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Abstract. In this work we propose an automatic method aimed at clas-
sifying five legume species and varieties using leaf venation features.
Firstly, we segment the leaf veins and measure several multiscale mor-
phological features on the vein segments and the areoles. Next, we build a
hybrid consensus of experts formed by five different automatic classifiers
to perform the classification using the extracted features. We propose
to use two strategies in order to assign the importance to the votes of
the algorithms in the consensus. The first one is considering all the al-
gorithms equally important. The second one is based on the accuracy of
the standalone classifiers. The performance of both consensus classifiers
show to outperform the standalone classification algorithms in the five
class recognition task.

Keywords: Legume and variety classification, Venation images, Con-
sensus learning

1 Introduction

In the current literature, many approaches have been proposed aimed at per-
forming automatic plant classification via leaf image analysis. The shape of the
leaves [13, 1, 5, 7, 6], the color and the texture [20] or the combination of the three
former traits [10, 2] are the most common analyzed features.

Recently, when attempting to classify plant species by means of their leaves,
several works have pointed out the importance of incorporating vein informa-
tion among other features [18, 8], or using them solely [16, 17]. This last case is
specially useful when the leaves share a similar appearance in shape, size, color
and texture, as it happens when dealing with several varieties within the same
species [15].

Previous related works in the literature which investigated the classification
of leaves using exclusively the venation features focused on identifying only dif-
ferent species [16, 17], but did not deal with the varieties recognition problem.
Varieties identification is challenging since the differences in venation between
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the classes are not identifiable by humans. However, it is reasonable to expect
some venation differences caused by variety adaptation (e.g., draught tolerance).
In a recent work, Larese et al. [15] proposed a method based on the classification
of multiscale vein features in order to also evaluate the automatic recognition of
soybean varieties. However, the species identification and the varieties identifica-
tion were treated as two separated problems. In addition, only single classifiers
were proposed to perform the classification task.

In contrast, in this paper we focus on the problem of classifying leaves which
can belong to different species, or come from different varieties from one common
species. Specifically, we experimented with 3 different legumes, namely red and
white beans (Phaseolus Vulgaris), and soybean (Glycine max (L) Merr). For the
latter case we have available specimens from 3 possible varieties. In consequence,
we are dealing with a five-class multiclass problem. This problem is more difficult
than the two 3-class problems considered in previous work [15], since species and
varieties are now mixed up. We pursue a single procedure able to perform the
leaf identification both for very different leaves, such as from different species,
as well as leaves with similar appearance (leaf shape, size, color, texture), such
as from different varieties from the same species.

Following the approach in Larese et al. [15], we characterize the leaves by
means of multiscale morphological vein and areole features. Firstly, we process
the leaf images by means of computing the Unconstrained Hit-or-Miss Transform
(UHMT) [22] at different scales in order to highlight the veins. Next, we apply
contrast enhancement and adaptive thresholding in order to segment the vena-
tion. After that, we measure different vein and areole multiscale morphological
features in order to describe the venation morphology.

Our method is focused on developing automatic classification based exclu-
sively on the characterization of the leaf venation system. For species recognition,
these differences are recognizable in plain sight and can be approximately de-
scribed by the human experts (e.g. differences in veins orientation). However, for
the varieties recognition, the experts cannot establish the differences between the
veins of each cultivar. Our method provides with an exploratory procedure or
knowledge discovery tool which allows to determine if there exist different vena-
tion patterns for the different species and varieties, even though humans cannot
identify them in plain sight.

Larese et al. [15] showed that it is possible to find some differences between
the varieties, as well as how to analyze the relevance of the traits for the classes
characterization. However, the accuracies reported using single classifiers in the
recognition were not very high. This may be due to the existence of subtle
differences between the cultivars, showing the need to improve the automatic
classifiers. In this paper we investigate how to perform species and varieties clas-
sification of the features by means of consensus theory and multiple classifiers
fusion, which have shown to improve accuracies in the literature [3, 14, 24]. Bet-
ter classification methods could lead to an improved identification of the most
informative distinctive features, which could be related to genotype differences.
Within this context, we build a heterogeneous committee formed by five differ-
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ent automatic classifiers. The classifiers are aggregated through a majority vote
rule in order to obtain a single prediction for the class. The five individual clas-
sifiers that we employ are of very diverse nature, consisting of Support Vector
Machines [23], Penalized Discriminant Analysis [11], Näive Bayes [12] and two
ensemble algorithms, namely Random Forests [4] and AdaBoost [9].

