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Abstract. Even though motion tracking is a widely used technique to
analyze and measure human movements, only a few studies focus on mo-
tion tracking of infants. In recent years, a number of studies have emerged
focusing on analyzing the motion pattern of infants, using computer vi-
sion. Most of these studies are based on 2D images, but few are based on
3D information. In this paper, we present a model-based approach for
tracking infants in 3D. The study extends a novel study on graph-based
motion tracking of infants and we show that the extension improves the
tracking results. A 3D model is constructed that resembles the body sur-
face of an infant, where the model is based on simple geometric shapes
and a hierarchical skeleton model.

Keywords: 3D Model Fitting, Infant Pose Estimation, Markerless Mo-
tion Tracking, Depth Images

1 Introduction

Motion tracking of humans has attracted considerable interest in recent years,
but only few studies exist in which the methods have been used for motion track-
ing of infants. However, the techniques can be of great benefit in the evaluation
of infant development, as they can quantify the movements of infants and might
be able to improve the diagnostics of different motor related diseases, namely
cerebral palsy (CP). CP is the most common motor disability among children,
affecting 2-2.5 out of 1000 infants [1]. It is caused by an injury to the fetal or
infant brain, and the physical impairment is in many cases accompanied by dis-
turbances of cognition and perception [2]. Among several others, preterm birth
and birth asphyxia are associated with an increased risk of CP, but frequently
a clear underlying pathology is not found [3, 4]. During infancy symptoms are
often subtle, but early warning signs include failure to meet motor milestones
such as crawling and walking [5]. Due to the lack of unequivocal symptoms, in
current practice, most children with CP are not diagnosed until the age of 2
years [1]. However, studies have shown that the movement patterns of infants
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are influenced by CP already in the months before and after birth [6]. In fe-
tuses, the movements can be observed and analyzed using ultrasound, while the
post-birth studies are often based on analyzing videos of the infants’ so-called
general movements, which can be observed until the age of 5 months (corrected
w.r.t term). By observing and identifying the motion patterns, cerebral palsy
may thus be suspected at a much earlier age. Early identification of infants at
risk of CP leads to the possibility of early intervention, which may improve the
development of the infants’ motor and cognitive skills. However, due to the time
consuming procedure of analyzing the motion patterns, it is unrealistic to man-
ually examine all infants born at risk of CP. The method presented in this work
will thus try to move closer to an automatic system. The idea is that the system
should be standard equipment, e.g. located at outpatient clinics, used for analyz-
ing movement patterns of prematurely born infants. Because of this we cannot
use a complex system that requires hours of preparation and calibration, but
it should be a sort of plug-and-play system. As mentioned, studies within this
field of interest are limited, but some work exists on motion tracking of infants.
In [7, 8] the authors use 6 sensors attached to the infants’ wrists, ankles, chest
and head. The sensors give temporal information about position and orientation.
In [9], the authors use an optical motion system, where reflective markers are
attached to the infant’s limbs and multiple infra-red cameras are used to recon-
struct the 3D location of the markers in space. From this, a set of parameters is
extracted and used for early detection of spasticity due to cerebral palsy. In [10],
the authors propose a new, optical flow-based method for quantifying the mo-
tion of infants with neonatal seizures, based on an overall quantitative measure
of pixel-differences between successive frames. The optical flow-based approach
is also used in [11], where the authors use color images as input to an optical
flow-algorithm in order to track the position of the infants’ hands and feet. Here,
the authors manually initialize the position of the different body parts and adjust
the positions during the tracking, in order to improve robustness of the method.
In [12] the authors describe a method for tracking the 3D positions of anatom-
ical extremities(hands, feet, head) and sub-extremities(elbow, knee) of infants
based on a graph-based method equivalent to the approach in [13–15]. Based on
the the work of [12], the method is extended with a model-based approach as
in [16, 17]. This both improves the body part localization and the tracking of
the infants movements over time. The data is obtained using an affordable and
easy-to-use depth sensor, Microsoft Kinect, which has revolutionized research
within the field of low cost motion tracking.

