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Abstract. The main question we address is whether it is possible to
crowdsource navigational data in the form of video sequences captured
from wearable cameras. Without using geometric inference techniques
(such as SLAM), we test video data for its location-discrimination con-
tent. Tracking algorithms do not form part of this assessment, because
our goal is to compare different visual descriptors for the purpose of lo-
cation inference in highly ambiguous indoor environments. The testing
of these descriptors, and different encoding methods, is performed by
measuring the positional error inferred during one journey with respect
to other journeys along the same approximate path.
There are three main contributions described in this paper. First, we
compare different techniques for visual feature extraction with the aim of
associating locations between different journeys along roughly the same
physical route. Secondly, we suggest measuring the quality of position in-
ference relative to multiple passes through the same route by introducing
a positional estimate of ground truth that is determined with modified
surveying instrumentation. Finally, we contribute a database of nearly
100,000 frames with this positional ground-truth. More than 3 km worth
of indoor journeys with a hand-held device (Nexus 4) and a wearable
device (Google Glass) are included in this dataset.

1 Introduction

There is increasing interest in technologies that perform the indoor localisation of
a user with respect to his or her surroundings. Many of the applications of such
a technology are in commerce, allowing mobile devices, such as smartphones,
to be more context-aware. However, there are many assistive contexts in which
accurate user localisation could have a strong role to play. These include the
ability of a user to request assistance in a public space, allowing him or her to
be found, and guidance or assistance directed towards them. A more general
and wide-ranging possibility is the use of computer vision to contribute to the
guidance of an individual. With the emergence of wearable cameras, the poten-
tial contributions of computer vision to the navigational context, particularly for
visually-impaired users, is enormous. This work explores a complementary ap-
proach to visual localisation than using geometric and Simultaneous Localization
and Mapping (SLAM)-based techniques. Location is inferred through answering
visual queries that are submitted against the paths of other users, rather than
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by explicit map-building or geometric inference. This mimics current hypotheses
about at least one component of localisation in mammalian vision, where differ-
ent localisation mechanisms are thought to co-exist; see, for example, the review
article by Hartley and others [7]. We test the ability to localise from visual con-
tent – not self-motion – in a new dataset of visual paths [18], containing more
than 3 km of video sequences in which ground-truth is acquired using modified
surveying equipment. The dataset can be used to assess localization accuracy
using any number of techniques that involve vision, including SLAM. The re-
sults suggest that, even without tracking, good localization of a user, even in
ambiguous indoor settings, can be captured. The application to wearable cam-
era technology – whereby image cues are harvested from volunteered journeys,
then used to help other users of the same space – is the eventual goal of this
work, a natural extension to recently reported approaches based on harvesting
environmental signals [28].

2 Related work

2.1 Early findings in Robotics

Early work by Matsumoto et al. [14] suggested the concept of a “view-sequenced
route representation” in which a robot performed simple navigation tasks by
correlating current views to those held in a form of training database. Similar
ideas can be seen on the work by [15], using the difference between frames of
detected vertical lines to estimate changes in position and orientation. Their
results were constrained to controlled robot movement, and therefore arguably
of limited applicability to images obtained from human self-motion. Tang et al.
also used vertical lines as features [24], but from from omni-directional cameras;
their technique relied on estimating positional differences between playback and
training sequences to achieve robot navigation. Tang introduced odometers as
well, therefore fusing vision with self-motion sensing. This is, in fact, what one
might expect a working system to do. However, fusing sensor data makes it
difficult to really assess and tune the contribution of individual sensing cues,
particularly one as complex as vision, where several visual processing strategies
could be applied: optic flow, feature detection and tracking, stereo, etc.

2.2 Emerging methods

The mapping of outdoor navigational routes has progressed rapidly in the past
2 decades, with satellite-based positioning and radio-strength indicators provid-
ing high-quality navigation capability over scales of around 10 m or less. In an
indoor context, localization technology is in its infancy [21, 28, 17]. For indoor
localization, there has been remarkable work from Google and crowdsourced
sensor information and maps [9]. The potential to use retrieval-based visual lo-
calization systems, such as the proposed by the NAVVIS team, are relatively
computationally intensive, but provide a source of data that is often neglected
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Fig. 1: A sample path (Corridor 1, C1) illustrating the multiple passes through
the same space. Each of these passes represents a sequence that is either stored
in a database, or represents the queries that are submitted against previous jour-
neys. In the assistive context, the user at point A could be a blind or partially
sighted user, and he or she would benefit from solutions to the association prob-
lem of a query journey relative to previous “journey experiences” along roughly
the same path, crowdsourced by N users that may be sighted

in human navigation systems. Nevertheless, the NAVVIS team demonstrated
that estimating the position of a robot was possible, and provided a dataset ac-
quired from a camera-equipped robot with ground truth [8]. They also expanded
early work on visual localization based on SIFT descriptors [16] to one that uses
a Bag-of-Features. This is an important step, as it allows scalable operation in
larger datasets, or a subset of data to be cached on a smartphone or wearable
device for low-latency operation during active navigation [19, 20].

