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Abstract. With the increasing proportion of senior citizens, many mo-
bility aid devices were developed such as the rollator. However among
walker’s users, 87% of their falls is attributed to rollators. The Eye-
Walker project aims at developing a small device for rollators to protect
elderly people from such dangers. Descending stairs are ones of the po-
tential hazards rollator users have to daily face. We propose a method
to detect them in real-time using a passive stereo camera. To meet the
requirements of low-power consumption, we examined the performance
of our stereo vision based detector with regard to the camera resolution.
It succeeds in differentiating dangerously approaching stairs from safe
situations at low resolutions. In the future, our detector will be ported
on an embedded platform equipped with a pair of low-resolution and
high dynamic range stereo camera for both indoor and outdoor usage
with a battery-life of several days.

Keywords: Descending stair detection, stereo vision, elderly care, re-
habilitation, visual impairment, low-power sensors.

1 Introduction

In industrialized countries the number of mobility impaired people increases
especially among the elderly [21, 14]. Studies demonstrate that the population
of the over 65s is growing and the governments’ will is to improve the elderly’s
independence and home caring in order to postpone their move to an assisted
living facility integration. The rollator, widely spread among elderly, aims at
helping its users keep their independence and a safe mobility. However these
tools can lead to falls especially in urban zones and buildings. They occur when
the user misjudges the nature or the extent of some obstacles, which can happen
in any kind of familiar or unknown environments. To answer these issues, various
prototypes of “intelligent walkers” are motorized [17] and programmed to plan
routes and to detect obstacles with active or passive sensors. However such aids
are complex and thus expensive even if produced in large quantities. As a result,
most users may be reluctant to use them. In practice their use is limited to
indoor situations due to their weight and their short battery life.
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Unlike the current trend, the EyeWalker project’s objective is to develop a
low-cost, ultra-light computer vision-based device for users with mobility prob-
lems. It is meant to be an independent accessory that can be easily fixed on a
standard rollator and with a daylong autonomy. Our device will warn users of
potentially hazardous situations and help locate particular items, such as every-
day objects. It has to operate in miscellaneous environments and under widely
varying illumination conditions. The users initially targeted by this project are
elderly persons that still live independently. According to elderly care experts
that we interviewed, descending sidewalks and stairs are among the most com-
mon hazards. Thus our system aims at detecting descending stairs. To meet the
requirements of both low-power consumption and outdoor and indoor usage, we
focused on employing methods based on 3D information obtained from a passive
stereo camera.

The power consumption of a full system results from the power consumption
of the hardware and the software. Since the image resolution impacts both the
power consumption of the sensor and of the processing, our goal is to find a low
complexity algorithm which works with the lowest acceptable image resolution.
We propose a descending stair detector based on depth information obtained
from a stereo vision algorithm adapted to real-time.

This paper is organized as follows: Section 2 describes relevant examples re-
lated to the state-of-the-art in stereo computer vision; Section 3 explains how
to detect descending stairs from 3D sensors; The main stereo vision approaches,
which allow 3D information extraction, are recalled in Section 4; Section 5 de-
scribes the hardware choices and setup built for the evaluation of our approach;
The experimental results, where we look for the lowest acceptable resolution,
are detailed and discussed in Section 6 before concluding on the future work in
Section 7.

2 Related Works

Sidewalks and stairs are among the obstacles mobility impaired people have to
daily face [27]. Even though laws and new constructions are made to improve
their accessibility, there is still work to be done. Several institutions propose
guidelines both for constructors [3] and users [9]. Works on stair detection have
started in the robotic domain for Unmanned Ground Vehicles (UGV) [26]. The
UGVs are built to navigate in buildings where security is not assured, for exam-
ple for searching victims in buildings. While detecting staircases and climbing
stairs/sidewalks [7, 19, 2, 8] are subject to research, rare are the studies on de-
tecting descending stairs in the computer vision domain. In the field of electronic
travel aids (ETA), PAM-AID is the only prototype demonstrating its ability to
detect descending stairs [18]. However this prototype uses an active IR sensor.
To our knowledge, authors of [13] are the only ones who proposed to tackle the
detection of the descending stairs using passive computer vision. In their method,
once the staircase candidates are detected with texture energy measurement, one
is randomly selected and used to validate the presence of descending stairs. Other
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computer vision based stair detectors use monocular cameras and encounter the
issue of false positives raised by repetitive patterns such as zebra crossings [25].