2 Methods

The data used in this work, are depth and color images acquired with the Kinect
sensor from Microsoft. The depth images have been recorded at a resolution of
480× 640 pixels and the same resolution is used for the color images. As far as
the authors’ knowledge, no benchmark database of dense 3D data of infants exist
and a non-public database is used, which has been created simultaneous with
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Fig. 1. Color image of one of the recorded infants. The infant wears an easily recog-
nizable (blue) bodystocking and lies on a white blanket

this study. The participating infants are 3-8 months of age. For each infant 15-30
minutes of data have been recorded, while the infants have been laying on a flat
surface e.g. a mattress or a blanket (see Figure 1). It should be noted that the
pictures and data are used and published with respect to an agreement signed
by the participating families. The Kinect has been positioned above the infant
using a tripod for ordinary cameras. Using the depth images, a 3D point cloud
representation of the infant and its surroundings can be generated. In order to
make tracking easier, the fact that the infant lies on a flat surface is used to
differentiate between foreground (most likely the infant) and background, by
fitting a least squares plane to the surface. This is simply done by solving the
linear system:

a(x− xc) + b(y − yc) + c(z− zc) = d, (1)

where; (x,y, z) are the observed 3D points of the underlying surface, (xc, yc, zc)
is a 3D point on the plane, and (a, b, c) are the elements for the normalvector of
the plane. d defines the signed distances to the plane, but is set to zero during
the fitting process. It is assumed that the viewing direction of the camera is
nearly perpendicular to the flat surface and thus, the normal is corrected to
point towards the camera. Given the estimated plane parameters, the signed
distance from every 3D point to the plane can be calculated and this is used to
discard points behind the plane (d < 0). In order to remove small deviations of
the underlying surface, a non-zero value is used as threshold. In addition, the
infant wears an easily recognizable bodystocking, which is used to locate the
baby, using color-based pixel classification.

2.1 Body Model

In this work, we use a 3D model to describe the surface of the human body. The
model is constructed from a predefined number of geometric shapes that are
connected based on the underlying skeleton. In order to measure the distance
from the body model to the observed data, a ”point to shape”-distance function
is defined for each shape [16, 17]. Currently the geometric shapes are:
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– Cylinder: Used for describing elongated body parts, such as arms, legs and
feet. The distance between a 3D point and the cylinder can be found analyti-
cally, by projecting the point onto the medial axis of the cylinder and taking
the thickness/radius of the cylinder into account. The distance function for
at 3D point p is thus defined as:

d =


‖p− a‖ if λ ≤ 0

‖p− b‖ if λ ≥ 1

‖p− (a + λ (b− a)) ‖ otherwise

, (2)

where, a and b are the start- and endpoints of the cylinder and

λ =
(p− a) · (b− a)

‖b− a‖2
(3)

is the normalized length of the vector (p− a) projected onto the line (b− a).
It should be noted, that this distance is only for calculating the distance from
a 3D point to the medial axis of a cylinder and the radius of the cylinder
should be included in order to calculate the distance to the surface. More-
over, the described distance function, represents the distance to a rounded
cylinder, when the radius/thickness is included.

– Sphere: Used to describe the head of the infant. The distance is easily com-
puted, as the distance between the center point and the 3D point. Again, the
radius of the body part should be included, in order to measure the distance
to the surface, rather than the distance to the center.

– Ellipsoid/Superquadratic: The torso/stomach is modeled as a combination
of two superquadratics. The upper part is modeled as a round-cornered box,
in order to describe the box-like shape of the shoulders, while the lower part
is modeled as a simple ellipsoid. In this case, no closed form solution exists
for calculating the exact euclidean distance. Instead two differnet approaches
has been used, which approximates the true distance:
1. One solution is to use a numerical method, as explained in [18], which

minimizes the distance from the 3D point to a point on the surface of
the ellipsoid. The method is not generalized to superquadratics, but it
is also possible to use iterative methods for approximating the distance
for the upper bodypart [19].

2. Another solution is to create a distancemap of the bodypart. Once the
distancemap is created, the distance from the superquadratics to a 3D
point can be approximated, by mapping the 3D point to the distancemap
coordinates.

Inspired by previous work [20, 21], we have chosen to model the skeleton as
a hierarchical model, with the root starting from the center of the body. The
identification of the body center is based on the center of mass of a set of classified
pixels. As the infants wear a colored bodystocking during the recording, this can
be recognized and tracked in the data. The fact that the infant lies on its back,
is the reason the body center is chosen as the root joint. This is because the
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Fig. 2. Visual 2D (left) and 3D (right) representation of the model used in this study.
The colors are simply to differentiate the bodyparts. Red and green are used to differ-
entiate between left and right bodyparts, respectively

location of the body center should be the most static part of the infant and
more movement should be seen in the outer limbs. The articulated model can
be seen in Figure 2, where colors are used to differentiate between left(red) and
right(green) bodyparts.