2.3 Biological Motivation

Over the past 40 years, research into mammalian vision has uncovered remark-
able details about the way in which neurons in the brain respond to the envi-
ronment of an animal. One of the areas known to be strongly associated with
memory is also implicated in localization: the hippocampus. Evidence suggests
that there are at least three sources of explicit localization encoding in hippocam-
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pal cells. For example in rodents, cells have been found to display elevated firing
rates when the animal is in specific locations within an environment, but the
responses fall into different “features” of the location of the animal. Some cells
appear to participate in a joint encoding, with individual cells responding to
more than one location (grid cells). Other cells appear to use various cues to
localise themselves relative to boundaries, as evidenced by firing rates that en-
code “distance to boundary”. From detailed experiments in insect vision, we
know that optical flow is one of the contributing sources of such information,
and quite similar mechanisms are found in higher animals [11]. The third type
of hippocampal localization cell motivates this work: hippocampal place cells [7].
These cells display elevated firing when an animal is in a specific location, and
they also known to be found in humans [3]. To be clear, each cell that is char-
acterised as a place cell has the property that it displays significantly elevated
firing rates only when an animal is in a particular spatial location. The nature of
these experiments cannot rule out the possibility that such cells participate in a
joint encoding, but the “simplistic” view of place cells is “one-cell, one-location”.

2.4 This Work

Our usage context is related to aspects of previous work, but is motivated by
the idea that there are significant opportunities to use computer vision in assis-
tive contexts. Whilst often considered power and compute intensive compared
to other sources of sensor data, visual data is almost singularly rich in the navi-
gation context. There are only a few examples of its use in assistive technology,
where techniques such as ultrasound, intelligent canes and standard localization
technologies are dominant. However, due to the emergence of wearable cameras
and highly connected devices that can process video data efficiently (e.g. general
purpose graphics processors, embedded on phones), the opportunity to harness
visual data for navigation is very attractive.

The dominant technique for localization and mapping in computer vision is
SLAM. However, we consider that the convergence of crowdsourcing approaches
to “map out” physical spaces is not supported by this technique. In other words,
the approaches we can use with crowdsensing of signal data to learn navigational
routes has not been applied to visual data. Of course, in using visual informa-
tion, one would certainly seek to support it with other forms of sensor such as
Received Signal Strength Indication (RSSI) data, magnetometers, and tracking
algorithms [19, 20, 17]. However, in assessing and evaluating its performance, it
is hard to isolate factors that affect the quality of visual information when it
is included as part of a sensor fusion approach. Thus, we focus in this work on
purely visual methods, with the purpose of teasing out aspects of the algorithms
that represent, in a location-specific way, the location of a person with a camera.

The first step in doing this is, therefore, to a) collect data that allows us to
determine how plausible it is to infer the location of one user relative to others
that have made the same journey using visual data alone; b) apply matching
techniques between data sets, treating some video data as a “journey” database,



Associating Locations Between Indoor Journeys from Wearable Cameras 5

and other data as one or more queries. The general principle of the data acqui-
sition takes the form of experiments in which ground-truth is measured using
modifications to fairly standard surveying equipment. We now describe this more
fully.

3 The Dataset

In order to allow different approaches to be compared, and as a community
resource to develop this technique, the RSM dataset is made publicly available
at http://rsm.bicv.org [18].

3.1 Existing Datasets

Datasets for evaluating visual localization methods have historically been tied
to specific publications and their function was often limited to demonstrate the
performance of particular metrics. This has led to a number of datasets that
were difficult to adapt to new work, or simply impossible to use because they
were never released to the community.

Historical Datasets Early work described in Section 2.1 used custom-planned
datasets for their specific evaluation objectives. This led to datasets [14, 15, 24]
containing very short sequences, of few meters of length, that could not be used
to assess localization performance at human scale.

