
Surface Reconstruction of Plant Shoots from        

Multiple Views 

Michael P. Pound1, Andrew P. French1,2, Erik H. Murchie1 and Tony P. Pridmore1,2 

1Centre for Plant Integrative Biology, University of Nottingham 
2School of Computer Science, University of Nottingham, Nottingham NG8 1BB, UK 

Abstract. Increased adoption of the systems approach to biological research has 

focused attention on the use of quantitative models of biological objects. This 

includes a need for realistic 3D representations of plant shoots for quantification 

and modelling. We present a fully automatic approach to image-based 3D plant 

reconstruction. The reconstructed plants are represented as a series of small pla-

nar sections that together model the more complex architecture of the leaf sur-

faces. The boundary of each leaf patch is refined using the level set method, op-

timising the model based on image information, curvature constraints and the 

position of neighbouring surfaces. The reconstruction process makes few as-

sumptions about the nature of the plant material being reconstructed, and as such 

is applicable to a wide variety of plant species and topologies, and can be ex-

tended to canopy-scale imaging. We demonstrate the effectiveness of our ap-

proach on datasets of wheat and rice plants, as well as a novel virtual dataset that 

allows us to compute distance measures of reconstruction accuracy. 
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1 Introduction 

In recent years there has been a surge in interest in the construction of geometrically 

accurate models of plants. Increased adoption of the systems approach to biological 

research has focussed attention on the use of quantitative models of biological objects 

and processes to both make and test hypotheses.  

Existing plant modelling approaches can be broadly classified as either rule-based, 

or image-based [1]. Rule-based approaches generate model plants based on rules or 

grammars with specified structure. These rules, and hence the form and parameters of 

the models produced, are often derived from measurements of real plants [2,3]. The 

resulting virtual plants can model different phenotypes, plant response to various grow-

ing conditions and stresses, and when based on real-world data will be reasonably ac-

curate. However, the data acquisition process is often extremely time consuming, and 

is usually tailored to a particular species. In many cases only a small set of varieties can 

be described, due to the manual measurements required to parameterise the model.  

Image-based approaches attempt to directly model a given object by extracting the 

necessary information from one or more images of that object. These approaches are 



2 Michael P. Pound, Andrew P. French, Erik H. Murchie and Tony P. Pridmore 

particularly attractive as a means of plant modelling, where in addition to supporting 

systems biology, they provide a route to plant phenotyping [4,5].  

Plants, however, provide a particularly challenging subject, with large amounts of 

self-occlusion, and depending on plant species, leaves that lack the texture necessary to 

perform robust feature matching, either to separate leaves from one another, or locate 

specific leaves across multiple views. To overcome this, where image-based modelling 

approaches are successful, they have often involved user-interaction to guide the pro-

cess [1]. 

Top-down image-based approaches attempt to simplify the model construction prob-

lem by instead solving a model refinement problem. An existing model is adjusted to 

fit the image data, so that the new plant representation is consistent with what is ob-

served. [1,6] take this approach, first obtaining an ideal leaf model from a single leaf, 

and then fitting it to all other leaves in the scene. By adapting an existing model, topo-

logical inconsistency (such as the self-intersection of leaf surfaces) is avoided, but this 

comes at the expense of generality. [7] guides the segmentation of laser range data using 

planar or curved-quadratic surface models, however this approach extents only to the 

refinement of point cloud data, without reconstructing leaf surfaces.  

Bottom-up methods begin with one or more images, and reconstruct a plant model 

based only on the observed pixel data. Two broad approaches exist, both requiring a set 

of images captured from different, but known, viewpoints. Silhouette-based methods 

[8,9] segment each image independently to identify the boundary of the object of inter-

est. These regions are combined to determine the maximum possible object size that is 

consistent with the images presented to the algorithm, the photo hull [10]. In many 

cases, where the number of input images is high, the resulting model will be a good 

approximation to the true plant structure. However, as the scene becomes increasingly 

complex, for example with the addition of more leaves in an older plant, the discrepancy 

between true object and model will increase. This problem becomes more pronounced 

when extending these techniques to very complex scenes such as plant canopies, where 

its effectiveness is limited. 