3 Method

We are interested in the falls related to the loss of balance caused by the change
of the ground elevation. We aim at measuring this change from a ground depth
map. Given the acquisition of a semi-dense 3D map from a system as depicted in
1, each point (x, y) of the ground depth map can be expressed by: let (X,Y, Z)
be a 3D point in the world space and R the rotation matrix that positions the
depth axis vertically. Thus the new coordinate system has its Z-axis orthogonal
to the floor, X-axis becomes normal to the rollator’s motion and Y -axis parallel
to said motion. The centre of both coordinate systems is the centre of the stereo
rig, both cameras having the same focal length f , expressed in pixels. To get the

(a) (b)

Fig. 1. (a) A rollator facing a descending stair. The stereo camera is tilt so that the
beginning of the stairs and its first step give angles of θ and θ′. The latter are respec-
tively located at a distance of Z0 and Z1 and a height of Y0 and Y1 from the camera.
(b) The first step imaged by the camera as a trapezoid defined by its bases B0, B1 and
its height H0.

corresponding pixel coordinates of (X,Y, Z) in the ground depth map, a point
in 3D space is subject to a rotation around the X-axis:

R

X
Y
Z

 (1)

with

R =

1 0 0
0 cosθ −sinθ
0 sinθ cosθ

 , (2)
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followed by a projection according the 3x3 camera projection matrix P :

P =

f 0 0
0 f 0
0 0 1

 . (3)

The resulting coordinates in the ground depth image are

x = f
X

Y sinθ + Zcosθ
, (4)

y = f
Y cosθ − Zsinθ

Y sinθ + Zcosθ
. (5)

Note that we used capital letters for world coordinates and lower case for image
coordinates. These equations define the limits to detect the stair first. Let the
floor be located at depth Z = Z0 and let the first step start at (Y,Z) = (Y0, Z0)
and end at (Y,Z) = (Y1, Z1) in the original coordinate system. We assume the
stairs are centred in front of the stereo camera. The step is imaged by the camera
as a trapezoid defined by its bases B0, B1 and its height H0:

B0 =
f(Z1 − Z0)

Y0sinθ + Z0cosθ
, (6)

B1 =
f(Z1 − Z0)

Y1sinθ + Z1cosθ
(7)

H0 = f
Y0cosθ − Z0sinθ

Y0sinθ + Z0cosθ
− f

Y1cosθ − Z1sinθ

Y1sinθ + Z1cosθ
(8)

=
f(Y0Z1 − Z0Y1)

(Y0sinθ + Z0cosθ)(Y1sinθ + Z1cosθ)
. (9)

The trapezoid’s area of the projected step on the depth map is defined by

A =
(B0 +B1)H0

2
, (10)

where the area A is constrained by its sign, i.e. by

A > 0 ⇐⇒ (
Y0

Z0
− Y1

Z1
) > 0 , (11)

which corresponds to tilting the camera by an angle big enough to see the first
step in the lower part of the image according to

θ < θ′ . (12)

This area also defines the proportion of pixels located at a deeper level than the
ground if we consider the projection of several steps. This proportion of pixels
is then compared to a threshold TD: The stair presence is predicted when the
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ratio of pixels located under a ground is greater than the proportion TD. To
classify each capture into one of the three classes (danger, warning or safe), the
decision making strategy follows the flowchart depicted in Fig. 2 and summarized
in Table 1. By defining two zones in the picture we impose the condition that the
angle θ defined by the focal axis of the system is less than the angle θ′ defined
by the location of the first step that must be detected as a danger.