SLAM datasets and the NAVVIS Dataset SLAM datasets, found in the robotics
community, have a variety of scopes and recorded distances: large indoor spaces
[23], outdoor itineraries [1], and up to the scale of a few km car ride [22]. They
are also heterogeneous in terms of the precision and nature of the ground truth:
some use GPS, others the Microsoft Kinect to capture depth [23], while others
use the Vicon motion capture system. While the ground truth is often precise
(up to the level of GPS, Kinect or Vicon precision), these have usually targeted
outdoor comparisons; indoor comparisons focused at geometric reconstruction
or pose estimation rather than localisation.

To the best of our knowledge, with the exception of NAVVIS, SLAM datasets
have had rather restricted distances, not addressing real-world navigation on the
scale of buildings. The NAVVIS project described in Section 2.2 first introduced
a more generalistic dataset that could evaluate visual localization and navigation
at human scale for robotic applications. Our proposed dataset takes the eval-
uation and the principle closer to the assistive context than the robot-centric
approach of the NAVVIS team: our data and evaluation context introduces the
particularities of human motion, both from hand-held and a wearable camera.

3.2 Visual Paths

We define a “visual path” as the video sequence captured by a moving person
in executing a journey along a particular physical path. For the construction of
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our dataset, the RSM dataset of visual paths, a total of 60 videos were acquired
from 6 corridors of a large building. In total, 3.05 km of data is contained in this
dataset at a natural indoor walking speed. For each corridor, ten passes (i.e. 10
separate visual paths) are obtained; five of these are acquired with two different
devices with 30 videos each. One device was a LG Google Nexus 4 phone running
Android 4.4.2. The video data was acquired at approximately 24-30 fps at two
different resolutions, 1280× 720 and 1920× 1080 pixels. The second device was
a Google Glass (Explorer edition) acquiring at a resolution of 1280×720, and at
a frame rate of 30 fps. Table 1 summarizes the acquisition. As can be seen, the
length of the sequences varies within some corridors, due to a combination of
different walking speeds and/or different frame rates. Lighting also varied, due
to a combination of daylight/night-time acquisitions, and occasional prominent
windows that represent strong lighting sources in certain parts of some corridors.
Changes were also observable in some videos from one pass to another, due to the
presence of changes and occasional appearance from people. In total, more than
90,000 frames of video are labelled with positional ground-truth in a path relative
manner. The dataset is publicly available for download at http://rsm.bicv.org
[18].

3.3 Ground Truth Acquisition

A surveyor’s wheel (Silverline) with a precision of 10 cm and error of ±5% was
used to record distance, but was modified by wiring its encoder to a Raspberry
Pi running a number of measurement processes. The Pi was synchronised to
network time enabling synchronisation with timestamps in the video sequence.
Because of the variable-frame rate of acquisition, timestamp data from the video
was used to align ground-truth measurements with frames. This data was used
to access the accuracy of associating positions along journeys through frame
indexing and comparison.

4 Retrieval Methods for Visual Localisation

We include results from unmodified, widely-used frame and sequence-based de-
scriptor implementations reported in the image and video categorization and
retrieval literature. We also implemented our own methods for greater control
of parameter tuning and a more consistent comparison of the possible choices
of spatial derivatives, temporal derivative/smoothing and spatial pooling. We
describe the two classes of methods as “standard” and “projective”; the latter
refers to the fact that our implementations are all performed by linear projections
onto spatial weighting functions, and are created by a cascade of convolution op-
erations, followed by spatial sub-sampling.

4.1 Standard Methods

Keypoint based SIFT (KP SIFT). The original implementation of Lowe’s SIFT
descriptor follows the identification of interesting points, each with assigned in-
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Table 1: A summary of the dataset with thumbnails

Photo
Length (m) No. of frames

Avg Min Max Avg Min Max

C1 57.9 57.7 58.7 2157 1860 2338

C2 31.0 30.6 31.5 909 687 1168

C3 52.7 51.4 53.3 1427 1070 1777

C4 49.3 46.4 56.2 1583 1090 2154

C5 54.3 49.3 58.4 1782 1326 1900

C6 55.9 55.4 56.4 1471 1180 1817

Total 3.042 km 90,302 frames

trinsic scales and orientations within the image that are likely to be stable,
known as the “SIFT keypoints” [13]. This is widely used across many computer
vision applications from object recognition to motion detection and SLAM. We
used the standard implementation from VLFEAT to compute ∇f(x, y;σ) where
f(x, y;σ) represents the scale-space embedding of image f(x, y) within a Gaus-
sian scale-space at scale σ. We also filtered out small local maxima in scale-space.
The resulting descriptors are sparsely spread through each video frame.