In this work, we consider two different strategies in order to weight the vote of
each classifier in the committee. First of all, we consider all the algorithms equally
important, i.e., the vote of each algorithm is 1/5. The other strategy consists on
weighting each classifier according to its accuracy obtained in a validation step.
We show that we obtain better classification results by the aggregation of the
algorithms into a committee of experts, compared to the ones achieved by the
standalone classifiers. This is possible since our algorithm can take advantage
of the contribution that each standalone algorithm provides to the consensus.
When compared to manual classification, the hybrid automatic consensus is the
only algorithm which outperforms the human experts for all the classes under
consideration simultaneously.

The rest of the paper is organized as follows. In Section 2 we describe the
dataset used in this work. We explain the segmentation and feature extraction
steps in Section 3. We detail the individual classification algorithms, as well as the
hybrid consensus strategy, in Section 4. We present and discuss the experimental
results as long as the comparison of the performances for the different algorithms
in Section 5. Finally, we draw some conclusions in Section 6.

2 Species and varieties dataset

The image dataset is composed by 866 color leaf images provided by Instituto
Nacional de Tecnoloǵıa Agropecuaria (INTA, Oliveros, Argentina). It consists
of 272 images of red bean leaves, 172 images of white bean leaves (Phaseolus
Vulgaris) and 422 images of soybean leaves (Glycine max (L) Merr). The soy-
bean images are divided into three cultivars: 198 from cultivar #1, 176 from
cultivar #2 and 48 from cultivar #3. They correspond to the images of the two
first foliage leaves (pre-formed in the seed) of each specimen after 12 days of
seedling grow. First foliage leaves were selected since their characteristics are
less influenced by the environment. The leaves were acquired using a standard
flatbed scanner (Hewlett Packard Scanjet-G 3110) at a resolution of 200 pixels
per inch, and the images were stored as 24-bit uncompressed TIFF images. The
abaxial surfaces of the leaves were scanned since veins appear stronger on this
side. All the leaves lay in the same vertical position, thus avoiding significant
rotation influences.

Figure 1 shows some exemplars from each one of the species and varieties
which compose the dataset. The reader should notice that the differences between
individuals from some of the classes do not compensate for the high variability
also present between individuals within the same class. Thus, this application
problem is characterized by relatively low inter-class and high intra-class vari-
abilities.
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3 Segmentation and feature extraction

In this paper we followed the segmentation and multiscale feature extraction
procedures described by Larese et al. [15]. We worked with the gray scale image
for each leaf. The leaf segmentation is based on the computation of the Uncon-
strained Hit-or-Miss Transform (UHMT)[22] on five leaf scale images (at 60%,
70%, 80%, 90% and 100% of the original image size). Each UHMT image high-
lights a different level of vein detail. Next, we added the five UHMTs (resized to
the original size) to form the combined UHMT. This combined image highlights
both small and large veins. In addition, we also picked up the UHMTs at scales
100% (the original image size), 80% and 60% for further processing.

On the four resulting UHMT images we applied contrast enhancement tech-
niques (adaptive histogram equalization) and umbralization (adaptive thresh-
olding) in order to obtain the segmented veins.

In order to discard the leaf shape contour, we cropped a centered patch
of 100 × 100 pixels from each one of the four previously described segmented
images. On these four patches, we measured the 208 vein and areole multiscale
morphological features per leaf image (52 features ×4 patches) described in the
work by Larese et al. [15]. The 52 features are described in Appendix A for
completeness.