Fig. 2. Flowchart of our approach to detect descending stairs, TDu , TDl , TGu and TGl

being the pixel ratio and ground depth thresholds for the upper and lower sub-images
respectively.

In other words, our three-bin classifier works as follows: the ground depth
map is extracted from the stereo pictures and divided into the upper and lower
sub-images of same size. For each sub-image we compute the histogram over valid
depth values. The ratio of pixels located below a ground level TGi (i={u,l}) is
then compared to a threshold TDi. If this ratio is greater than TDi then the
sub-image is classified as a stair (positive). The final decision is made from the
binary classification of the two sub-images: (i) it is safe if both sub-images are
negative; (ii) it is a warning if the upper sub-image is positive and the lower one
is negative; (ii) it is a danger if the lower sub-image is positive, no matter what
the prediction is for the upper sub-image.

4 Stereo Vision

4.1 Stereo Matching

Stereo correspondence is a challenging field of research [20] in term of software
and hardware implementation. It has to respond to the high demand of real-time
execution and frame rates. From the matched points we can extract a disparity
map. The disparity is the difference between the x-coordinates of the detected
point in both pictures. Provided the correct matching, the depth map is built
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Table 1. Three-bin classification rules according to the dangerousness of the fronting
floor, TDu and TDl being pixel ratio thresholds

Upper sub-image Lower sub-image Class prediction Class definition

Ratio < TDu Ratio < TDl Safe
No stairs in the
whole image

Ratio > TDu Ratio < TDl Warning

Stairs appear in the
upper sub-image

only i.e. far from the
user

Any Ratio > TDl Danger

Stairs appear at
least in the lower
sub-image i.e. close

to the user

from the disparity map using image geometry triangulation [12]. Assuming
the pin-hole camera model [12] and the cameras having the same focal length f,
separated by a baseline T, the distance of a detected point is

Z =
f × T

d
, (13)

where Z is expressed in meters, f in pixels, T in meters and d the disparity in
pixels.

The stereo matching approaches can be categorized into two groups: sparse
or dense [20]. The first approach is also known as feature-based matching and
results in a sparse output. The correspondence process is applied to features such
as corners, edges or key points [1]. In order to compare the different key points,
we shall measure their similarity. This similarity can either result from comparing
the surroundings via patches or attributes commonly called descriptors [5]. Each
descriptor of the left image points is compared to the list of descriptors of the
right image points and matched to the most similar one. Feature descriptors
tend to be robust against orientation and intensity variation while key points
are robust to perspective changes. Thus this method can be applied for real-
time applications that require a very sparse depth map [6], for example in image
registration applications. Besides it does not require precise calibration.

The second stereo correspondence approach relies on comparing patches of
images in order to minimize a cost function. This cost function can be local or
global [20]. As far as local methods are concerned, the aim is to minimize the
difference between the patches located on the epipolar lines in order to finally
get the disparity for every pixel of the reference image. The taxonomy of stereo
matching [22] is the reference in the domain of global stereo correspondence.
However the algorithms can be time, memory and power consuming. Konolige
proposed a real-time stereo matching algorithm based on sum of absolute differ-
ence (SAD) and implemented on FPGA [15]. The patch centred on each pixel of
the reference image is compared to a patch centred on a pixel in the other image
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located on the epipolar line and within a disparity range to reduce the processing
time, especially when the desired depth range is known. The size of the SAD
window is also a heuristic defined before processing. The algorithm used by the
commercial stereo camera Bumblebee23 dedicated for real-time applications and
used for our experiments is also SAD-based. Our problem can be solved using
depth maps that are only partially dense. To compute the depth map, we ap-
ply Konolige’s algorithm and keep only the values that are associated to a high
matching score. Thus some of the locations of the depth map are undefined,
which leads to a semi-dense depth map. The remaining valid pixels form a set
of reliable depth values.