Other approaches include correspondence-based methods that identify features of 

interest independently in each of a set of images, and then match those features between 

views.  If the image features associated with a particular plant feature (e.g. the tip of a 

leaf) can be identified in multiple images taken from different viewpoints, knowledge 

of the cameras’ positions and orientations allow its 3D location to be computed. The 

work in [11] extracts the centre lines of wheat plants from two orthogonal viewpoints, 

improving reliability where single images would fail. This work does not, however, 

complete the 3D structure of each plant, preserving only the centre-line of each leaf 

after skeletonisation. 

Image-based modelling algorithms are widely applicable and require only easily ac-

cessible and affordable cameras. Their generality can, however, become a hindrance, 

as the challenging nature of plant topology may require additional assumptions to be 

made as the reconstruction proceeds. The representations they produce may also be 

unsuitable for direct use in some situations. The volumetric data structures produced by 

silhouette-based methods, for example, are static: the size and position of the voxels 

are defined early in the process and are difficult to change. While measurements of e.g. 
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height and volume are easily made from volumetric descriptions, estimating motion 

e.g. of leaves moving in the breeze is extremely difficult. Similarly, point clouds can 

be used to calculate density and distributions of plant material, but cannot immediately 

be used in modelling applications where a surface-based representation is required. 

This paper describes a fully automatic, bottom-up approach to image-based 3D plant 

reconstruction that is applicable to a wide variety of plant species and topologies. The 

method is accurate, providing a true representation of the original plant, and produces 

data in a form that can support both trait measurement and modelling techniques such 

as forward ray tracing [12].  

An initial 3D point cloud is first described by a set of planar patches, each represent-

ing a small section of plant material, usually a segment of leaf. Where the quality of the 

input point cloud is high, the initial surface estimate will provide a good model of the 

plant. Image noise and the complexity of the plant will, however, typically lead to miss-

ing areas of leaf material, and poorly defined leaf boundaries. We therefore extend ex-

isting approaches by refining the initial surface estimate into a more accurate plant 

model. Each surface patch is re-sized and re-shaped based on the available image in-

formation, and positional information obtained from neighbouring surfaces. The result-

ing surface patches are then re-triangulated to produce a smooth and geometrically ac-

curate model of the plant. 

The reconstruction process makes few assumptions about the nature of the plant ma-

terial being reconstructed; by representing each leaf as a series of small planar sections, 

the complete leaf surface itself can take any reasonable shape. The generality of our 

technique allows it to be scaled to scenes involving multiple plants, and even plant 

canopies. However, the focus of this paper is on the accurate reconstruction of single 

plants of varying species. 

2 Plant Reconstruction 

2.1 Input Point Cloud 

The reconstruction algorithm described in this paper uses an initial point cloud estimate 

as a basis for the growth of plant surfaces in three dimensions. Numerous software- and 

hardware-based techniques exist to obtain point clouds of objects. We have chosen to 

make use of a software-based technique, patch-based multi-view stereo (PMVS) [13]. 

This approach reconstructs dense point clouds from any calibrated image set, and is not 

restricted to plant data. However, by including robust visibility constraints, it is well 

suited to plant material that contains large amounts of occlusion. Let ��������  be the set of all points in an input cloud of size �. We identify the co-ordinate system used by 

the point cloud, and the resulting reconstruction, as “world” co-ordinates. An individual 

point � ∈ � in world co-ordinates is represented as a 3D vector �. 
A requirement of both PMVS and our reconstruction approach is that the intrinsic 

and extrinsic camera parameters be known. We use the VisualSFM [14] system to per-

form automatic camera calibration. Any number of arbitrary camera positions may be 

calibrated using VisualSFM, and calibration is performed quickly. However, as it is 
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based on SIFT features [15], the approach is not suitable for images with insufficient 

texture and feature information. This is particularly problematic within plant datasets, 

where leaves may have few suitable feature points. In our datasets, the surrounding 

scene provides an adequate feature set for correspondence, and in our virtual dataset, 

we calibrate separately using a highly-textured model. 