4 Classification algorithms

We considered 5 different classifiers, namely Support Vector Machines with
Gaussian kernel, Penalized Discriminant Analysis, Näive Bayes, Random Forests
and AdaBoost. We briefly describe them in the following. In the last subsection
we present the consensus learning proposed approach, formed by the aggregation
of the previously mentioned standalone classifiers.

We used inner 5-fold cross validation to optimize the parameters of the clas-
sifiers where necessary.

4.1 Support Vector Machines

Support Vector Machines (SVM) [23] is a state-of-the-art classifier which assumes
that applying an appropriate nonlinear mapping of the data into a sufficiently
high dimensional space, two classes can be separated by an optimum hyperplane.
This decision hyperplane is chosen in such a way that the distance between
the nearest patterns of different classes (i.e., the margin) is maximized. SVM
depends on a regularization parameter, C, which controls the trade-off between
the complexity of the classifier and the number of allowed misclassifications. In
this work we used inner validation during the training phase in order to set this
parameter.

The decision surface may be linear or nonlinear. In the latter case, a kernel
function can be used to map the patterns into a high dimensional space. In this
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work, we considered SVMs with a Gaussian kernel (SVMG). We optimized the
Gaussian standard deviation in a validation step during the training.

SVM is a binary classifier in nature. In order to extend its use to the present
multiclass problem, we used the one-vs-one strategy.

4.2 Penalized Discriminant Analysis

Fisher’s Linear Discriminant Analysis (LDA) [12] is a classical classifier and di-
mension reduction tool which searches for linear combinations of the features
in such a way that the class means of the linear combinations are maximally
separated relative to the intra-class variance. The classification of new observa-
tions is then performed by assigning them to the closest centroid according to a
distance metric (typically the Mahalanobis distance) in the transformed space.

In order to improve LDA, Hastie et al. [11] proposed Penalized Discriminant
Analysis (PDA). PDA is a regularized version of LDA, which adds a penalty
term to the intra-class covariance matrix. PDA is useful for image classification
problems with large number of highly correlated features.

In this work, we used standard Ridge Regression (GenRidge) [12], which
has the ridge constant λ as the only free parameter. This constant penalizes
high values of the fitted variables, and is similar to the C parameter in SVM.
We automatically selected this parameter using a validation set in the training
phase.

4.3 Näive Bayes

Näive Bayes (NB) [12] is a simple probabilistic classifier which assumes indepen-
dence among the features, specially useful when dealing with a high-dimensional
feature space. In spite of this unrealistic assumption, NB has shown to perform
very well in real world applications.

The method applies the Bayes’ Theorem in order to compute the a posteriori
probabilities (class conditional probabilities) for a test observation. These prob-
abilities are calculated as the product of the individual distributions for each
feature (since they are assumed to be independent). In this work we assumed
Gaussian distributions.

Once the probabilistic model is constructed, the classification is performed
according to the Maximum a Posteriori decision rule (the most probable class is
chosen).

4.4 Random Forests

Random Forests (RF) [4] is a state-of-the-art ensemble algorithm where the
individual classifiers are a set of de-correlated trees. They perform comparably
well to other state-of-the-art classifiers and are also very fast.

The algorithm constructs a set of unpruned trees from B random samples
with replacement (bootstrap versions) of the original training dataset. For each
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random forest tree, a random sample ofm variables from the full set of p variables
(m ≤ p) is selected to split the data at each node and grow the decision tree.
The final classification result is the class corresponding to the majority vote of
the ensemble of trees. In this work, we used 500 trees and a standard value of
m =

√
p.

4.5 AdaBoost

Boosting classifiers are based on the idea that if many “weak” classifiers (slightly
better than chance) are combined into a “strong” classifier, the overall perfor-
mance will be highly improved [21]. AdaBoost [9] creates a sequence of weak
classifiers aimed at discriminating the training observations. Initially, all the
observations are assigned a unique weight. This distribution of weights is mod-
ified along with the number of iterations (rounds), i.e., observations which are
badly classified (more difficult to learn) are given higher weights. The algorithm
attempts to find an optimum classifier at each round. Each weak classifier is
weighted according to its performance on the current distribution of weights on
the observations. At the end, the final strong classifier is the weighted linear
combination of the weak classifiers. The algorithm minimizes the expectation
of the exponential loss. In this work, we used 500 rounds and stumps as weak
learners.

