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Abstract. We present a system to alert visually impaired pedestrians
of vehicles approaching a road-crossing without traffic control. The sys-
tem is computationally efficient, requires low-cost hardware, and can be
mounted on existing street infrastructure, such as sign or lighting poles.
The incoming video stream, showing the approaching traffic, is trans-
formed to a one-dimensional signal, that is forwarded to a decision mod-
ule. Preliminary experimental results indicate promising probability-of-
detection and false alarm rates, while providing sufficiently early warning
to the pedestrian. The planned target hardware is a solar-charged low
cost Android device.
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1 Introduction

For visually impaired pedestrians, crossing a street in the absence of traffic con-
trol is a challenge. Drivers do not reliably yield to pedestrians, even those who
are clearly visual impaired (holding a white cane), requiring pedestrians to cross
in traffic gaps [6]. To identify traffic gaps, visually impaired pedestrians rely on
hearing. The common strategy is “cross when quiet” [14]. However, relying on
early detection of vehicle noise is risky, especially since the low noise level of
modern cars can easily be masked by background noise. Furthermore, pedestri-
ans with less than perfect hearing cannot follow the “cross when quiet” rule.

US data [2] indicates that the average crossing speed is 4 feet (about 1.2m)
per second. A standard urban one-way single-lane street with two shoulders is
18 feet (5.5m) wide and takes 4.5 seconds to cross. A standard two-way street
or one-way with two lanes is 28 feet (8.5m) wide, taking 7 seconds to cross. The
traffic gap must be longer than these figures, and for safe crossing an advance
warning of at least 7 seconds is necessary.

Pun et al [13] reviewed the field of assistive devices, especially those that
use image and video processing to convert visual data to another modality, such
as auditory or haptic, which can be delivered to the blind person. Several sys-
tems help locating and identifying points of interest [5] and road crossings [16,
9]. Other devices provide auditory or other indications regarding traffic light
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status [3, 4]. “Smart canes”, employing various types of sensors, have been sug-
gested [10, 1, 7], but are intended primarily for short-range obstacle detection
and navigation. All these systems do not address the fundamental difficulty of
crossing a road in the absence of traffic control.

An ideal solution to the road-crossing problem must reliably analyze traffic
flow, detect traffic gaps, and be sufficiently robust to operate at a variety of
weather conditions, day and night. Moreover, it has to be easy and cheap to
install, operate and maintain. This work is intended to be a first step towards
meeting this challenge.

We present a low-cost system to detect and alert pedestrians of vehicles
approaching a crosswalk. When fully developed, it will be possible to mount the
system on existing street infrastructure, such as traffic signs or illumination poles.
The system adapts to the scene, thus minimizing installation and maintenance
effort. It can detect approaching vehicles well before they reach the road crossing,
thus indicating traffic gaps that are sufficient for safe crossing.

2 Hardware Platform & Installation

The input device is a video camera, capturing the incoming traffic, as illustrated
in Fig. 1. The video signal is processed by low cost, lightweight computing hard-
ware, that eventually generates the indication signal.

The hardware platform can include a compact solar panel and a rechargeable
battery, to allow autonomous operation without reliance on the electric power
grid. This can enhance the applicability of the system, and reduce its installation
and maintenance costs. A block diagram of the system is shown in Fig. 2.

Indication of incoming traffic, or lack thereof, can be delivered to the user as
an audio or tactile signal, or via a local networking interface (such as Bluetooth
or WLAN) to a smartphone or a dedicated receiver.

We developed the system on a standard laptop PC, with a modified Logitech
QuickCam 9000 WebCam. Targeting a low-cost solution, we implemented the
algorithm as a cross-platform code, and tested it on BeagleBoard xM hardware,
an open-source platform consisting of TI’s OMAP 3530 (ARM processor + DSP),

Fig. 1: Mounting the system on a sign or lighting pole near a road crossing, with
the camera facing the approaching traffic.
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Fig. 2: The system consists of a low cost camera, streaming video to a computing
device, possibly powered by a compact solar panel. User interaction options range
from an auditory or visual alert to communication via a local area or cellular
network. A narrow field of view lens can be used to improve the observability of
distant vehicles.

suitable for rapid prototyping. With the proliferation of low-cost Android devices
with built-in cameras, we are currently porting the system to Android OS.