We capture �� ! images of the scene from �� ! locations to obtain a set of images �"#�#��$%&'. Associated with each camera location is a perspective projection matrix, based 

on a standard pinhole camera model [16], derived from the calibration information out-

put by VisualSFM. For a given world point, there is a perspective projection function, (#, that maps onto a point in a specific camera coordinate frame, given by the 2D vector ). This gives a set of functions �(#*�+: ℝ. → ℝ0�#��$%&'. where 1 is the index of the input 

image and associated camera geometry. Once in camera co-ordinates, pixel information 

for a given location is represented by "#*)+. 

PMVS makes no assumptions about the nature of the objects being reconstructed. It 

is likely that additional points are contained in � that comprise background or other 

non-plant material. Many such points will be removed by our level set approach, how-

ever for computational efficiency many can be removed before reconstruction begins. 

The point cloud is pre-filtered to remove obvious errors; those that differ greatly 

from the expected colour of the plant, or those that appear below the expected location 

of the plant. Two filters are applied, first a clipping plane positioned at the base of the 

plant is used to remove the majority of background points on the floor, container etc. 

Second, colour filtering is achieved by examining the projected pixel values for every 

point, and removing those that do not appear green in colour. These filters are meant 

only as a conservative first pass, a more sensitive colour-based metric is used within 

the speed function during application of the level set method. The final filtered point 

cloud �2 ⊆ � is used for the remainder of the reconstruction process. 

2.2 Point Cloud Segmentation 

The point cloud representation produced by PMVS contains no explicit surface descrip-

tion. Methods for the reconstruction of a surface mesh from a point cloud exist [17,18] 

Most, however, construct a single surface describing the entire point cloud. Plants con-

tain complex surface geometry that encourages the separation of leaves. We also wish 

to approach the more general problem of plant reconstruction, without assuming the 

connectivity or nature of the plant leaves is known. Instead, we model plant material as 

a series of small planar patches. Patch size is restricted to avoid fitting surfaces between 

nearby leaves, and to accurately model the curved nature of each leaf surface. The fil-

tered point cloud is first segmented into small clusters of points using a radially 

bounded nearest neighbour strategy [19]. Points are grouped with their nearest neigh-

bours, as defined by a pre-set distance, and the method is extended to limit the potential 

size of each cluster. More formally, from the filtered cloud we obtain a set of clusters �45�5��$%678 in which each cluster contains at least one point and all clusters are disjoint, 

so |45| > 0, ∀> and 45 ∩ 4@ , ∀> ≠ B. 
This distance used for the nearest neighbour approach is dependent on the size and 

resolution of the model being captured. As PMVS and laser scanning devices usually 
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output points with a consistent density, the distance parameter can be set once and then 

remain unchanged between experiments using the same image capture technique. Re-

ducing this number will increase the number of planar sections fitted to the data, in-

creasing accuracy at the cost of decreased algorithmic efficiency.  

Our surface fitting approach begins with an approximation of the surface that will 

then be refined. A least-squares orthogonal regression plane is fitted to each cluster 

using singular value decomposition. This best fit plane minimises the orthogonal dis-

tance to each point, providing each cluster with a centre point C, a normal vector D, and 

an orthogonal vector E indicating the rotation about the normal. The vector E is aligned 

along the major-principle axis of the point within the cluster. We then define a set of 

orthographic projection functions that project individual world points into each cluster 

plane, �F5*�+: ℝ. → ℝ0�5��$%678, where F5 represents the projection into plane > (i.e. the 

plane associated with cluster 45). We say that points projected onto any plane now 

occupy planar co-ordinates. Any such point, denoted by the 2D vector G, can be pro-

jected back into world co-ordinates by the set of functions �H5*G+: ℝ0 → ℝ.�5��$%678. 

The orthogonal projection in F5 has the effect of flattening the points in each cluster 

to lie on their best fit plane, reducing any noise in individual points, and reducing the 

surface fitting algorithm to a 2D problem. Point and mesh surfaces generated on a clus-

ter plane will have an associated world position that can be output as a final 3D model.  