4.6 Hybrid consensus of experts

Consensus theory [3] combines multiple single probability distributions in order
to build a unique predictive model from the opinion of several experts, assuming
that the individual judgments are based on Bayesian decision theory.

Let D = {(xi, yi)}, with i = {1, ..., n}, be a training dataset of n pairs of
feature vectors xi ∈ R

p and class labels yi ∈ {1, 2, ..., k}. The M probability
distributions from each one of the M experts are combined using a so-called
consensus rule. The consensus rule Pk for each pattern xi is calculated for each
one of the K classes. The simplest and most common consensus rule is the Linear
Opinion rule (LOP), which is computed as a weighted linear combination of the
posterior probabilities Pj from each expert (Eq. 1), with j = {1, ...,M}, and
αj denoting the weights associated to each expert. The coefficients αj are non-

negative and
∑M

j=1 αj = 1. The simplest approach of the weighting scheme
consists in assigning the same weights to all the experts.

Pk(xi) =
M∑

j=1

αjPj(xi) (1)

Pattern xi is then classified to belong to class ŷi, which is the class with the
highest probability, as below.

ŷi =
K

max
k=1

Pk(xi) (2)
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In this work, we propose to constitute a Hybrid Consensus of Experts (HCE)
formed by one instance of each one of the five classifiers described in the previous
subsections. This approach is also known in the literature as multiple classifiers
fusion or combination of multiple classifiers [14, 24].

In this context, we set Pj to be the probability predicted by each one of the
M = 5 classifiers. We propose to use two different strategies in order to assign
the importance to the opinion of each classifier. The first strategy considers
them equally important, and therefore αj = 1/5. The second strategy takes into
account the accuracy obtained by each classifier in a validation step. In this case
we set αj to be this accuracy value (a real value between 0 and 1 normalized by
the sum of the α’s). We call this second strategy Weighted Hybrid Consensus of
Experts (WHCE).

5 Experimental results

In Fig. 2 we show one example leaf for each class, i.e., 3 varieties of soybean,
white and red beans. Below each leaf we show the corresponding segmented vein
images. From this figure it can be noticed that there are many morphological
differences between the veins of soybean and white or red beans. White and red
beans present some visual differences, even though they are less strong than with
respect to soybean. On the contrary, the three varieties of soybean look like very
much the same. Moreover, we have encountered that in this case there is a high
intra-class variability within each variety.

We filtered out the features having near zero variance. We scaled the remain-
ing features in order to have zero mean and variance 1. For all the classification
experiments, we computed the average classification accuracy after performing
10 runs of 5-fold cross validation. We also used 5-fold cross validation for in-
ner validation to automatically optimize the parameters of the classifiers where
necessary.

In Table 1 we show the average total accuracy computed for each one of
the standalone algorithms as well as for the two hybrid consensus strategies.
According to this table, it can be noticed that the most accurate results can be
achieved by PDA, HCE and WHCE, with over 72%. The lowest value is obtained
by NB (59%), whereas SVM, RF and AB show a similar performance around
71%.

In order to analyze the results with more detail, we present in Table 2 the
average per class accuracies. These results are important since the five classes are
not balanced, and we want to ensure that none of the implemented algorithms
tends to favour majority classes. From this table it is noticeable that the easiest
leaves to be recognized for all the algorithms are red and white beans. The
distinction among the three soybean cultivars is the most difficult problem, as
revealed by the general low accuracies obtained by all the methods. In the case
of NB, the third cultivar of soybean is also well predicted. However, in this
case it is to the detriment of cultivars #1 and #2 recognition, leading to a low
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Table 1. Total accuracy (mean±SE) for the five-class species and varieties classifica-
tion problem.