4.2 Stereo Cameras

As explained in [16], passive stereo vision suffers from matching failure on low-
textured regions and repetitive patterns. Projecting a texture on the scene dras-
tically improves the stereo matching. Projector-based systems became serious
competitors to passive stereo cameras. However the main drawback of such IR-
projector-based sensors is their inability to work outdoors. Authors of [11] also
showed the degradation of the 3D reconstruction at different times of the day.
The stronger the illuminance, the poorer the quality of the resulting 3D map.
Thus passive stereo cameras keep on being employed for outdoor applications
related to navigation [24] whereas active ones are leading the indoor application
usage. Commercially available stereo cameras are the Microsoft Kinect4 and the
Asus Xtion5 for the active ones.

5 Hardware Setup and Depth Map Acquisition
requirements

According to [27] and [23] level changes are considered hazardous to mobility
impaired people when sidewalks are 4 cm high on flat terrain and more than
3 centimetres high on a slope. As far as stairs are concerned, the step height
is often between 15 and 18 centimetres. The latter constrains the acquisition
system to have a corresponding depth resolution that can be deduced from (13)
as

∆Z = ∆d
fZ2

fT
. (14)

In other words a disparity difference of one pixel (δd) must translate in a height
difference smaller than a step height. Equation (14) demonstrates that for a
camera located at 80 cm from the ground, the theoretical depth resolution is
6.58 mm, 10.52 mm and 21.05 mm at respectively 512 x 384, 320 x 240 and 160

3 http://ww2.ptgrey.com/stereo-vision/bumblebee-2
4 http://www.xbox.com/en-US/kinect
5 http://www.asus.com/Multimedia/Xtion PRO
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x 120 pixel resolution. The bumblebee2 could capture steps as high as sidewalks
with the assumption that the camera is laying parallel to the ground. However
the surfaces shall be well textured to extract the optimal depth map.

Fig. 3. Our experimental setup mounted with the Bumblebee2 stereo camera.

To evaluate our approach the stereo camera is attached on a standard three-
wheel rollator (Fig. 3). The Bumblebee2, our passive stereo camera, is fixed
at H0=76 cm from the ground. For the sake of comparison, we also use the
Microsoft Kinect fixed at 78 cm from the ground. Both systems are tilted with
an angle of θ = 35 degrees. Knowing the standard dimensions of a stair step [3],
our set-up should detect the first step as a danger at Z0=56 centimetres. The
acquisition is carried out with a laptop computer. The Bumblebee images are
captured at the highest resolution (512 x 384 pixels). The impact of the camera
resolution is evaluated by resizing the captured frames for different intermediate
resolutions from 512 x 384 pixels to 160 x 120 pixels with a pixel area relation
based algorithm.

6 Experiments and Results

The evaluation is performed offline on frames captured with the Microsoft Kinect
and the Bumblebee2.

6.1 Required Data

The evaluation of our approach requires a ground depth map as input, the depth
being defined as the distance from the camera plan to the ground. The active
camera directly gives the depth information on which we computed the ground
level at each pixel according to the rotation around the X-axis. A passive stereo
camera captures a pair of raw images. In order to proceed to the stereo match-
ing that produces the disparity map followed by the depth map, the raw images
have to be undistorted and rectified. This calibration process is of uttermost
importance [10]. The Bumblebee2 being already calibrated, we record the recti-
fied pairs of images. The algorithm employed to extract the depth map from the
rectified pictures is the one of Konolige [15, 4]. We choose this stereo matching
as opposed to the Bumblebee library in order to have a manageable code to
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(#1) (#2) (#3) (#4) (#5)

Fig. 4. Scenes where the images were captured with both the Kinect and the Bum-
blebee2: indoor stair case (#1), entrance indoor stairs (#2), outdoor stairs to enter a
building (#3), outdoor stairs (#4), indoor emergency stair case (#5).

Fig. 5. Average of the proportion of pixels with unknown depth from the Kinect and
the Bumblebee2 (BB2) captures at three different resolutions.

further port on an embedded platform. Moreover the detection algorithm does
not require accurate depth, nor does it require a fully dense map. The resulting
depth map is processed according to the transformation demonstrated in Section
3. Each sub-image of a frame is annotated according to the presence of stairs.