2.3 Surface Estimation 

An initial surface estimate is constructed by calculating the α-shape of the set of 2D 

points in planar co-ordinates. An α-shape is a generalisation of the convex-hull for a set 

of points, and is closely related to the commonly used Delaunay triangulation. For the 

incomplete leaf surfaces that exist within the input cloud, the Delaunay triangulation 

and convex hull represent an over-simplification of the complex boundary topology of 

the clusters. For a point set I, Edelsbrunner [20] defines the concept of a generalized 

disk of radius 1/α, with an edge between two points in I being included in the alpha 

shape if both points like on the boundary of the generalised disk, and that disk contains 

the entire point set. The set of α-shapes represent a triangulation of each surface at 

varying levels of detail. In this work, a negative value of α is used, with larger negative 

values removing larger edges or faces. The α value can be tuned for a given data set, to 

preserve the shape of the boundary of each reconstructed point set. 

2.4 Boundary Optimisation 

The α-shapes computed over each cluster form an initial estimate of the location and 

shape of the plant surface. The challenging nature of plant datasets in multi-view re-

construction means that in many instances the initial point cloud estimate will be inac-

curate or incomplete. The initial surface boundaries based on these points will require 

further optimisation to adequately reflect the true shape of each leaf surface. Missing 

leaf surfaces should be reconstructed, and overlapping shapes should be optimised to 

meet at a single boundary. Many methods, such as active contours [21], parameterise 

the boundary of shape before attempting this optimisation. However, such approaches 
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are ill-suited to the complex boundary conditions produced by α-shapes. For any value 

of α < 0, the surface may contain holes or disjoint sections, and as such many surfaces 

will change topology during any boundary optimisation process. 

Tracking of such complex boundaries can be achieved using the level set method 

[22,23]. The method defines a 3D function φ that intersects the cluster plane. φ is rep-

resented as a signed distance function, initialised such that negative values lie within 

our α-shape boundary, and positive values occur outside. Thus, the boundary itself is 

defined as the set of all points in φ that intersect the cluster plane, given as: 

 Γ = �*M, N+|φ*M, N+ = 0� (1) 

A speed function determines the rate of change of φ. It may be based on both global 

and local parameters, and will act to grow or shrink the boundary Γ as necessary to fit 

the underlying data. The change in φ, based on a speed function O, is defined as 

PφPQ = −O ∙ |∆φ| (2)

where ∆φ is the gradient of the level set function at a given point, which we calculate 

through Godunov’s upwinding scheme. The speed function is defined as 

 O = O�UVWX + O�! ZX + O��[XV (3) 

where O�UVWX is a measure of the local curvature, calculated using a central finite 

difference approximation 

O�UVWX = \ ∙ φ]]φ]0 − 2φ_φ]φ]_ + φ__φ]0
`φ]0 + φ_0 a.0  (4)

The curvature term encourages the boundary of the level set to remain smooth. The 

weighting \ is required to prevent curvature from dictating the movement of the front, 

in cases where the boundary is already sufficiently smooth. 

The image term, O�! ZX, references colour information in the input images to ascer-

tain whether the projection of the planar surface lies over regions with a high likelihood 

of containing leaf material. To achieve this, the function φ is discretized and uses the 

planar co-ordinate system, each planar point G maps to a position on φ, and any point 

on φ will have an associated planar position. By performing consecutive projections, 

we are able to examine the relevant location in any image of a cluster plane position. 

Such a projection is given as *(# ∘ H5+*G+: ℝ0 → ℝ0, where > is the cluster index, and 1 is the camera index. Not every image will provide a helpful view of every cluster, 

they may be out of the camera’s field of view, or seen at an oblique angle. One reference 

view is chosen from which to obtain colour information, as follows. We choose a ref-

erence image "c ∈ " that represents a calculated “best view” of a planar surface. Selec-

tion of the reference view begins by projecting each cluster into each camera view. 

Only the interiors (triangular faces) of each α-shape are projected using a scan-line ras-

terisation algorithm. Attached to each projected position is a z depth, calculated as the 

third component output from the function F#*�+ when using homogenous co-ordinates. 

. 

, 

. 

, 
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This z depth represents the distance that the projected point lies from the camera’s im-

age plane, and can be used to sort clusters that project onto the same location. Projec-

tions with the lowest z value are seen in front of, so occlude, those with higher z values. 

