack
worn by the user for mobility; work is ongoing toward designing and building
dedicated hardware for the vision algorithms described that is even smaller and
more portable.

Fig. 7. Images of Android phone interface screens: (left) control for setting IP ad-
dress and port number for communication with server module described in Section
3.1, (middle) option to ‘Find’ a specific object, (right) specific object query options for
localization and grasp.

Fig. 8. (Left) Subject wearing the head mounted camera and bone conduction head-
phones. (Right) Example scene with objects and 9-region grid overlayed.
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6 Results

Three visually-impaired subjects (due to Retinitis Pigmentosa, Cytomegalovirus
Retinitis, and Optic Nerve Dysplasia, respectively) utilized the system and pro-
vided their evaluation using the System Usability Scale [35]. Reported scores
were 82.5, 92.5, and 80.0, respectively. Time was recorded for each stage of the
algorithm for two of these subjects (an optimal method of data collection was
established after the first subject), including time to grasp the object and total
time to use the system from the time the query was initiated. Average time is
reported below in seconds for each stage (AB: Attention-Biasing). Out of the ten
trials conducted for each subject, trials were excluded in cases when retraining
was required mid-use due to a misunderstanding of how to use the system, and
trials were excluded if the recognition algorithm failed so as not to confuse the
subjects (this will be discussed in further detail in the next section).

Table 1. Time taken for Attention-Biasing (AB), Recognition, and Grasping (in sec-
onds). Of the 10 trials conducted, 4 were excluded from subject RP and 2 from subject
RT (2 of these (for RP), 1(for RT) due to subject misinterpretation of cues and 2 (for
RP), 1(for RT) due to incorrect recognition result from algorithm).

Patient ID AB Recognition Grasp Total

RP (n = 6) 6.20 5.55 13.0 31.6

RT (n = 8) 7.36 7.43 12.8 41.8

Fig. 9. Time taken to grasp object as a function of trial number for subject RP, p =
0.602.
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Fig. 10. Time taken to grasp object as a function of trial number for subject RT, p =
0.160.

7 Discussion

From results shown above, we observe that subjects were able to use the system
independently for a majority of the conducted trials and successfully obtain the
desired object. Out of the 10 trials conducted for each subject, in 2 out of the 10
trials for subject RP and 1 out of 10 for subject RT, the recognition algorithm
did not correctly recognize the presence of the object; hence these trials were
excluded. In the case of RP, for 2 trials, the subject extended a hand outward
higher than nose level, so these were excluded; the subject was retrained before
experiments were continued. In the case of RT, for 1 trial, the subject moved
a hand laterally to one side instead of straight out in front for one trial, so
the subject was retrained before continuing. This could be attributed to the
fact that subject RT was blind from birth and thus proprioception of space
and positions of body parts may not be as intuitive. The difference in time for
achieving recognition (purely an algorithmic output) can be explained by the
fact that the recognition process is sequential (each bounding box obtained from
the attention-biasing step is compared to the database of trained objects; the
final box selected as the recognition result is the one for which the matched
object has the same label as that of the query requested, so depending on which
of the three boxes is correct, the algorithm must process from 1 to 3 boxes).
Furthermore, timestamps were taken by human hand with a stopwatch. In future
experiments, these will be logged automatically by the computer being used to
run the algorithms. For both subjects, no learning effect was observed (p > 0.1 in
both cases) over trials with the system. This insignificant learning trend can be
attributed to the extensive training completed with the subjects prior to running
these experiments. Conducting experiments with more subjects and with more
trials per subject will help to confirm this conclusion.
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8 Conclusions

Our prototype system provides visually-impaired users the ability to query for
a specific item of interest and receive explicit object recognition, localization,
and feedback information to allow for ease of grasping of the desired object.
To our knowledge, this is the first closed-loop system of its kind that provides
explicit object localization and recognition as well as audio feedback for grasp
without the need for the user to define a relevant region of the scene. The average
time to grasp a desired object is between 12 to 13 seconds from recognition
response (31 to 42 seconds from query initiation). These results along with the
high system usability scale scores given by these three subjects indicate that
this assistive computer vision tool is a promising aid for the visually-impaired,
who make up nearly 5% of the global population. It is expected that the grasp
response times can be improved to under 10 seconds with the incorporation of
real-time hardware implementations of the algorithms described here, such as
FPGA or GPU based implementations [36]. Furthermore, the computer vision
algorithms described have the potential to serve not only as assistive algorithms
for the blind but can also provide autonomous recognition and tracking in defense
or exploratory (underwater/space) situations, that may be unfit or unsafe for
human travel.
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