3 Algorithm

We examined various approaches for efficient detection and evaluation of ap-
proaching traffic on a resource-limited platform. A generic approach that comes
to mind is detecting any new object appearing in the field of view, tracking it,
analyzing its motion and estimating its Time to Contact (TTC) as the basis for
issuing an alert. Lee [11] observed that in a simple but typical case, the TTC
can be estimated based on the incoming object’s expansion rate, measured in the
image plane. A newer approach for TTC estimation [8] treats the approaching
vehicle as a moving plane.

In our application, the field of view (FOV) of the camera should be sufficiently
wide to capture nearby vehicles (possibly leaving a parking spot). However, most
approaching vehicles first appear as tiny spots near the vanishing point (VP)1

Given the limited pixel-count of low cost video cameras, the wide FOV implies
that the spatial resolution near the vanishing point is quite low. These constraints
imply that the main challenge is early detection of the incoming vehicle, meeting
the advance warning time requirement. Therefore, in most cases precise TTC
estimation is not the issue. Also note that the approximations on which TTC
algorithms rely do not hold at the most significant moment, when the vehicle is
seen as a tiny, far-away spot.

We convert the space-time video processing problem to a 1-D signal analysis
problem, by computing a scalar motion measure, referred to as Activity, reflecting
the entire relevant motion in the scene. Objects moving along the road towards
the camera induce pulses in the Activity signal, such that a significant rising
Activity slope suggests an approaching vehicle. Early detection of approaching
vehicles with few false alarms amounts to discrimination between a true rising
Activity slope and random noise and clutter in the Activity signal.

1 We use the term vanishing point in a loose sense, including the case of a curved road.
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3.1 Activity Estimation

Brightness patterns in the image move as the objects that give rise to them
move in the scene, leading to optical flow. We estimate the optical flow using
a computationally-efficient version of a non-iterative sparse Lucas-Kanade [12]
algorithm. The estimation errors typical to the Lucas-Kanade method can be
tolerated in our application; as will be seen, the activity signal, derived from the
optical flow, is an integral measure in which these errors are spatially averaged
over parts of the image domain.

We employ integral images to improve the efficiency of the algorithm, as
proposed by Senst et al [15], calculating integral versions of the gradient products
of the image Ix ·Ix, Ix ·Iy, Iy ·Iy and Ix ·It, Iy ·It. Evaluating a structure tensor
(or a covariance matrix) is required for estimating each flow vector in the Lucas-
Kanade algorithm, and each of its matrix elements can be efficiently evaluated
using four simple arithmetic operations, regardless of the neighborhood size that
is taken into account.

Parts of the optical flow field are associated with risk-posing approaching
vehicles. Other parts might reflect distancing traffic on another lane, pedestri-
ans crossing the road, and movements due to wind or camera vibrations. The
proposed activity measure A(t) is obtained by projecting the optical flow field
u(x, y; t) onto a projection map. The projection map m(x, y) is a vector field
supported on image regions corresponding to lanes carrying traffic towards the
camera, each vector representing the local direction of approaching traffic. For-
mally,

A(t) =
∑
x,y

m(x, y) · u(x, y; t). (1)

The scalar, time-dependent Activity is fast to compute, and quantifies the entire
risk-inducing motion in the scene.

Assuming a one-way road, the projection map can be automatically generated
by temporal averaging of the optical flow over a training period, see Fig. 3.
The averaging process cancels the randomly oriented contributions that are due
to vibrations, wind and similar phenomena, while highlighting the consistent,
dominant, risk-inducing traffic motion directions in the road area alone. Slight
adaptation of this procedure is necessary for dealing with two-way roads, where
consistent distancing traffic is also expected within the visual field of the camera.

Variable density & spatially weighted optical flow computation: Main-
taining minimal system cost calls for resource-limited hardware. Since optical
flow computation is the most demanding element in the proposed algorithm, it
is most lucrative for streamlining and optimization. Typically, large parts of the
field of view, such as sidewalks and background structures, do not hold risk-
posing motion. These regions, once determined, might be excluded from optical
flow estimation altogether. In image regions corresponding to nearby parts of
the scene, where vehicles appear quite large and expand substantially, spatially-
sparse optical flow computation might be sufficient. Conversely, high density op-
tical flow computation can be called for just where necessary, near the vanishing
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point, where approaching vehicles first appear as tiny spots. These considera-
tions can be readily represented by the automatically-generated projection map.
Furthermore, the magnitude of the projection-map vectors can be modified to
emphasize motion near the vanishing point, thus improving the warning time
see an example in Fig. 4. Note that the vanishing point can be readily detected
during training, by back-tracking the projection-map vectors to the source of
the flow.

