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Abstract. We propose a visual object tracking framework for the ex-
traction of multiple interacting plant root systems from three-dimensional
X-ray micro computed tomography images of plants grown in soil. Our
method is based on a level set framework guided by a greyscale intensity
distribution model to identify object boundaries in image cross-sections.
Root objects are followed through the data volume, while updating the
tracker’s appearance models to adapt to changing intensity values. In
the presence of multiple root systems, multiple trackers can be used,
but need to distinguish target objects from one another in order to cor-
rectly associate roots with their originating plants. Since root objects
are expected to exhibit similar greyscale intensity distributions, shape
information is used to constrain the evolving level set interfaces in order
to lock trackers to their correct targets. The proposed method is tested
on root systems of wheat plants grown in soil.
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1 Introduction

Image analysis methods have become an inherent part of many plant biological
studies, assisting researchers in extracting and processing information implicit
in collected image data. The focus can vary from specific plant organs [22, 6] to
whole individual plants [3]. In this work we are interested in the below-ground
portion of the plant, its root system. It has been shown that plants rely on their
roots for water and nutrient uptake, which largely determine their performance
and development [15]. We focus on the analysis of multiple interacting plants, as
their root systems can facilitate either cooperative or competitive interactions.
This is provided, for instance, by influencing the composition of the bacterial
flora in the rhizosphere, which may positively affect the nutrient availability, or
by competing for (limited) resources [26].

When roots are to be examined, they are usually either destructively removed
from their environment [31] or grown in artificial media [5], which may alter their
natural growth behaviour due to the lack of complex biological, chemical and
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physical properties usually found in soil [10]. An alternative solution that allows
roots to be imaged in soil is given by X-ray micro computed tomography (µCT),
which is becoming increasingly accessible [19]. An additional advantage to its
non-disruptive characteristic [35] is the acquisition of three-dimensional volu-
metric image data, which allows a more accurate quantification of root system
traits. Plant root systems are complex, highly branched structures, composed of
many individual roots of varying size. Recovering the fine and complex structure
from µCT image data presents a challenging problem in image analysis. The pro-
cess is complicated by the highly heterogeneous growth environment, composed
of minerals, soil particles, organic matter, water and air filled pores.

In this work we present a visual object tracking framework that allows the
extraction of interacting plant root systems from their soil environment. A given
data volume can be horizontally sliced into thin cross-sections to obtain a stack
of images. Using a level set method guided by a greyscale intensity distribution
model, it is possible to identify the boundaries of root cross-sections in
each image. When traversing these images in sequence, root objects will appear
at slightly different positions due to the root’s slanted growth through the soil
environment. The architectural structure of plant root systems is found by fol-
lowing individual root cross-sections through a sequence of image slices.
This is achieved using an adaptive appearance model of the target and read-
justing the interface of the level set function to the new location and outline
of the root object. In the presence of multiple root systems, multiple trackers
can be used but root cross-sections need to be distinguished from one
another in order to allow the correct labelling of different plants. However, be-
cause all root objects are likely to have similar greyscale intensity values, their
appearance models can be expected to be similar or even identical. If two or
more independently tracked targets interact, their trackers can easily drift away
to the object that best fits the model [12]. This can often result in an uncon-
trolled behaviour in which trackers switch their targets or trackers follow the
same target while losing hold of others. In case of root extraction, this can lead
to root cross-sections being assigned to incorrect root systems. To address the
problem, a shape constraint is added to the evolving interface of the level set
function during the period of target interaction.

In what follows we give a brief overview of related work on the extraction
of root-structure-like networks with focus on X-ray CT (Section 2) and give a
detailed description of our proposed method (Section 3). The extraction method
is first applied to volume data of individual and then of multiple interacting root
systems of winter wheat Cordiale (Triticumaestivum L.) (Section 4), followed by
discussion and conclusions (Section 5).