Dense SIFT (DSIFT) The Dense-SIFT [12, 25] descriptor is a popular and fast
alternative to keypoint based SIFT. This DSIFT descriptor was calculated by
dense sampling of the smoothed estimate of ∇f(x, y;σ) . We used dense SIFT
from VLFEAT toolbox using σ = 1.2, with a stride length of 3 pixels. This
process yielded around 2, 000 descriptors per frame, each describing a patch of
roughly 10 × 10 pixels in the frame. Spatial scale is fixed with this approach,
though the descriptor structure is otherwise the same as for the the sparse key-
points.

HOG3D The HOG 3D descriptor (HOG3D) [10] was introduced with the aim
of extending the very successful two-dimensional histogram of oriented gradients
technique [5], to space-time fields, in the form of video sequences. HOG 3D seeks
computational efficiencies by smoothing using box filters, rather than Gaussian
spatial or space-time kernels. This allows three-dimensional gradient estimation
across multiple scales using integral video representations, a direct extension
of the integral image idea [27]. The gradients from this operation are usually
performed across multiple scales. We used the dense HOG 3D option from the
implementation of the authors, and the settings yielded approximately 2,000,
192-dimensional descriptors per frame of video.
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4.2 Projective Descriptors

This grouping of descriptors is based on distinct implementations of spatial
and/or temporal filtering. In this sense, there are exact or minor variations on
the gradient-based methods considered in the previous section. However, what is
common to all of the methods below is that the initial filtering is converted into
descriptors using projections against spatial weighting functions, one for each
descriptor element. This approach is similar to a soft-histogram approach, but
allows greater flexibility in tuning the bin weightings.

Single Frame Gabor descriptors (SF GABOR). This is an odd-symmetric Gabor-
based descriptor. For this, we used 8-directional spatial Gabor filters previously
tuned on PASCAL VOC data [6] in order to encode the the image gradient
field. Each filtering operator produces a filtered image plane, denoted Gk,σ.
Spatial pooling of these image planes was performed by the spatial convolu-
tion Gk,σ ∗Φm,n. Φm,n represent spatial pooling functions that are generated by
spatial sampling of the function:

Φ(x, y;m,n) = e
−α

[
loge

(
x2+y2

d2n

)]2

−β(θ−θm)
(1)

We used α = 4 and β = 0.4 in our implementation. The values of m and n
were selected to “collect” filtered image data over 8 angular regions and with
the weighting roughly peaking around distances d1 = 0.45 and d2 = 0.6 away
from the centre of each pooling region, for a total of 17 pooling regions across
each of the eight filtering channels. In the (m = 0) central region, there is no
angular variation. The resulting fields – one field for each pooling region for
each directional channel – are sub-sampled to produce dense 136-dimensional
descriptors, each representing a 10 × 10 image region, yielding approximately
2,000 descriptors per image frame when the result of the convolution is sub-
sampled. The pooling regions are illustrated in Fig. 2.

Space-time Gabor (ST GABOR) functions have been used in activity recogni-
tion, structure from motion and other applications [2]. We performed convo-
lution between the video sequence and three one-dimensional Gabor functions
along each spatial dimension i.e. x or y, or along t. The one-dimensional convo-
lution is crude, but appropriate if the videos have been spatially smoothed. The
spatial extent of the Gabor was set to provide one cycle of weight oscillation
over roughly a 5 pixel distance, both for the x and y spatial dimensions. The
filter for the temporal dimension used a wavelength of around 9 frames. We also
explored symmetric Gabor functions, but found them less favourable.

After performing three separate filtering operations, each pixel of each frame
is assigned a triplet of values corresponding to the result of the each filtering
operation. The three values are treated as being components of a 3D vector.
Over a spatial extent of around 16 × 16 pixels taken at the central frame of
the 9-frame support region, these vectors contribute weighted votes into descrip-
tor bins according to their azimuth and elevations, with the weighting being
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Fig. 2: This illustrates the nature of the spatial pooling used in the projective
descriptors. The regions are produced from Eq. 1, generating non-negative spatial
filters that collect (pool) filtered data over a 10 × 10 pixel region. Because of
the spatial symmetry, the masks can be applied to the Gabor filtered video
frame outputs by spatial convolution. These regions were obtained as a result
of optimisation of parameters of Eq. 1 using a metric similar to mean absolute
precision (mAP)

given by the length of the vector. This is similar, but not identical, to the initial
stages of the HOG3D filter. Pooling is then performed using the spatial lobe pat-
tern illustrated in Fig. 2. Each frame had approximately 2,000, 221 dimensional
ST GABOR descriptors.