The projection locations and z depths for all clusters are analysed using a series of 

z-buffer data structures, one z-buffer associated with each input image. We define the 

z-buffers as a set �d#�#�e$%&', where each buffer contains pixel locations in camera co-

ordinates that map directly to the corresponding image. For each image location, any 

cluster that can be seen in (i.e. projects onto) that point is recorded in the z-buffer. A 

given position d#*)+ contains a depth sorted list of all clusters that project into that 

camera co-ordinate, i.e. d#*)+ =  *4e, … , 4�+. 

It is desirable to select camera views that contain as little interference between clus-

ters as possible. For a given z-buffer 1, and a given cluster g, we can calculate the fol-

lowing measure: 

 (#�@X V*g+ = |�) | g ∈ d#*)+ ⋀  |d#*)+| = 1 �| (5) 

The clear pixel count represents a measure of the number of pixels each cluster pro-

jects into for a given image. This value reflects both the proximity of the cluster to the 

camera plane, and the angle of incidence between the camera view and the cluster plane. 

The clear pixel counts for all projections of a given cluster g are normalised to the range 

[0,1]. This measure does not include pixel positions shared by other clusters, to avoid 

heavily occluded views affecting the normalised value. The amount of occlusion for 

each cluster g, in a given z-buffer 1 are calculated as: 

j#k��@UlXl*g+ = mn) m g ∈ d#*)+\�d#*)+*�+� ⋀  |d#*)+| > 1 pmmn) | g ∈ d#*)+pm  (6)

(#k��@Ul��Z*g+ = m�) m g ∈ d#*)+\�d#*)+*�+� ⋀  |d#*)+| > 1 �mmn) | g ∈ d#*)+pm  (7)

Where d#*)+*5+ is the kth ordered element of d#*)+. Thus, a combination of normalised 

clear pixel count, occlusion and occluding percentages can be used to sort images in 

terms of view quality. A reference image, "c, is chosen where: 

 q = rsturM#*(v�@X V*g+*1 − (vk��@UlXl*g++*1 − (vk��@Ul��Z*g+++  (8) 

When referencing pixel values using the image "c , we use a normalised green value 

to measure the likelihood of leaf material existing at that location, 

wv*)+ = "#*)+*xyzz{+"#*)+*yz|+ + "#*)+*xyzz{+ + "#*)+*}~�z+ 
(9)

We can assume that normalised green values will be higher in pixels containing leaf 

material, and lower in pixels containing background. Where lighting conditions remain 

consistent over an image set, we can also assume that distribution of normalised green 

values are the same over the each image in ". However, between different image sets 

we cannot assume that the properties of the normalised green values are known. These 

. 

. 

, 

. 
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properties must be ascertained before wv can be used to contribute to the O�! ZX term 

in the speed function. We sample from all images those pixels that are projected into 

by the α-shapes, and use Rosin’s unimodal thresholding approach [24] to threshold be-

low the normalised green peak that is observed. Using this threshold, the mean and 

standard deviation of the peak are calculated, and used to produce an image speed func-

tion centred around the calculated threshold Q, with a spread based on the standard devi-

ation of the peak: 

O�! ZX =
���
��max �−1, w#*)+ − Q2� � , w#*)+ < Q

min �+1, w#*)+ + Q2� � , w#*)+ ≥ Q (10)

where Q is the threshold calculated using Rosin’s method, and � is the standard de-

viation of the wv peak. A width of 2� was chosen as a value that characterises the spread 

of the normalised green values. 

The final component of the speed function, O��[XV, works to reshape each surface 

based on the location and shape of nearby clusters. As each cluster may have different 

normal orientations, it is challenging to calculate their 3D intersections in terms of 2D 

positions in planar co-ordinates. Indeed, two nearby clusters that could be considered 

as overlapping, may not intersect in world co-ordinates. Instead we project each planar 

position into "c, and examine the interactions in the 2D camera co-ordinate system.  

Any overlapping projections are calculated by maintaining z-buffers that update as 

each region reshapes. The function O��[XV is calculated such that each cluster in d#*M+ 

is penalised except for the front-most cluster. Thus for a cluster g, the function is calcu-

lated as: 

 O��[XV = �� − O�! ZX , d#*)+� ≠ g0, �Qℎ�s�g��  (11) 

where � is a small negative value such that the level set boundary Γ shrinks at this 

location. Note that the subtraction of O�! ZX results in the image component being ig-

nored where clusters are occluded. 