2 Related Work

Using a high energy X-ray CT scanner, Heeraman et al. [9] endeavoured to image
and quantify the root system of plants grown in sand culture. With this they were
among the first who showed that roots can be separated from non-root material
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on a computational basis and not just by human assumption of the presence of
roots. A number of voxels were manually selected to define groups of different
components (air, roots, sand). These were tested for normality and used to sta-
tistically classify the remaining voxels to one of these groups. The method does
not guarantee connectivity and outlier voxels can easily be assigned to incorrect
components. Seeking to advance imaging and analysis procedures, Lontoc-Roy
et al. [14] presented methods and results obtained using X-ray CT for soil-root
studies. Roots were segmented from the images by choosing visually a lower
and upper threshold value. The resulting segmentation included primarily larger
roots. In a second step, an iterative three-dimensional region growing method
was used, appending voxels that are connected to the initial extraction, but
which also fall within a second, wider, threshold boundary. A similar approach
is reported by Perret et al. [20]. To extract the root system from the growth
media, a predefined threshold boundary was applied after which a 26-neighbour
connectivity constraint was imposed. While this guarantees connectivity of the
root system, thresholding only gives satisfactory results if the greyscale values of
different components do not overlap, in our experience this is often not the case.
In the work presented by Pierret et al. [21], image slices were first segmented
using a combination of thresholding and a top-hat filter [18]. By superimposing
two consecutive images, extracted root cross-sections were tested for continuity
while roughly defining the roots’ skeleton. Since elliptical objects were prone
to artefacts, they were ignored in the analysis, which had the disadvantage of
missing out horizontally growing roots. The authors were aware of this limi-
tation, but considered it a reasonable compromise, leaving the method useful
for preliminary investigations. Quantification was made based on the extracted
skeletons. To overcome the limitation of thresholding for overlapping greyscale
intensity distributions, Kaestner et al. [11] applied a non-linear diffusion filter
multiple times with different parameters to smooth out the texture of the sand
matrix. As a result, the intensity distribution of root material was shifted to the
tail of the sand distribution, making Rosin’s unimodal thresholding algorithm
applicable [24]. To remove misclassified voxels, a dilation by reconstruction op-
eration [33] was applied to eliminate speckles while at the same time preserving
thin root segments and enforcing connectivity of the root system. Filtering the
data does not always result in the distribution of root material being shifted to
the tail of the background distribution. The effect depends on the condition and
composition of the soil matrix. Even though the methods presented by Pierret
et al. [21] and Kaestner et al. [11] make use of thresholding to perform an ini-
tial crude segmentation, additional rules are applied to help decide whether an
extracted object reflects the characteristics of a root segment.

Using an electron beam X-ray CT scanner, Sonka et al. [30] presented in
their work a method able to identify airway trees in lungs, which, compared
to plant root systems, share a similar structure. Analogous to the method pre-
sented by Lontoc-Roy et al. [14], a conservative threshold was chosen for a three-
dimensional region-growing to recover the primary tree of the airway structure
without the fine segments of smaller diameter. To enhance the fine details of
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small airways, the image was scaled by a factor of 2 and enhanced using a top
hat transform [29]. Using edge-based region-growing, the enhanced image was
segmented into airways, vessels and background corresponding to dark, bright
and intermediate greyscale values. A rule-based analysis using prior knowledge of
the anatomical structure of airways and their relationship with pulmonary vascu-
lar trees, was used to refine the segmentation. Although prior knowledge of root
system structures could be useful in their recovery, linking root segments to their
environment is not straightforward. An alternative method for the extraction of
airways from electron beam X-ray CT image data, was presented by Aykac et al.
[1], whose method is based on mathematical morphology which was also a key
component in Kaestner et al.’s presented method [11]. A greyscale morphological
reconstruction was used to identify local minima in cross-sectional images, which
correspond to potentially fine airway segments. The image was then thresholded
using a relative value that lies between the minimum and maximum greyscale
values. This process was repeated a number of times using different sized mor-
phological structure elements. The union of all candidate regions found were
used for reconstructing the airway tree. While using morphological operations
can enhance fine details in the image data, it cannot completely overcome the
limitations of threshold based segmentation. In addition to methods based on
region growing [30] or mathematical morphology [1], solutions were proposed
that use a tracing strategy [32].