3.2 Detecting Approaching Vehicles

In certain applications, the raw Activity signal can be delivered to the pedestrian
in analog form, leaving the actual decision regarding road crossing safety in the
human domain. However, in most cases we wish to provide the pedestrian with
a binary signal, suggesting either that traffic is approaching (‘TRAFFIC’ state)
or that a sufficient traffic gap occurs at that moment (‘GAP’ state).

Despite the substantial SNR in the Activity signal near Activity peaks, early
detection of an approaching vehicle, at the early rising stage of the corresponding
activity pulse, when the SNR is poor, is not easy. Note that the pulse shape and
magnitude are generally not known in advance, as they depend on the particular
vehicle characteristics, as well as on the specific scene structure and viewing
conditions.

Robust detection cannot be accomplished by simple thresholding of the Ac-
tivity signal; the signal should be examined within a sliding temporal window.
This improves the effective SNR, the detection probability and the false alarm
rate, at the cost of increased detection latency. The sliding window must therefore
be short enough to maintain the warning time necessary for safe road crossing.

(a) (b)

Fig. 3: Projection map, obtained by temporal averaging of the optical flow field
over a training period. (3a) Sparse vector-field display. (3b) The flow direction
in each pixel is mapped to hue, the magnitude to saturation. The color key is
shown top-right.
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Fig. 4: Activity signal corresponding to an approaching vehicle, with (blue) and
without (red) emphasizing the projection map magnitude near the vanishing
point.

Assume that the complete Activity pulse length is L; we wish to detect the pres-
ence of the pulse after N ≤ L samples are acquired. The warning is therefore
delayed by N samples with respect to the first appearance of the approaching
vehicle.

Within the temporal window of size N , suppose that there is either a traffic
gap, such that the Activity is A(n) = v(n), where v(n) is a random noise process,
or a vehicle initially appears, so A(n) = s(n)+v(n), where s(n) is the pulse shape
corresponding to the specific vehicle and viewing conditions, referred to as the
rising pulse. Temporal windows corresponding to earlier or later appearance of
a vehicle are discussed in the sequel.

We formulate the ‘TRAFFIC’ and ‘GAP’ state hypotheses as follows:

H1 : A(n) = s(n) + v(n) A(n) ∼ N
(
s(n), σ2

)
H0 : A(n) = v(n) A(n) ∼ N

(
0, σ2

) (2)

where A(n) is the Activity measurement and v(n) is modelled as zero-mean
additive white Gaussian noise (AWGN): v(n) ∼ N

(
0, σ2

)
.

The samples A(n) inside a sliding window of length N can be represented as
a Gaussian random vector y, with the following likelihood functions:

fy(y|θ1) = 1
(2π)N/2σN

N−1∏
n=0

exp
(
− (an−sn)2

2σ2

)
fy(y|θ0) = 1

(2π)N/2σN

N−1∏
n=0

exp
(
− a2n

2σ2

) (3)
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where we replaced the notations A(n), S(n) by an, sn. Applying a Likelihood
Ratio Test for discriminating between the two hypotheses

LRT =

1
(2π)N/2σN

N−1∏
n=0

exp
(
− (an−sn)2

2σ2

)
1

(2π)N/2σN

N−1∏
n=0

exp
(
− a2n

2σ2

) ≷ λ (4)

where λ is a discriminative threshold, leads to the detection rule:

N−1∑
n=0

ansn ≷
1

2

(
2σ2 lnλ+

N−1∑
n=0

s2n

)
. (5)

The left hand side describes a correlator of the input Activity with the rising
pulse template, and the right hand side is an application-dependent threshold.
For determining the threshold, we apply the Neyman-Pearson criterion, which
sets the threshold to maintain a given false-alarm probability.

The left hand side is a random Gaussian variable with variance σ2
N−1∑
n=0

s2n,

that we denote as ỹ. The false-alarm probability is given by the tail distribution
of the ‘GAP’ (θ0) hypothesis:

PFA =

∞∫
γ

fỹ(z|θ0)dz = Pr (ỹ > γ|θ0) =

Pr

(
ỹ

σ
√∑

s2n
> γ

1

σ
√∑

s2n

)
= Q

(
γ

σ
√∑

s2n

)
= 1− φ

(
γ

σ
√∑

s2n

)
(6)

where φ(x) is the cumulative distribution function of the standard normal dis-
tribution and Q(x) is its tail probability: Q(x) = 1−Q(−x) = 1− φ(x).