The assessment of our approach was carried out on five scenes of descending
stairs (Fig. 4): Scene #1 and scene #5 are indoor scenes; scene #2 is an indoor
scene close to a glass door; scene #3 is an outdoor stair under a canopy cover;
scene #4 is a scene completely outdoor close to a building that created shadow
during the experiment. The scenes’ illuminance is respectively 90, 430, 5000,
2200 and 8 lux, which explains the quality of the resulting depth maps. Since
the active cameras are unable to work outdoor due to the powerful infrared
wavelengths from sunlight, it results in very sparse depth maps (Fig. 5). The
passive stereo camera gives denser depth maps, especially outdoors where the
scenes are highly textured. However its performance drastically drops in poor
lighting conditions, which is rarely a problem since we assume rollator users do
not wander in such dark places.
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In normal lighting conditions the Bumblebee2 (512 x 384) and the Kinect (640
x 480) have similar performance in term of valid depth values computed. The
Kinect has a non-negligible advantage when the indoor lighting drops because
of the infrared illumination it projects. The illuminance impacts the quality of
the required data. This analysis confirms our choice of evaluating our approach
only with a passive stereo camera.

After a training phase done with 70% of data randomly chosen from the first
three scenes (cf. 4), the final detectors described in the following sections ran
on two test sets: (i) the remaining 30% of scenes #1 to #3, (ii) all captures of
scene #4. The results were similar for both sets. We thus present results for the
second set as it is completely different from the training set.

6.2 Classification for High Accuracy

As depicted in Fig. 2 our detector needs four parameters, TGu , TGl
, TDu and

TDl
. In order to determine their optimal values, we proceed to a training phase

with 70% of data randomly chosen from the first three scenes. TGi and TDi vary
from 88 to 130 (cm) and 0 to 1 respectively. The SAD window size and the
disparity range were adapted to the resolution, starting from 15 pixels and 144
pixels respectively for the highest resolution. The training set performance is
measured from the analysis of the true positive rate TPR (also called recall),
the false positive rate FPR, the missed rate FNR (false negative rate), the true
negative rate TNR, the accuracy ACC (also called recognition rate) and the
precision PPV (also called positive predictive value). The recall is the ratio of
true stairs correctly predicted. The false positive rate is the ratio of safe cases
predicted as stairs. The missed rate is the ratio of true stairs predicted as safe
situations. The accuracy is the ratio of good predictions out of all the samples.
The true negative rate is the ratio of safe cases correctly predicted among all
predictions of safe cases. Finally the precision is the ratio of correctly predicted
stairs out of stairs prediction.

According to the training, the best accuracy scores on each detector are
obtained for TGl

between 88 and 92 (cm) and TGu is located around 104 cm.
TGl

optimal value corresponds to the distance between the floor and the first
step of the stairs whereas the optimal TGu comes from the fact that the deepest
pixels appearing in the top of the image do not belong to the first step but
to deeper ones. The resulting optimal parameters for best accuracy values are
listed in Table 4. To produce relevant feedback to the rollator users, we opted
for the decision making strategy described in Section 3. The resulting three-bin
classification on the second test set with the parameterisation for best accuracy
scores is depicted in Fig.6. Safe and dangerous situations are rarely mixed up.
At any resolutions, no safe cases are predicted as dangers and up to 0.5% of
dangers are classified as safe situations.
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Table 2. Performance of the descending stair detector on the lower sub-images of the
training set at the best accuracy for various resolutions. These results are used to tune
TGl and TDl for the final detector run on the test sets