This was also found to be successful in the extraction of three-dimensional
and root-structure-like networks outside of X-ray CT imaging. Flasque et al. [7]
for instance, used magnetic resonance angiography (MRA) for imaging cerebral
blood vessels and developed a centreline tracing based method for their extrac-
tion. The centreline was traced stepwise, with successive points being estimated
by searching within an orientated parallelepiped around previously identified
points. Rules, like the definition of a maximum allowed curvature, were imposed
for each search area. Such a rule-based concept allows the specification of a pro-
file that is based on prior knowledge. To deal with the detection of junctions
or branches, the number of entry and exit points along the surface of each par-
allelepiped is noted. By the definition of a continuous vessel, a parallelepiped
must have exactly one entry and exit point. If more than one exit point is de-
tected, then the presence of a junction is assumed, for which a new starting
point is created. In a final step, all traced centreline points are connected using
B-spline curves. A common problem when tracing centrelines is the possibility of
loops being formed due to interactions with other vessels or irregularities in the
image data. An alternative approach was presented by Wilson and Noble [34].
To extract the vascular network from the image data, an adaptive expectation
maximization (EM) algorithm was presented that recursively divides the volume
into smaller sub-volumes on which a localised segmentation was performed. The
identified parameters for the distributions within a sub-volume, give indications
of which tissues are present, and as such ‘special’ cases were applied for the clas-
sification of voxels. Variation in signal intensity is only expected for arteries, but
not for the cerebrospinal fluid and brain tissue. In this the data differs from soil-
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root samples, where the soil environment is found to be highly heterogeneous.
Other complex root-structure-like networks are found, for instance, in neuronal
arborescences [17].

3 Method

In this section we give a detailed description of the proposed extraction tech-
nique, beginning with the extraction of a single individual root system, assuming
that all root cross-sections belong to the same plant. We introduce each of the
components and how they are integrated into the tracking framework. A collision
detection mechanism is then added to identify the interaction of multiple tar-
gets, to which a shape constraint is imposed, allowing the extraction of multiple
interacting plant root systems. The objectives of the work reported here are to:

– identify the boundaries of root cross-sections
– track individual root cross-sections
– keep root cross-sections arising from different plants separate

3.1 Object Boundary Detection

We adopt the level set framework [28] to search for the boundaries of root cross-
sections. We aim at finding the interface

C (t) =

{
(x, y)

∣∣∣∣Φx,y,t = 0

}
(1)

of a time-dependent function Φx,y,t that separates an object consisting of compa-
rable intensity values from its heterogeneous background. The interface of Φx,y,t
can be implicitly propagated solving a partial differential equation

∂Φx,y,t
∂t

+ F |∇Φx,y,t| = 0 (2)

which can be approximated and rewritten using a finite forward difference scheme
in time

Φt+1
x,y − Φtx,y
∆t

+ F
∣∣∇x,yΦtx,y∣∣ = 0 (3)

giving a general formulation of the time-discretized level set method, with F be-
ing a speed function that defines the motion of the front over time t. One possible
way to find the boundary of an arbitrary object is to define a speed function that
stops at high image gradients. A solution based on the formulation presented in
[16] was tested, but failed to correctly identify root objects: blurred and low con-
trast boundaries are common in CT data. A solution is therefore proposed that
evolves a level set function guided by a greyscale intensity distribution model.
Assuming we have the greyscale intensity values of a known root object, we use a
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kernel density estimator to build a statistical probability density function, which
we will refer to as our root appearance model pm

pm(x) =
1

nh

n∑
i=0

K

(
x− x (i)

h

)
(4)

where n is the number of data points, h the bandwidth and K a Gaussian
smoothing kernel K(x) = 1√

2π
e−

1
2x

2

. Using the Jensen-Shannon (JS) divergence

[13] as given in Equation 5, we compute the distance between a probability
density function pf estimated around the interface of the level set function and
our known root model pm.

JS(pf , pm) = H(w1pf + w2pm)− w1H(pf )− w2H(pm) (5)

where H is the Shannon entropy function and calculated as in Equation 6. w1

and w2 are two weighting parameters w1, w2 ≥ 0, w1 + w2 = 1 to balance the
contribution of the two statistical probability density functions and useful for
conditional probability studies where the weighting parameters represent prior
probabilities. In our case, however, we set w1 = w2 = 0.5.