This yields a threshold γ = Q−1 (PFA)σ
√∑

s2n which can be determined by
the SNR and the acceptable false-alarm rate. The detector can be described as

D(a0, ..., aN−1) ≡

N−1∑
n=0

ansn

N−1∑
n=0

s2n

≷ Q−1 (PFA)σ (7)

which is familiar as the result of applying a matched filter, correlating the input
measurements with the known signal that we wish to detect. The corresponding
probability of detection is:

PD = Pr (ỹ > γ|θ1) = ... = Q

(
Q−1 (PFA)−

√∑
s2n

σ

)
(8)
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So far, we discussed the most challenging aspect of detection, the initial
detection of an approaching vehicle. The detector is causal, hence the warning
is delayed by N samples. Since the rising pulse typically increases as the vehicle
approaches, once the correlator crosses the threshold, it remains above it as
long as the pulse rises. To maintain continuous detection of vehicles until they
reach the crossing, we extend the correlator window size beyond N as long as
’TRAFFIC’ classifications are acquired, up to a maximal size not exceeding L.
When vehicles appear late (e.g. leaving a parking spot close to the crossing), the
rising pulse takes off at a rather high magnitude and the correlator immediately
crosses the threshold.

3.3 Estimating Detector Parameters

The detector is parameterized by the noise variance (that can be estimated), and
the expected shape of the activity pulse. During a training period, by the time
the Projection Map is generated, the system produces Activity measurements.
After sufficient training, the measurements are used to automatically generate
the activity pulse model and estimate the noise variance.

The system scans the input signal acquired during training to locate its
strongest local maxima, and crops a window of 10 seconds around each max-
imum, where most of the samples precede the maximum. The windows are
batched together, and used to estimate the noise variance and activity pulse
template. In practice, we model the rising pulse as the median of the cropped
temporal windows. Fig. 5 illustrates the process.

4 Results

Fig. 6c shows snapshots from a day-time video sequence obtained by the system
camera in a single-lane one-way street. Fig. 6a is the Activity signal correspond-
ing to the same experimental session. Fig. 6b zooms on the time interval in
which the snapshots shown in Fig. 6c were taken. The coloring of the graphs in
Figs. 6a and 6b present the indication provided to the pedestrian, red meaning
TRAFFIC and blue corresponding to GAP. As can be seen, TRAFFIC is de-
clared 8-10 seconds before the vehicle reaches the camera, i.e., before the peak
of the Activity signal, allowing safe crossing with substantial margin.

We recorded and annotated video taken from the system camera. For each
vehicle, we noted its time of appearance tA and its time of disappearance tD,
and calculated its apparent time interval Tap = tD − tA. Obviously, Tap sets
an upper bound on the feasible warning time. The results were recorded with
a modified USB camera and with an equivalent Point-and-Shoot camera. The
USB camera is a standard webcam with its lens replaced to slightly narrow the
field of view.

Ideally, a vehicle appears near the vanishing point, maximizing the feasible
warning time. Note however that in certain urban or suburban scenes a vehicle
can leave a parking spot within the field of view and close to the crossing, or
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(a) (b)

(c)

Fig. 5: Learning the activity pulse model
(5a) Activity signal over a 30 minutes training period, with the strongest local maxima
detected. (5b) The same Activity results zoomed in for a few minutes of the training.
(5c) The processed template that is used for correlation, generated as the median over
the batch of windows.

might turn into the into the observed road from a nearby driveway. This means
that while the apparent time Tap of each vehicle can be more than 10 seconds,
which is more than enough; however, in certain cases Tap can be as short as one
second, allowing neither the system nor a human observer an adequate warning
period.

Fig. 7 presents typical results. The activity signal is shown as a function of
time. It is colored black where there is no traffic, and the system declares no
warning (true negative, TN). It is colored blue where the system detects genuine
incoming traffic (true positive, TP). As can be seen, practically all vehicles are
detected. However, the detector is necessarily causal, inducing some latency. The
time interval between the first appearance of a vehicle and the initial warning is
colored green (false negative, FN). At certain points, false alarms (false positive,
FP) appear, colored red. Fig. 8 demonstrates false negative and false positive
events that were encountered.
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(a) (b)

(c)

Fig. 6: Activity classification
(6a) Activity results for a typical scenario classified to TRAFFIC and GAP, colored
red and blue respectively. (6b) The same Activity results expanded for a couple of
approaching vehicles. (6c) Snapshots of the original video with time tags. The reader
can observe that the TRAFFIC indication is declared very early, as soon as a vehicle
appears.
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Fig. 7: Typical activity signal and classification of results
The plots describe the activity signal within four time intervals; time is labeled in
seconds along the horizontal axis. The signal is colored according to the output of the
system and the ground truth (true negative: black; true positive: blue; false negative:
green; false positive: red).