In relation to the hierarchical connection between the bodyparts, the geomet-
ric shapes are oriented and positioned, using simple rotations and translations.
However, instead of modeling the rotations in the global coordinate system, with
euler angles, axis-angle representations are used, where rotations are limited to
local coordinate systems, as the local coordinate system of each joint, changes
based on the parent joints. The definition of axis-angle rotations is described
widely in the literature [22, 23] where the Rodriquez rotation formula can be
used to construct a rotation-matrix given a axis-angle representation. Given an
axis of rotation ω and a rotation angle θ, the rotation matrix can calculated as:

R = I3 + ω̂ sin θ + ω̂2 (1− cos θ) . (4)

I3 is the 3× 3 identity matrix and theˆoperator constructs the skew symmetric
matrix of the vector ω.

2.2 Fitting The Model

In order to fit the model to the observed data, the Levenberg Marquardt method
is used, to iteratively refine the body parameters. The state vector and objective
function will thus be defined in the following. An overview of the state parameters
used in this study are listed in Table 1. Only the Stomach bodypart has a spatial
parameter, which controls the global position of the model, while the position
of the remaining bodyparts are constrained based on the hierachical model and
the size parameters of the body.

The size parameters define the size and relative location of the bodyparts and
are listed in Table 2. The size parameters are not part of the optimization but
are either given prior to the optimization or estimated during an initialization
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Table 1. Overview of the orientation parameters used for each bodypart. As can be
seen, only one bodypart (Stomach) has a spatial parameter

Bodypart Parameters

Stomach Rotation, Position
Head Rotation
Left Upper Arm Rotation
Right Upper Arm Rotation
Left Lower Arm Rotation
Right Lower Arm Rotation
Left Upper Leg Rotation
Right Upper Leg Rotation
Left Lower Leg Rotation
Right Lower Leg Rotation
Left Foot Rotation
Right Foot Rotation

Table 2. Overview of the size parameters used for each bodypart. These parameters
are not part of the optimization, but are used during the creation of the 3D model

Bodypart Size Location

Stomach Extension for the three axis Global
Head Radius Relative to Stomach
Left Upper Arm Radius + Length Relative to Stomach
Right Upper Arm Radius + Length Relative to Stomach
Left Lower Arm Radius + Length Relative to Left Upper Arm
Right Lower Arm Radius + Length Relative to Right Upper Arm
Left Upper Leg Radius + Length Relative to Stomach
Right Upper Leg Radius + Length Relative to Stomach
Left Lower Leg Radius + Length Relative to Left Upper Leg
Right Lower Leg Radius + Length Relative to Right Upper Leg
Left Foot Radius + Length Relative to Left Lower Leg
Right Foot Radius + Length Relative to Right Lower Leg

step. It should be noted that symmetry is utilized and it is thus assumed that
symmetric bodyparts are identical, with respect to size and relative location.

Once the state parameters are defined, the next step is to optimize on these
parameters using the Levenberg-Marquardt optimization scheme, in order to fit
the 3D model to the observed data. By concatenating the state parameters in a
state vector x, the optimization can be written as:

min
x∈R

N∑
i=1

‖pi − c (pi,x) ‖, (5)

where c (pi,x) calculates the closest 3D point on the model, given the 3D data
point pi and the state vector. An extension to the above minimization, is that
the state vector x is constrained, based on the anatomical properties of the hu-
man body joints. One requirement for the Levenberg-Marquardt algorithm, is
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an initial starting guess. In this study, a good estimate of the starting guess is
found using an existing method for detecting and locating anatomical extremi-
ties, based on graph theory [12]. Here the anatomical extremities such as head,
hands and feet are located by assuming that these points are furthest away from
the bodycenter, when the distance measure is based on geodesic distances over
the body surface. The distance is estimated by representing the surface as a
graph, where neighboring 3D points are connected by nodes. This approach is
able to locate and identify both the extremities and sub-extremities such as el-
bows and knees. The described method is able to give an estimate on the spatial
location of the extremities. In order to obtain the respective state vector, an
inverse kinematics method is used.

The total body-modeling method is summarized in the following, where input
is the data obtained from the Kinect sensor.