H(p) = −
n∑
i=0

pi logb (pi) (6)

The JS divergence is a non-negative and symmetric dissimilarity measure, bounded
by [0, logb2]. Using a logarithm of base 2 results in a distance that is measured
within [0, 1], where 0 is considered a complete match between two probability
density functions. The higher the value of the JS divergence the lower is the
probability that the data come from the same distribution. These and the fact
that the dissimilarity measure is not constrained by the number of samples and
their shape of the distribution, makes the JS divergence a good choice in our
application. Given the above definitions, we can now build them into a level set
framework

Φt+1
x,y = Φtx,y +∆t

[
− (α)

(
JSβ∨∇+ + JSβ∧∇−

)
+ (1− α) (κ)

]
(7)

where JSβ∨ = max (dβ − JSe, 0) and JSβ∧ = min (bβ − JSc, 0) are the propa-
gation forces, with β ∈ [0, 1] defining the acceptance distance of the JS divergence
between model and data distribution. α ∈ [0, 1] is a weighting parameter be-

tween the propagation force and the curvature dependency κ = ∇· ∇Φ
t
x,y

|∇Φtx,y|
of the

front. The numerical solution requires choosing the correct difference scheme that
propagates information in the direction upwind to the moving interface. This is
achieved through ∇+ =

√
max(D−x,y, 0)2 +min(D+x,y, 0)2 in case of an ex-

panding force and similarly through ∇− =
√
max(D+x,y, 0)2 +min(D−x,y, 0)2

for a contracting force, where D+x =
Φx+∆x,y,t−Φx,y,t

∆x is the forward difference

operator and D−x =
Φx,y,t−Φx−∆x,y,t

∆x the backward difference operator. The level
set framework is implemented using the narrow band strategy [4] for increased
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efficiency and the fast sweeping method [36] for re-initialisation. Figure 1 shows
a cross-sectional image in which root objects are identified and separated from
their complex and heterogeneous soil environment using the above described
method.

(a) (b)

Fig. 1: Cross-sectional image of (a) raw data and (b) with identified root objects

3.2 Tracking Root Objects

Target objects are selected for tracking by the user manually setting seed points
in the first (top) image in the stack. An initial root appearance model is built
for each target from the greyscale intensity values within a 5 pixel radius. The
seed points also mark the initial interface of the propagating level set function,
which is evolved until the root object boundaries are identified. Since a level set
function can implicitly represent multiple interfaces, a classical two-pass con-
nected component algorithm [23] is used to assign a label to each object. Labels
are propagated when constructing the narrow band around an interface and it
is therefore possible to evolve the level set function using different appearance
models for each root object. This means that we do not have a single model that
represents all the root objects in a plant at the same time, but several models
that are generated, each representing a single target (root segment).

Once the boundaries of root objects are identified, the aim is to track target
objects through a sequence of horizontal slices, or images, thereby building up a
three-dimensional segmentation of the root system. Due to the high resolution
of X-ray µCT data, we assume that corresponding root locations in consecutive
images partially overlap, and that their greyscale intensity distributions vary
smoothly. Some variation is to be expected due to the heterogeneous environment
of different density materials and unevenly distributed water content in the soil
throughout the sample and the root system, which can vary the overall estimated
attenuation of the voxel data. Therefore, as root objects are followed through
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the image sequence, their assigned root model distribution must be updated
to adapt to their changing appearance. This is done by re-computing the root
appearance model from the greyscale intensity values enclosed by each of the
converged interfaces of the level set function.

Updating the root model is an inevitable step, yet it conceals potential prob-
lems. Noise or small areas of background might be included within the interface
and so contribute to its probability density function. These errors can accumu-
late and result in a model that is no longer an appropriate representation of a
tracked root object. Therefore, to reduce the potential of model drift, we use a
complex Fourier shape descriptor [8] to compare the shape of a root object in
pairs of consecutive images and only update the root appearance model when
the sum of squared differences of their filtered and normalised power spectra is
below a given threshold.

A root system is composed of several branching roots. Splitting of a root
boundary as it branches throughout the image stack is implicitly dealt with by
the level set’s ability to adapt to changing topologies. As the level set interface
evolves from one state to another it can split into multiple disjoint interfaces.
When a target object separates, the level set evolves based on the same root
model, but will become two independent objects with their own updating root
appearance model after proceeding to the next image slice. Figure 2 shows a
sequence of cross-sectional images in which root objects are followed.