Classification Total accuracy
Algorithm (mean±SE%)

SVM 71.05 ± 0.41
PDA 73.64 ± 0.39
NB 58.65 ± 0.42
RF 71.03 ± 0.40
AB 71.30 ± 0.39

HCE 72.45 ± 0.42
WHCE 72.97 ± 0.44

Table 2. Accuracy (mean±SE) for the five-class species and varieties classification
problem.

Classification Per class Accuracy (mean±SE%)
Algorithm

RBean WBean SBean#1 SBean#2 SBean#3
(272 images) (172 images) (198 images) (176 images) (48 images)

SVM 89.86 ± 0.60 82.96 ± 0.91 67.31 ± 1.16 51.41 ± 1.32 9.16 ± 1.37
PDA 91.54 ± 0.45 89.53 ± 0.72 62.73 ± 1.06 52.66 ± 1.12 37.00 ± 1.86
NB 84.60 ± 0.64 76.85 ± 1.11 22.21 ± 1.00 36.70 ± 1.25 77.13 ± 2.06
RF 89.27 ± 0.63 81.79 ± 0.93 66.60 ± 1.04 53.01 ± 0.93 13.38 ± 1.34
AB 89.75 ± 0.65 83.07 ± 0.85 64.29 ± 1.04 53.37 ± 1.26 19.40 ± 1.57

HCE 89.89 ± 0.55 86.97 ± 0.90 59.79 ± 1.05 53.13 ± 1.15 44.56 ± 2.33
WHCE 90.26 ± 0.54 87.26 ± 0.85 61.86 ± 1.07 53.58 ± 1.16 40.60 ± 2.08

Manual
classification 83.28 ± 3.71 70.82 ± 13.15 44.95 ± 2.00 42.78 ± 5.37 43.98 ± 6.97

overall accuracy as previously described in Table 1. With this respect, NB has
a tendency to prefer soybean cultivar #3 over the other two soybean cultivars.

However, the poor performance of NB for cultivars #1 and #2 is compensated
by the other 4 classification algorithms in the HCE and WHCE. Moreover, NB
contribution helps the consensus to reinforce soybean cultivar #3 recognition,
since this class is badly detected by all the standalone classifiers except for NB.

In our experiments, the best results for red and white beans are provided
by PDA (92% and 90%, respectively), followed by WHCE and HCE, which are
slightly lower. In the case of soybean cultivar #1 all the standalone algorithms
(except for NB, as explained before) obtain better performance, being SVM and
RF the best accuracies (67% for both of them). On the other hand, WHCE gets
62% and HCE 60%. Regarding the second cultivar, WHCE reaches an accuracy of
54%, closely followed by AB, HCE, RF and PDA. In the case of the third cultivar,
WHCE and HCE obtain the highest accuracies. As previously explained, this
value is only beated by NB. The closest accuracy value is 37% obtained by
PDA, whereas the rest of the classifiers obtain less than 20% of accuracy.
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When comparing HCE and WHCE to each other, we find that, as previously
shown in Table 1, the average accuracy of WHCE is slightly higher. From Ta-
ble 2 we can notice that the usage of the validation accuracies as weights in the
consensus reduces the impact of the NB vote, slightly augmenting the accuracy
of 4 classes, but resulting in a lower recognition of soybean cultivar #3.

For reference purposes only, we show the average classification results ob-
tained by five human experts who manually classified the leaves. It is worth
noticing that the experts solved two easier problems. Instead of classifying the
leaves into 5 classes, they performed the classification into 3 classes, namely
red bean, white bean and soybean. In a second independent experiment, they
classified only soybean leaves into the three possible cultivars. From Table 2 it
is evident that HCE obtained a better performance than the manual classifica-
tion for all the five classes under consideration in the context of a more difficult
problem. None of the five standalone classification algorithms could achieve this
goal. WHCE obtains a lower performance only for cultivar #3.

The implementation of the consensus allows to improve the classification of
the more difficult classes, while obtaining a good performance for the rest of
them. Additionally, there is not need to choose between several different classi-
fiers, since the consensus provides accuracies which are, at least, as good as the
best standalone classifier in the committee, taking advantage of the goodness of
each algorithm.