Space-Time Gaussian This descriptor consisted of spatial derivatives in space,
combined with smoothing over time (ST GAUSS). In contrast to the strictly
one-dimensional filtering operation used for the ST GABOR descriptor, we used
two 5 × 5 gradient masks for the x and y directions based on derivatives of
Gaussian functions, and an 11-point Gaussian smoothing filter in the temporal
direction with a standard deviation of 2. 8-directional quantization was applied
to the angles of the gradient field, and weighted voting with the gradient mag-
nitude was used to populate the bins of a 136-dimensional descriptor. Like the
ST GABOR descriptor, the pooling regions were as shown in Fig. 2. The num-
ber of descriptors produced was equivalent to the other methods described for
patch-based indexing.

5 Evaluation Framework

5.1 BOVW Pipeline

In order to test the ability to localise position based on the visual structure of
either a short sequence of frames or individual frame information, we adopted
a retrieval structure for efficient mapping of the visual descriptors, sparsely or
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densely populating an image, into a single frame or vignette-level representation.
The approach is based on fairly standard retrieval architectures used for image
categorization – the Bag-of-Visual Words (BOVW)– and is illustrated in Figure
3.

Visual Path
(Database)

Gradients Pooling VQ Histograms

Distance 
metrics

Visual Path
(Query)

Path relative
position estimate

Gradients Pooling VQ Histograms

Descriptor
Sampling

Descriptor
Sampling

Fig. 3: Video sequences from wearable and hand-held cameras are processed us-
ing a customized BOVW pipeline. Variants of the gradient operators, pooling
operators, quantization and distance metrics are described in Section 4

For the vector quantization, hard assignment (HA) was used to encode each
descriptor vector by assignment to a dictionary entry. The data set was par-
titioned by selecting M − 1 of the M video sequences of passes through each
possible path. This ensured that queries were never used to build the vocabu-
lary used for testing the localization accuracy. The dictionary was created by
applying the k-means algorithm on samples from the video database. We fixed
the dictionary size to 4,000 (clusters, words); this allows comparison with the
work of others in related fields, such as [4].

The resulting dictionaries were then used to encode the descriptors, both
those in the database and those from queries. The frequency of occurrence of
atoms was used to create a histogram of visual words “centered” around each
frame of the video sequence (visual path) in a database, and the same process was
used to encode each possible query frame from the remaining path. Histograms
were all L2-normalized.
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5.2 Localization using “kernelized” histogram distances

Once histograms had been produced, a kernelized-version in [26] of a distance
measure in 4,000-dimensional space was used to compare the similarity of his-
tograms in a query frame with the database entries. A variety of kernel functions
exist, such as the popular Hellinger kernel, but we found the χ2 best for this
problem. For a random subset of the M − 1 videos captured over each path in
the dictionary, the query is generated from the remaining journey. Each query
frame, Hq, results in M − 1 separate comparison vectors, each containing the
distance of each frame to the query. We identified the best matching frame, m̂
from pass p̂ across all of the M − 1 vectors. This is done using:

L(p̂, f̂) = argmax
p,f

{KD(Hq, Hp,f )} (2)

Hp,f denotes the series of normalized histogram encodings, indexed by p drawn
from the M − 1 database passes, and f denotes the frame number within that
pass. KD denotes so-called “kernelized” distance measure [26]. The estimated
“position” of a query, L, was that corresponding to the best match given by
Eq. 2; this position is always relative to that of another journey along roughly
the same route; the accuracy and repeatability of this in associating location
between passes was evaluated using distributions of location error distributions
and area-under-curve criteria derived from these distributions.

5.3 Measurements of Performance

We quantify the accuracy of being able to associate locations along physical
paths in corridors within the dataset described in Section 3. By permuting the
paths that are held in the database and randomly selecting queries from the
remaining path, we were able to obtain the error in localization. Repeated runs
with random selections of groups of frames allowed variability in these estimates
to be obtained, including that due to different paths being within the database.
To estimate these distributions, we measured the absolute error in localization
as a distance, ε, relative to route ground truth, summarizing this as estimates of
P (ε < x). For this, we used the ground-truth information acquired as described
in Section 3.