(a) (b) (c) (d)

Fig. 2: Sequence of cross-sectional images with target objects highlighted and
followed shown at an interval of every 40 image slices

3.3 Multiple Interacting Objects

To extract multiple root systems, a level set tracker is initialised to each plant
and their level set functions evolved simultaneously. In this work we adopt the
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concept of multiple level set functions as presented in [27]. Let ΦtA and ΦtB be
two level set functions and their interfaces occupy two different regions at time
step t. The level set functions evolve separately, based on their individual root
appearance models, resulting in a temporary state of Φ∗A and Φ∗B . Φ∗A and Φ∗B
are then combined to obtain the level set functions Φt+1

A and Φt+1
B at time t+ 1.

The combination of the temporary level set functions depends on whether or not
the interface of A can penetrate the interface of B, or vice versa, and as such
pushes back the adjacent interface. Assuming that A can penetrate B, but B
cannot penetrate A, then the new level set function at time step t + 1 will be
updated accordingly:

Φn+1
A = Φ∗A

Φn+1
B = max (Φ∗B ,−Φ∗A)

(8)

This example should make it easy to understand how interacting level set fronts
can be controlled and how this can be modified to define similar rules such that
during an encounter of two level set fronts, neither is allowed to penetrate the
other. This will stop them from advancing further and give an exact partition
of the two regions at the front of collision. The mechanism of multiple fronts
can be easily extended to any number of level set functions using the same
principles of combination. Each evolving front in the set must be compared to
all other level set functions of the same set. This easily allows identification of any
collisions between interfaces and determination of which of the level set functions
interact. Figure 3 shows three different scenarios where two level set functions
(front A (red) and front B (blue)) are evolved until their fronts interact with
each other, at which point different combination rules are applied. This is a key
element in the extraction of multiple interacting root systems, but not sufficient
to allow separation of interacting root systems. While the combination rules
allow individual trackers to be separated, the true boundary between touching
root cross-sections remains unknown. Although level set functions can penetrate
each other’s interface, there is no definition given yet of when these rules are to
be applied. For this, shape information is used to estimate the boundary of root
objects and so to find the intersecting front between them.

While tracking target objects through the image stack, their shape is noted
and used to control appearance model updates. We can, therefore, easily recall
an object’s outline and store the most recent shape information before the inter-
action with other objects. This information is kept until the interaction ceases.
Let U = {ui|i = 1..Nu} be a set of data points along the outline of a stored
shape and V = {vi|i = 1..Nv} be a set of data points along a level set’s interface.
The rotation matrix R and the translation matrix T are sought to minimise the
root mean squared distance between U and V and therefore to find the best
alignment of the two point sets. This can be achieved using the iterative clos-
est point (ICP) algorithm [2]. By calculating the centre of mass µu and µv

of the two point clouds, it is possible to determine the cross-covariance matrix

covuv =
1

Nu

∑Nu
i=1[(ui − µu)(vi − µv)ᵀ] for U and V . Using the cyclic compo-

nents a = (A23, A31, A12) of a matrix A = covuv − covᵀuv allows the definition of
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(a.1) (a.2) (a.3) (a.4) (a.5) (a.6) (a.7) (a.8) (a.9) (a.10) (a.11)

(b.1) (b.2) (b.3) (b.4) (b.5) (b.6) (b.7) (b.8) (b.9) (b.10) (b.11)

(c.1) (c.2) (c.3) (c.4) (c.5) (c.6) (c.7) (c.8) (c.9) (c.10) (c.11)

Fig. 3: Two level set function A (red) and B (blue) interacting with each other,
where (a) front A penetrates front B, (b) front B penetrates front A and (c)
neither A or B is penetrated

a 4× 4 matrix Q

Q4×4 =

(
tr(covuv) aᵀ

a covuv + covᵀuv − tr(covuv)I3

)
(9)

The eigenvector r = (q1 q2 q3 q4) of the matrix Q with the maximum eigen-
value is used to define the rotation matrix R