The complete speed function is used to update each discrete position on the level set 

function φ. This process must be repeated until each cluster boundary has reshaped to 

adequately fit the underlying image data. The speed function will slow significantly as 

the boundary approaches an optimal shape. Where a level set boundary no longer moves 

with respect to the reference image (does not alter the number of projected pixels), we 

mark this cluster as complete and discontinue level set iterations. Any level sets that do 

not slow significantly will continue until a maximum time is elapsed, a parameter that 

can be set by the user. We typically use a value of 100-200 iterations as a compromise 

between computational efficiency and offering each level set adequate time to optimise. 

, 

, 
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2.5 Model Output 

Once all clusters have been iterated sufficiently, each surface triangulation must be re-

computed. The level set function has a known boundary that was not available during 

the original surface estimation. This can be used to drive a more accurate meshing ap-

proach that will preserve the contours of each shape. We use constrained Delaunay 

triangulation for this task [25]. A constrained triangulation will account for complex 

boundary shape when producing a mesh from a series of points, however it will not 

over-simplify the boundary by fitting surfaces across concave sections, and can retain 

holes in the surface if required. Points are sampled from the boundary of each surface, 

and a constrained triangulation is fitted. This process will automatically generate addi-

tional points, where required, within the shape itself. As each point in the new triangu-

lation exists in planar co-ordinates, they can be easily back-projected into world co-

ordinates to be output in mesh format. 

3 Experimental Results 

In this section we present results obtained when applying our reconstruction approach 

to multiple views of single plants. Verification of our approach is achieved using a 

novel artificial dataset, in which a model rice plant is rendered from multiple viewpoints 

to generate artificial colour images that are then treated in the same way as a real-world 

image set. This approach allows the reconstructed plant to be directly compared to the 

artificial target object, an impossible prospect when working with real-life plants, as no 

such ground truth can exist. 

We have tested our reconstruction methods on datasets obtained from rice and wheat 

plants. Images were captured using a DSLR camera with a 35mm lens, at 8 megapixel 

resolution. The number, and nature of the images were left to the user to decide given 

the subject in question, though we recommend more than 30 images surrounding the 

subject for a single plant. No special consideration was given to the environment in 

which the plants were imaged, beyond avoiding large areas of green colour in the back-

ground. The rice dataset was captured in an indoor environment, the wheat in a glass 

house. These environments provide complex backgrounds, which raise additional chal-

lenges, but the plants can still be reconstructed using our methods. It is likely that a 

permanent installation with a more strict protocol for image capture would result in 

more consistent point cloud reconstruction between datasets, readers are encouraged to 

explore this option if using our methods over extended periods. 

Fig. 1 shows the result of applying our reconstruction approach to two image sets 

containing wheat and rice plants. Quantitative evaluation of the effectiveness of any 3D 

shoot reconstruction is challenging due to a lack of ground truth models for comparison. 

Here we offer a qualitative evaluation of the benefits and shortcomings of our approach 

using live plants, followed by a quantitative evaluation using the virtual rice dataset. 

First, live plants were reconstructed. Results showed that the initial surface estimate, 

obtained by calculating an α-shape over each cluster, will naturally reproduce any flaws 

present in the PMVS point cloud. Most notable are the lack of point information in 

areas of poor texture, and noise perpendicular to the leaf surface, where depth has not 
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be adequately resolved. These issues can be caused by the heavy self-occlusion ob-

served in larger plants or canopies, but are often caused in even simple datasets by a 

lack of image features in the centre of leaves. 

 

Fig. 1. Reconstruction of rice and wheat images. (top left) A sample image from the wheat 

dataset. (top right) A meshed reconstruction of the plant surface using our approach. (bottom 

left) A sample image from the rice dataset. (bottom right) A meshed reconstruction of the plant 

surface using our approach. 

Depth noise is significantly reduced by the use of best-fit planes over small clusters, 

where all points are projected onto a single surface. However, the boundary of each 

surface is a function of the parameters used to create the α-shape, and the quality of the 

underlying data. As such, we can expect the α-shape boundaries to be a poor represen-

tation of the true leaf shape. With this in mind, we would characterise a successful 

reconstruction as one that significantly improves upon the initial surface estimate, 

through the optimisation of the surface boundaries. 