5.4 Cumulative Distribution Functions

In Fig. 5, we compare the error distributions of all techniques. In Figs. 4(a)
to 4(b), we provide separate assessments of the variability in error distribution
when 1 million permuted queries are performed by cycling through 1,000 per-
mutations of 1,000 randomly selected queries. This Monte-Carlo approach to
testing accuracy allows the stability of approaches to be assessed. The graphs
here suggest high reproducibility of retrieval performance (small shaded areas
between lower and upper traces of each graph). All the results were generated
with videos resized down to 208 × 117 pixels; these are also supplied with the
dataset.
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5.5 Area-Under-Curve Comparisons

We calculated the average absolute positional error (in m) and the standard
deviation of the absolute positional errors (Table 2). All queries were again
performed by adopting the leave-one-out strategy, but because of the high re-
peatability of results (as seen in Fig. CDFglobal), we did not apply random
frame-level sampling. Standard deviations of the absolute error distribution are
also provided. Table 2 also provides the area-under-curve (AUC) values obtained
from the CDFs of Fig. 4.
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Fig. 4: Comparison between the error distributions obtained with the different
methods. Note the high reproducibility of the performance results. The origin of
the variability within each curve is explained in Section 5.4

6 Results

One of the clear distinctions that we found, whether we used standard methods
or the projective version of descriptors, is that single frame methods worked
better than multiple-frame methods. This can be seen by comparing the top
and bottom rows of Table 2. The results show that localization is achieved with
high accuracy in terms of CDF and AUC without a large difference between the
applied methods, despite the big diversity in their complexity. Absolute errors
show significant differences between methods, with average absolute errors in
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Fig. 5: Comparison between the error distributions obtained with the different
methods. The results for a random frame test (RANDOM) were introduced as
a “sanity check”

Table 2: Summaries of average absolute positional error and standard deviation
of positional errors for different descriptor types. µε is the average absolute error,
and σε is the standard deviation of the error, both in metres. Top: single frame
methods. Bottom: spatio-temporal methods

Method
Error summary (m) AUC (%)
µε σε Min Max

SF GABOR 1.59 0.11 96.11 96.39

DSIFT 1.62 0.11 95.96 96.31

KP SIFT 2.14 0.17 94.58 95.19

ST GAUSS 2.11 0.24 94.82 95.57

ST GABOR 2.54 0.19 93.90 94.44

HOG3D 4.20 1.33 90.89 91.83

the range of 1.5 m to 4.20 m. Single frame methods (SF GABOR, KP SIFT and
DSIFT) perform slightly better than spatio-temporal ones. This is not surprising,
as the spatio-temporal methods might be too affected by the self motion over
fine temporal scales.

In spite of using image retrieval methods in isolation, this performance is in
the range of methods reviewed in Section 2 that include tracking, other sensors
or estimate motion. We emphasise that no tracking was used in estimating posi-
tion: this was deliberate, in order that we could assess performance in inferring
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location from the visual data fairly. Introducing tracking will, of course, improve
localization performance, and could reduce query complexity. Yet, tracking often
relies on some form of motion model, and for pedestrians carrying or wearing
cameras, motion can be quite unpredictable.

7 Conclusion

We have presented several contributions in the topic of indoor localization using
visual path matching from wearable and hand-held cameras. We provide an
evaluation of six local descriptor methods: three custom designed and three
standard image (KP SIFT and DSIFT) and video (HOG3D) matching methods
as baseline. These local descriptions follow a standard bag-of-words and kernel
encoding pipeline before they are evaluated with the ground truth. The code for
the local descriptors and the evaluation pipeline is available on the web page [18].
We also make available a large dataset with ground truth of indoor journeys to
complete the evaluation framework.

The results show that there is significant localization information in the visual
data even without using tracking, and that errors as small as 1.5 m can be
achieved. We have split the results in two: a) Absolute positional errors that
help to discern between image description methods and assess their localization
capabilities; and b) error distributions that can be used to build a model for
inclusion in a Kalman or particle filtering approach that is appropriate for human
ambulatory motion.

We plan to introduce tracking as part of our future work and make use of
the error distributions to build human motion models. There are, of course, nu-
merous other enhancements that one could make for a system that uses visual
data; integration of data from other sensors springs to mind, such as inertial
sensing, magnetometers and RSSI. Although the fusing of independent and in-
formative data sources leads to improvements in performance, we would argue
that the methods applied to infer location from each information source should
be rigorously tested, both in isolation and as part of an integrated system. This
will ensure that real-world systems perform well in standard use, but are also
somewhat robust to the sensor failure. With their very good standalone perfor-
mance, we anticipate that using vision and associating the journeys of several
users through their visual paths could play an important role in localization.
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