R =


q21 + q22 − q23 − q24 2(q2q3 − q1q4) 2(q2q4 + q1q3) 0

2(q2q3 + q1q4) q21 + q23 − q22 − q24 2(q3q4 − q1q2) 0
2(q2q4 − q1q3) 2(q3q4 + q1q2) q21 + q24 − q22 − q23 0

0 0 0 1

 (10)

The vector t = (µv −Rµu) is used to define the translation matrix T

T =


1 0 0 t1
0 1 0 t2
0 0 1 t3
0 0 0 1

 (11)

The ICP algorithm is initialised by setting the rotation and translation matrices
equal to the identity matrix R = T = I and begins by identifying for each point
u ∈ U the best match with the shortest distance d(u, V ) = minv∈V ‖v − u‖.
This step can be efficiently performed using a k-d tree [25]. With the set of
matching pairs as input, the best registration is calculated using the quaternion-
based least square method, determining R and T which are then applied to
U . The whole process is repeated iteratively, finding new matching points and
their transformation, until the change in mean squared error falls below a given
threshold.

When the interfaces of two level set functions collide, and each is made impen-
etrable, race conditions are generated, as illustrated in Figure 4. This, however,
can be solved using shape constraints. The ICP algorithm, as described above,
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(a.1) (a.2) (a.3) (a.4) (a.5) (a.6) (a.7) (a.8) (a.9) (a.10)

(b.1) (b.2) (b.3) (b.4) (b.5) (b.6) (b.7) (b.8) (b.9) (b.10)

(c.1) (c.2) (c.3) (c.4) (c.5) (c.6) (c.7) (c.8) (c.9) (c.10)

Fig. 4: Two colliding target objects; (a) raw data, (b) extracted using the con-
ventional level set tracking approach and (c) combined with the ICP algorithm
during the period of contact (5-9)

is used to find the best alignment of the stored shape to the evolving interface.
This leaves each point within the interface in one of two possible states: it is
either outside or inside of its aligned region. Let S = {S1..Sn} be the enclosed
areas of each aligned shape to its corresponding level set function, L = {Φ1..Φn}
be the set of level set functions at time t and L∗ = {Φ∗1..Φ∗n} the set of their
temporary states, then the final value of the level set function Φt+1

i at time step
t+ 1 and position p is updated accordingly

Φt+1
i =


Φ∗i if (p ∈ Si) ∧ (p /∈ {S\Si})
max (Φ∗i ,−{Lj |p ∈ Sj}) if (p ∈ Si) ∧ (p ∩ {S\Si} 6= ∅)
max (Φ∗i ,−{L∗\Φ∗i }) if (p ∩ S = ∅)

(12)

A particular benefit of this solution is that, while it constrains the movement
of the front, the selected root object is not required to maintain the registered
shape. This allows the detection of lateral roots, since a level set function can
still evolve beyond the aligned region. At the same time it prevents the path of
a level set function being blocked by faster evolving level sets and allows their
interface to be penetrated so that control over its target is maintained. The effect
of adding shape constraints to the level set functions is illustrated in Figure 4.
Figure 5 shows a sequence of images in which tracked root cross-sections interact
with each other.

4 Experiment

Winter wheat Cordiale (Triticumaestivum L.) were grown in columns of 30mm
and 60mm in diameter filled with soil. Two each of the four 30mm columns were
filled with loamy sand and clay loam. The 60mm column was filled with loamy
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(a) (b) (c) (d) (e)

Fig. 5: Sequence of cross-sectional images with multiple and interacting target
objects highlighted and followed shown at an interval of every 20-40 image slices

sand. The soil was air-dried and sieved to <2mm. The seeds were germinated in
Petri dishes on wet filter papers, covered with an aluminium foil to shield them
from sunlight, and planted after two days. A single seed was placed in each of the
30mm columns, while three seeds were placed 10mm to 15mm apart from each
other in the 60mm column. The plants grew in environmental controlled growth
rooms with 16/8 hours light cycle at a temperature of 23/18 degree Celsius and
were scanned ten days after germination. The water status of the samples at the
point of imaging was approximately at field capacity.