Resolution TDl TGl FPR TPR PPV ACC FNR TNR

512 x 384 0.015 92 0.001 0.944 0.997 0.980 0.056 0.999
465 x 349 0.02 92 0.000 0.941 0.999 0.979 0.059 1.000
393 x 295 0.015 98 0.002 0.944 0.996 0.979 0.056 0.998
365 x 274 0.02 92 0.001 0.942 0.997 0.979 0.058 0.999
320 x 240 0.02 92 0.003 0.940 0.995 0.977 0.060 0.997
301 x 225 0.03 92 0.000 0.929 1.000 0.975 0.071 1.000
256 x 192 0.03 90 0.002 0.927 0.996 0.973 0.073 0.998
204 x 153 0.045 90 0.007 0.918 0.986 0.967 0.082 0.993
160 x 120 0.095 88 0.009 0.875 0.981 0.950 0.125 0.991

6.3 Classification to Minimize False Alarms and Misses

To help rollator users it is important: (i) to avoid false alarms otherwise they will
turn away from the device that raises irrelevant alarms; (ii) not to miss relevant
alarms. Thus we looked for TGu , TGl

, TDu and TDl
that minimize false positives

and false negatives. In other words, we looked for the best true positive rate at
full precision. From the training results, we got the desired parameters listed in
Table 5. The resulting performance on the test data (scene #4) is summarized
in Fig. 7. Again, at any resolutions, all safe situations are never predicted as
dangers. Warnings are more misclassified, mainly as safe situations than in the
previous experiment. For resolutions higher than 204 x153, less than 0.8% of
dangers are missed because predicted as safe and goes up to 2.6% at the lowest
resolution.

Table 3. Performance of the descending stair detector on the upper sub-images of the
training set at the best accuracy for various resolutions. These results are used to tune
TGu and TDu for the final detector run on the test sets

Resolution TDu TGu FPR TPR PPV ACC FNR TNR

512 x 384 0.015 104 0.013 0.919 0.987 0.951 0.081 0.987
465 x 349 0.015 106 0.016 0.919 0.984 0.949 0.081 0.984
393 x 295 0.020 110 0.015 0.915 0.986 0.948 0.085 0.985
365 x 274 0.030 100 0.023 0.910 0.978 0.941 0.090 0.977
320 x 240 0.030 104 0.027 0.910 0.974 0.940 0.090 0.973
301 x 225 0.050 104 0.018 0.898 0.983 0.938 0.102 0.982
256 x 192 0.055 108 0.019 0.894 0.982 0.935 0.106 0.981
204 x 153 0.070 110 0.040 0.895 0.962 0.926 0.105 0.960
160 x 120 0.095 110 0.124 0.898 0.891 0.887 0.102 0.876
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6.4 Discussion

Our goal was to assess the performance of a stereo system that fits the re-
quirements of a battery lifetime of at least day. Our objective is to develop a

Table 4. Chosen parameters for the descending stair detector for various resolutions
according to the best accuracies obtained from the training phase (70% of data from
scenes #1 to #3)

Resolution TDu TGu TDl TGl

512 x 384 0.015 104 0.015 88
465 x 349 0.020 104 0.020 88
393 x 295 0.020 104 0.020 88
365 x 274 0.030 104 0.020 88
320 x 240 0.030 104 0.025 88
301 x 225 0.050 104 0.030 88
256 x 192 0.090 104 0.030 88
204 x 153 0.190 104 0.045 88
160 x 120 0.275 104 0.095 88

(a) (b) (c)

Fig. 6. Prediction on the test data (scene #4) with the parameters set according to
the best accuracies obtained on training for three different resolutions.

(a) (b) (c)

Fig. 7. Prediction on the test data (scene #4) with the parameters set according to
the best minimization of false positives and false negatives obtained on training for
three different resolutions.
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Table 5. Chosen parameters for the descending stair detector for various resolutions
according to the best true positive rate at 100% precision. obtained from the training
phase (70% of data from scenes #1 to #3)