For analysis, we executed the algorithm offline, on the recorded video, with
various detector thresholds and settings. We register a single success per vehicle
in case the detector issues a sufficiently early warning, meaning at most τmax
seconds after initial appearance or at least 7 seconds before reaching the crossing.
The value τmax corresponds to the window size N (the minimal feasible warning
time delay).

We constructed per-vehicle ROC curves based on comparison with the ground
truth data. We calculate the True Positive Rate as the fraction of successes out
of the total number of incoming vehicles:

TPR =
TP

TP + FN
=

Ns
Ntot

(9)

where Ns is the number of successes and Ntot is the total number of vehicles.
We calculate the False Positive Rate as

FPR =
FP

FP + TN
(10)

where the values are previously defined and taken per-sample from the full
recording. Note that defining the false positive rate per-sample is very severe,
since even an isolated outlying false positive reading, that can easily be detected
and eliminated without significant effect on the true positive rate, is registered.
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(a) (b) (c)

Fig. 8: Events giving rise to false positives (false alarms) and false negatives
(8a) False negative corresponding to a slow, distant bicyclist. (8b) False positive in-
duced by a person suddenly appearing in the road. (8c) False negative associated with
a vehicle that appeared, stopped, and eventually turned right into a side street.

Fig. 9 presents a sample of analysis results. Fig. 9a shows the per-vehicle
ROC curves for a few window sizes N , corresponding to 1 to 3 second durations.
Fig. 9b is the histogram (distribution) of the advance warning times over 1 hour
in a single-lane one-way street. The per-sample false positive level was set to
0.01 and only vehicles with Tap greater than 7 seconds are taken into account.
Short warning times corresponded to slowly driving vehicles, including bicycles.
By allowing a higher per-sample false positive level, most of the slow vehicles
can be detected substantially earlier.

(a) (b)

Fig. 9: Analysis results
(9a) Per-vehicle ROC curves for a few window sizes N , corresponding to intervals
between 1 second to 3 seconds. (9b) Warning times histogram covering 1 hour in a
single-lane one-way street.
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5 Discussion

We presented a computationally-lean system to detect and alert pedestrians of
vehicles approaching a road-crossing. The system automatically adapts to the
scene, and can be mounted on existing street infrastructure, facilitating simple
installation. The system is designed primarily for blind and visually impaired
people, but can potentially assist the young and the old, people with cognitive
impairments, and others.

We implemented the system on a standard laptop PC, and also ported it on
BeagleBoard xM hardware running Linux. An Android version using low-cost
smartphone/tablet-like hardware is planned.

We tested the system at several locations, and achieved advance warning
times approaching 9 seconds at typical day conditions with a rather wide field of
view lens, slightly less at night scenarios. These results are promising, because
a standard US two-lane street takes only about 7 seconds to cross. Night and
poor weather conditions were examined succinctly and further experiments and
analysis need to be conducted.

A single instance of the system is capable of detecting traffic approaching
from a given direction and ignore distancing traffic. Full support of two-way
traffic requires two instances of the system, mounted in opposite directions,
preferably with a unified decision and pedestrian interface module.

Time to Contact (TTC) estimation, based on Horn et al [8], was also tested.
As in our approach, it processes entire frames and yields a scalar signal, that
could be considered as an alternative to the proposed Activity signal. The results
were noisy and unstable compared to the results obtained using the suggested
Activity measure.

Learning is an essential aspect of the system, including the generation of the
projection map and the activity pulse model. The straightforward training and
learning solutions employed in the current design leave room for sophisticated
improvements.

The suggested approach is unique in being stationary and location-specific.
The absence of ego-motion leads to a solution that is both robust and low-cost.
Any person approaching the road crossing can take advantage of the system,
with no need for a personally owned device such as a smartphone or a smart
cane. This widens the potential reach of the system to weak parts of the society.
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