The imaging device used in this experiment was a Nanotom (Phoenix X-ray
/ GE Measurement & Control Systems) X-ray µCT scanner. The scan for the
30mm columns was performed at 120keV and 250µA, taking 1,200 projections
at an exposure time of 750ms, using a signal averaging of 3 and 1 skipping
per projection. A 0.1mm Cu filter was used to harden the beam. Samples were
placed 200mm away from the X-ray gun, resulting in a volume with resolution
of 25.0µm voxel size and an image stack of 1,400×1,400×2,200 voxels. The scan
for the 60mm column was performed at 130keV and 200µA, taking 1440 pro-
jections at an exposure time of 1,000ms, using a signal averaging of 4 and 1
skipping per projection. A 0.2mm Cu filter was used to harden the beam. The
sample was placed 220mm away from the X-ray gun, resulting in a volume with
resolution of 27.5µm voxel size and an image stack of 2,100×2,100×2,260 voxels.
The acquired volume data was saved to a stack of 8-bit images. The tracking
framework proposed here was used to recover the root systems from the image
data. Seed points were selected manually in the first image of each stack to mark
target objects and to initialise separate trackers to each of the root systems.

Figure 6 shows the rendered images of the extracted root systems of the
individually grown wheat plants. After scanning the samples with X-ray µCT,
they were root-washed free of soil, placed on a water tray and imaged with a
flatbed scanner at 400dpi. The two-dimensional images are shown as reference to
the extracted data. The figures in comparison show that the overall architecture
of the root systems has been captured successfully. It has been proven to be
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(a.1) (b.1) (c.1) (d.1)

(a.2) (b.2) (c.2) (d.2)

Fig. 6: Extracted root systems of wheat grown in (a-b) loamy sand and (c-d)
clay loam, (x.1) imaged for comparison with a flatbed scanner and (x.2) the
rendered root systems extracted from X-ray µCT data using α, β, γ and δ for
alignment reference. The root systems in (x.1) once extracted from the soil, lost
their three-dimensional geometry information, while still preserved in (x.2)

difficult to recover all of the fine lateral roots of the root system at this resolution
of scanning. While some might not be visible in the image data, due to their
small size, others might be present, but not necessarily shown as connected due
to disruptions caused by small image irregularities. The extracted root systems
from the sample of multiple interacting plants are shown in Figure 7, highlighting
each of the three root systems separately in a different colour.

(a) (b) (c) (d)

Fig. 7: Extracted root systems of multiple interacting wheat plants (a) all to-
gether, (b) highlighted first, (c) second and (d) third root system
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5 Discussion and Conclusions

We have presented a visual object tracking framework for the extraction of plant
root systems grown in soil from X-ray µCT volume data, allowing the recovery
of both individual and multiple interacting plant root systems. The method pro-
posed here uses a modified level set framework that is guided by a greyscale
intensity distribution model to find the boundaries of root cross-sections. The
appearance model is updated to adapt to variations in the greyscale intensity
values of the target object. The interface of a level set function is continuously
readjusted to locate the new position and outline of the target objects in sub-
sequent images. After following root cross-sections through the image stack, the
extracted information is used to reassemble the complete root system of a plant.

In the presence of multiple root systems, multiple trackers are deployed, but
need to be able to keep their targets distinguished from each other. This is
challenging since root cross-sections are likely to share similar, if not identical,
greyscale intensity distributions and hence the appearance model used by the
trackers is not enough to keep the objects separate. Shape constraints are there-
fore added when objects interact, and help lock the trackers to their correct
targets.

The method proposed here was tested on root systems of winter wheat Cor-
diale (Triticumaestivum L.), using data showing individual as well as multiple
interacting root systems. Results show that the proposed technique can success-
fully recover and separate plant roots from each other and therefore increase the
likelihood of the assigned roots belonging to the originating plant.

As more mature plant root systems are examined, larger columns are needed
to provide enough space for the root system to explore the soil environment.
When using larger samples, scan resolution will be compromised, resulting in
more disjoint root segments. While at present an adaptive appearance model is
used by the tracking framework, its motion model is still very simplistic, relying
on the assumption that root cross-section will partially overlap in consecutive
images. This assumption might not hold if larger samples are used. Hence a
more sophisticated motion model will be required. Another compromise in using
larger sample sizes is that more fine lateral roots will become unidentifiable due
to the reduction in resolution. These issues will be the subject of future reports.
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