1. Apply background subtraction in order to segment the infant from the back-
ground/underlying surface.

2. Define Body Parameters either using fixed parameters or during an initial-
ization step.

3. Use graph-based method to obtain an estimate on the location of the anatom-
ical extremities.

4. Apply an inverse kinematics algorithm in order to obtain the state parame-
ters, given the location of the extremities(end effectors).

5. Refine the state parameters, in order to minimize the distance between the
3D model and the observed data.

The above described approach, estimates the orientation parameters of a sin-
gle frame. However, by using the optimized parameters of one frame, as starting
guess for the successive frame, the human body can be tracked in time.

3 Results

In order to test and evaluate the described method, Kinect recordings of 7 in-
fants’ movements have been obtained, where each infant has been recorded for
15-30 minutes. As no ground truth data is available, a various number of frames
have been manually annotated for each infant. The frames have been selected
such that they cover a wide variety of poses. In Figure 3, the results from the
presented method can be observed. The method is able to correctly locate and
identify the different body parts and the joint angles can be extracted directly
from the respective state vector. It should be noted that an offset of the 3D
model has been used, to better illustrate the estimated pose.

In the following, the two methods (graph-based vs. model-based) are com-
pared. The Euclidean distance between the manually positioned 3D points and
the estimated joint locations are used to evaluate the tracking approach. In Fig-
ure 4 and Figure 5, the mean and standard deviation of the residuals are shown,
respectively. The reader should notice that the Stomach and Chest residuals does
not differ significantly, as these locations are found almost equivalently. However,
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Fig. 3. Examples of the (translated) model fitted to the observed data. The point clouds
are colored for visualization purposes, but only the 3D information is used during the
optimization process
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Fig. 4. The mean of the residuals listed for each body part in the model. Both the
results from the graph-based approach (red) and the extended method (blue) are visu-
alized

the localization of the remaining joints has improved significantly, both with re-
spect to mean and standard deviation.
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Fig. 5. The standard deviation(right) of the residuals listed for each body part in the
model. Both the results from the graph-based approach (red) and the extended method
(blue) are visualized

The results indicate how robust the method is to locate the different body
parts. As mentioned earlier, the technique can easily be extended to motion
tracking, instead of human body detection. In Figure 6 the Euclidean distances
between successive frames can be observed, for four different joints. Is is note-
worthy to see that the graph-based tracking contains a lot of peaks/noise, while
the model-based tracking gives a more smooth tracking. The reason for this, is
that the model-based approach is less sensitive to deviations in data, compared
to the graph-based method.

Based on the tracking results of one of the infants, Figure 7 shows the angles
of the upper arms and the thighs, during a time period of 45 seconds. It is
observed that the right upper arm is less active, compared to the remaining
body parts.

In Figure 8 the positions of the elbows and knees are visualized, which gives
a better visualization of how the right elbow is much more passive, compared
to the other bodyparts. This overall motion-plot might help doctors and physio-
therapists to detect abnormal motion behaviors and plan the training according
to these results.

Even though the study shows promising results, the tracking sometimes gets
stuck in local minima, due to certain postures of the infant. One problem is e.g.
when the infant rolls from supine to prone position. Here the method is unable
to recover the correct orientation of some body parts and this error propagates
through the tracking. This might be solved by enforcing additional temporal
filtering on the body parameters. Another solution would be to create a pose
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Fig. 6. Comparison of tracking results for the two methods. For each frame the Eu-
clidean distance to the previous joint-location is calculated and visualized

library as in [16], where a number of candidate poses are evaluated and tested
against the estimated pose.

4 Conclusion

We have described a method for 3D motion tracking of infants, based on a model-
based approach. We show how this method gives good results, with respect to
both accuracy and precision, compared to a novel study on motion tracking of
infants. The method is based on fitting a 3D model to the observed 3D data,
obtained with the Microsoft Kinect sensor. The model is combined by a number
of geometric shapes that are connected based on a hierarchical skeleton model.
We show how the results can be used to assess the motion pattern of infants by
evaluating the raw motion parameters or the spatial 3D motion paths. This is a
step closer to an automatic system that can help doctors assess the development
of infants’ motor control in order to detect motor impairing diseases such as
cerebral palsy. In future work, we will focus on making the tracking more robust,
such that the method is able to recover from difficult poses e.g. when the infants
rolls over from supine to prone position.
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Fig. 7. The angles with respect to the local x-, y- and z-axis, for four bodyparts. It
is noteworthy that the right upper arm is less active, compared to the three other
bodyparts
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