Notable characteristics of the α-shape boundaries in both datasets are significant 

overlap between neighbouring clusters, and frequent missing surface sections (Fig. 2). 

Fig. 2 also shows the refined boundaries after the level set method has been applied, in 

which missing sections are filled, and overlapping surfaces have been reduced. The 

results in Fig. 2 are representative of the results over both datasets. 
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While the refined surfaces represent an improvement over both the initial point 

cloud, and the initial α-shape surface, there are still notable areas for improvement. By 

treating each section of leaf as an individually orientated plane, each plane orientation 

is susceptible to the error within the input cloud. Since each boundary is refined from 

one reference view, incorrect orientation of the best-fit plane might cause the surface 

boundary to be incorrectly aligned with the image, or neighbouring clusters. Consider 

Fig. 2 (right), in which two patches have been reconstructed in close proximity. When 

viewed from the reference view in which boundary refinement occurred, the boundaries 

of neighbouring patches are in good agreement. A rotated view of the same surfaces, 

however, shows that misaligned normal orientation can lead to gaps between neigh-

bouring surfaces. Conversely, if the right-hand image had been chosen as "c, the level 

set equation would increase the size of both boundaries, and overlap would be observed 

in the left hand view. 

 

Fig. 2. Boundary refinement using the level set method. (top left) An initial surface estimate of 

a section of the wheat dataset. (top middle) A refined version of the wheat model after a level 

set was applied to each patch. (bottom left)  An initial surface estimate of a section of the rice 

dataset. (bottom middle) A refined version of the rice model after a level set was applied to each 

patch. (top right) Two example patches, viewed from the same position as the reference image "c. (bottom right) A different orientation of the same two patches.  

In reality, for many clusters with very similar orientations these gaps will be negli-

gible; as the clusters are limited in size, the distance between neighbouring plane ori-

entations will be small, and the resulting gaps between boundaries will also be small. 

We have quantified the low level of discrepancy between an input model and the re-

construction below. We anticipate that further work on smoothing the normal orienta-

tions of neighbouring clusters or merging neighbouring clusters into a single curved 

leaf model will continue to improve results in this regard: this will be a focus of up-

coming research. 

An additional dataset was created based on the plant used in the rice dataset. The 

rice plant was first manually captured and modelled using the point cloud created by 

PMVS, and 3D graphics software [26,27]. This is a time consuming and subjective 
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process, and should not be viewed as a suitable alternative to automatic reconstruction. 

However, it is possible to produce an easily quantifiable ground truth model that can 

be used as a target for automated reconstruction. This virtual plant was textured and 

coloured in order to emulate the original plant leaves. Finally, 40 distinct camera views 

of the model were rendered, simulating an image capture system moving around a static 

plant. The resulting dataset can then be reconstructed in the same manner as real-world 

data, while retaining the ability to compare the reconstruction with the original virtual 

plant, in particular keeping the same co-ordinate system and scale. The original model, 

and our reconstruction can be seen in Figure 3. 

To quantify the similarity between the original model and the reconstruction, we use 

the Hausdorff distance, the greatest distance from any point on either mesh, to the near-

est point on the other. This concept is extended in [28] to include a measure of the mean 

distance between two meshes. 

 

Fig. 3. (top left) The original rice plant model, based on the plant reconstructed in Figure 2. 

Vertices are coloured based on their mm distance to the nearest point on the reconstruction. 

(bottom left) Histogram of smallest distances from each vertex on the model to vertices on the 

reconstruction. (top right) The reconstruction produced by our approach. Vertices are coloured 

based on their mm distance to the nearest point on the original model. (bottom right) Histogram 

of smallest distances from each vertex on the reconstruction to vertices on the model. 

A visual representation of these measures can be seen in Figure 3, in which each 

vertex is coloured based on the distance to the nearest point on the opposing mesh. This 

provides a visual clue as to our algorithm performance. The arbitrary world units used 
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within the reconstruction were converted into mm measurements through the use of a 

calibration target of known size. 