Resolution TDu TGu TDl TGl

512 x 384 0.025 104 0.030 92
465 x 349 0.030 106 0.030 92
393 x 295 0.035 112 0.030 92
365 x 274 0.040 112 0.030 92
320 x 240 0.045 114 0.030 92
301 x 225 0.060 116 0.030 92
256 x 192 0.070 118 0.035 92
204 x 153 0.140 118 0.065 92
160 x 120 0.220 118 0.175 92

descending stair detector with low resolutions cameras. The detector shall avoid
mixing up safe situations with dangers and vice versa. From the training phase,
we could choose two optimal sets of parameters: (i) to get the best recognition
rate (accuracy); (ii) to minimize the false positives and false negatives. Both
tests highlighted the ambiguity of the annotation of warning cases which can be
tagged as warning or safe by two different experts. As a consequence they are
easily predicted as safe by the detector. These samples present descending stairs
that are appearing at the very top of the frame. In practice they can be consid-
ered as a safe situation since they are far enough from the user. Nevertheless, in
this problem, safe situations are clearly distinct from dangerous ones.

The two parameterisations gave similar results. As expected the decrease of
the resolution alters the performance. However when we look at the detection
of safe and dangerous situations as a binary classification, the accuracy keeps
being greater than 98.9%. We have to focus on improving the confusion between
warnings and safe cases both on the annotation and detection side. In terms of
time and power consumption, the Konolige’s algorithm is dedicated to real-time
applications and ran at 6 fps on FGPA in 1997[15]. We expect our algorithm
to run on an ARM cortex-M4 at 10 fps. An Arm cortex-M4 runs at 180MHz
and consumes 157 µW/MHz. With two cameras that consume up to 60 mW,
we should expect our detector to run for about 160 hours on a mobile phone
battery (700mAh at 3.7V).

7 Conclusions and Future Work

We proposed a reliable descending stair detector based on stereo vision. We
demonstrated the robustness of our approach at low resolution. The classifier
is capable of recognizing more than 98.9% of safe and dangerous situations at
very low resolution and up to 99.8% at higher resolutions. Our results enable
us to be highly confident in integrating our algorithm on an embedded platform
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equipped with low resolution sensors to reach the project’s user requirements
of low power consumption (several days) and real-time feedback (about 10 fps).
As future steps, we will extend our experiments to sidewalks. Our detector will
be embedded on an off-the-shelf hardware board connected to a pair of low
resolution and high dynamic range cameras for both indoor and outdoor usage
for elderly safety and self-confidence.
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References

1. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF).
Computer Vision and Image Understanding 110(3), 346–359 (2008)

2. Bouhamed, S.A., Kallel, I.K., Masmoudi, D.S.: New electronic white cane for stair
case detection and recognition using ultrasonic sensor. International Journal of
Advanced Computer Science & Applications 4(6) (2013)

3. BPA: ”brochure technique escaliers” and ”garde-corps base: norme sia 358”. http:
//www.bfu.ch/sites/assets/Shop/bfu 2.007.02 Escaliers.pdf and http://

www.inoxconcept.ch/images/normes sia 358.pdf (2009), bureau de prévention
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capés” rues - chemins - places. http://www.mobilitepietonne.ch/fileadmin/

redaktion/publikationen/Strassen Wege Plaetze Richtlinien fuer

behindertengerechte Fusswegnetze f.pdf, [Online, accessed 20-June-2014]
24. Serro, M., Shahrabadi, S., Moreno, M., Jos, J.T., Rodrigues, J.I., Rodrigues,

J.M.F., Buf, J.M.H.: Computer vision and GIS for the navigation of blind per-
sons in buildings. Universal Access in the Information Society (Feb 2014)

25. Shahrabadi, S., Rodrigues, J.M., Du Buf, J.H.: Detection of indoor and outdoor
stairs. In: Pattern Recognition and Image Analysis, pp. 847–854. Springer (2013)

26. Tseng, C.K., Li, I., Chien, Y.H., Chen, M.C., Wang, W.Y.: Autonomous stair detec-
tion and climbing systems for a tracked robot. In: System Science and Engineering
(ICSSE), 2013 International Conference on. pp. 201–204. IEEE (2013)

27. Walter, E., Cavegn, M., Scaramuzza, G., Niemann, S., Allenbach, R.: Fussverkehr
unfallgeschehen, risikofaktoren und prävention. http://mobilitepourtous.ch/
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