The furthest distance between points on both meshes is ~4.5mm, however the aver-

age distances between each mesh are significantly lower. The complete model is ap-

proximately 48cm tall. These one-sided measurements provide additional information, 

by distinguishing between the distances in either direction. Increasing distance from the 

model plant to the reconstruction indicates areas of the model that have not been accu-

rately reconstructed. This is most likely where missing points in the initial cloud and 

surface estimates are not adequately refined through the level set method. In this case, 

the low mean and maximum distances show that these regions have been reconstructed 

successfully. Indeed, 99% of the vertices in the model are within 1.2mm of the recon-

structed model. 

Table 1. Distance measurements between the model plant and the results of the reconstruction 

approach. The two-sided Hausdorff distance is the maximum of both single-sided measurements  

Vertex Distance (mm) Model Plant Reconstruction 

Minimum 0 0 

Maximum 4.576 4.496 

Mean 0.289 0.411 

RMS 0.379 0.534 

Hausdorff Distance (mm) 4.576 

 

In the other direction, higher distances from the reconstruction to the original model 

represent areas that have deviated from the true position of the plant. This could be 

caused by a number of factors, such as misalignment between the orientation of a sur-

face plane and the original surface, or surface boundaries extending beyond the true 

boundary of the leaves, possibly due to occlusion. The maximum and mean distances 

for the reconstruction remain low, and show that the reconstruction is a good reflection 

of the true model. 

Table 2. Details and processing times for the datasets evaluated in this section. Each level set 

was iterated to a maxmimum of 100 times, or until it halted 

Dataset Cluster Count Image Count Time Taken 

Rice 785 36 5m34s 

Wheat 1486 62 18m28s 

Model Rice Plant 517 40 2m11s 

 

The mean distance and RMS error for this single-sided measure is higher than the 

reverse, which we believe may represent current technical limit of our approach. The 

distances around the boundaries of many surfaces appear slightly higher than in the 

centre, where the level sets can over-extend the leaf edge. This is a limitation within 

the level set speed function, but for the distances observed this usually represents an 

increase of size, outwards, of less than a pixel on average when projected into the ref-

erence image. This sub-pixel accuracy is not resolved by the speed function of the level 



14 Michael P. Pound, Andrew P. French, Erik H. Murchie and Tony P. Pridmore 

set method that we use. An immediate improvement could be observed by simply in-

creasing the resolution of the input image set, however this would add significant com-

putational overhead. 

The performance of our approach is closely related to the size of the image set, and 

the number of surface segments being evaluated. For small datasets, reconstruction usu-

ally takes a matter of minutes. For complex datasets containing thousands of small sur-

face patches, we can expect performance to decrease. Table 2 shows details and pro-

cessing times for the datasets evaluated in this section. Tests were run on an Intel Core 

i7 3820 machine. The algorithms detailed here are suitable for GPU parallelisation in 

the future if further optimisation is required. 

4 Conclusions 

The recovery of accurate 3D models of plants from colour images is challenging. A 

single plant constitutes a crowded scene in the sense of [13] and the construction of 

accurate 3D models of objects of this level of complexity is an active research topic. 

Images of plants exhibit high degrees of occlusion, with the occlusion relations between 

leaves varying from image to image. To complicate matters further, individual leaves 

are difficult to identify: most of the leaves on a given plant have similar colour and 

texture properties. Rather than address these issues in a single process that transforms 

a set of images into a three-dimensional model via feature correspondence or silhouette 

analysis, the approach presented here develops each leaf segment individually, auto-

matically selecting an image likely to contain the necessary information. The proposed 

method reduces the effect of occlusion by choosing an image with a clear view of the 

target surface, and addresses the similarity problem by performing detailed analysis of 

the colours present in that image. 

The mesh representation produced provides a detailed model of the surface of the 

viewed plant that can be used both in modelling tasks and for shoot phenotyping. At 

present the surface description output by the proposed technique comprises a large set 

of distinct planar patches, but it is anticipated to be a simple process to extend this to 

curved surfaces describing whole leaves if necessary. The level set method re-sizes and 

re-shapes each patch to maximise its consistency with neighbouring patches and the 

selected image, and as such the reconstructed patches provide an accurate approxima-

tion of the leaf surfaces. By avoiding a model fitting solution, the approach also remains 

general, and is flexible enough to be applied to a wide variety of plant species with 

differing leaf shapes.  
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