6 Concluding remarks

In this work we propose to use a hybrid consensus approach in order to classify
five different species and varieties leaves. We use multiscale morphological fea-
tures extracted from the segmented leaf veins. The hybrid consensus is formed by
five standalone classifiers, namely Support Vector Machines, Penalized Discrim-
inant Analysis, Näive Bayes, Random Forests and AdaBoost. These classifiers
are very different in nature, allowing to introduce diversity in the committee.
This diversity helps to compensate the classification difficulties found by the
algorithms in the complex task of plant recognition.

We implemented two different strategies to weight the vote of the classifiers
in the consensus. The first one assigns the same importance to all the stan-
dalone classifiers. The other one assigns a different weight to the classification
algorithms, which is based on the accuracy that they obtained during a valida-
tion step. Both strategies help to improve the recognition of the more difficult
classes, and the second one provides with a slightly higher overall result.

The problem under analysis is difficult in the sense that within each class the
leaf differences are high, and specially for the cultivars classification, even hu-
mans find it difficult to perform recognition since in this case the characteristics
for each cultivar are not clear. The hybrid consensus is the only algorithm able
to overcome human recognition for all the classes under analysis simultaneously.
The usage of an automatic algorithm aimed at performing the classification pro-
vides with a reliable and repetible process, removing the tediousness of the task.
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Moreover, the classification procedure can help to highlight distinctive vein fea-
tures which could be related to differences in the genotype of the species and
cultivars under analysis.

We are currently working on the research of new features which can better
characterize the veins. These features may include semantic information and
relations between the vein branches. Additionally, we are considering adding
patches from other locations of the leaf apart from the central patch used in this
work.
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Appendix A

Following, the 52 morphological features computed on the veins and areoles are
described. These features are an adaptation for classification purposes of the
individual features proposed by Price et al. [19].

Feature #1: Total number of edges, i.e., estimated veins.
Feature #2: Total number of nodes. The number of connecting nodes between
edges.
Feature #3: Total network length. Total distance (in mm) along the skeleton
of the vein image patch.
Features #4, #5, #6: Median/min/max edge length. The edge length (in
mm) is the distance along the skeleton of a vein.
Features #7, #8, #9:Median/min/max edge width. The edge width (in mm)
is the mean of the doubled distances between each skeleton pixel of the current
edge and the nearest non-vein pixel, i.e., areole pixel.
Features #10, #11, #12: Median/min/max edge 2D area. The edge 2D area
(in mm2) is the sum of the widths at every skeleton pixel of the current edge
times the length of one pixel.
Features #13, #14, #15:. Median/min/max edge surface area. The surface
area (in mm2) of the cylinder centered at the edge skeleton is computed as the
sum of the individual surface areas for each skeleton pixel of the current edge,
as

∑
i SAi = 2π(di/2)li, where di is the diameter (width) and li is the length

for a skeleton pixel i.
Features #16, #17, #18:. Median/min/max edge volume. The edge volume
(in mm3) corresponds to the volume of the same cylinder as in surface area, and
is computed as

∑
i Vi = π(di/2)

2li.
Features #19, #20, #21: Median/min/max edge orientation. The orienta-
tion is the angle in degrees between the x-axis and the major axis of the ellipse
with the same second moments as the vein.
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Feature #22: Total number of areoles in the image patch.
Features #23, #24, #25: Median/min/max areole perimeter. The perimeter
(in mm) is the distance along the pixels of the border of the areole.
Features #26, #27, #28: Median/min/max areole area. The areole area (in
mm2) is the number of pixels in each areole times the area of one pixel.
Features #29, #30, #31: Median/min/max areole convex area. The convex
area (in mm2) is the area of the convex hull for the areole.
Features #32, #33, #34: Median/min/max areole solidity. The solidity is a
dimensionless parameter between 0 and 1 which measures the proportion of the
pixels in the convex hull that are also in the area (ratio between the areole area
and the convex area).
Features #35, #36, #37: Median/min/max areole major axis. The major
axis (in mm) corresponds to the ellipse with the same normalized second mo-
ments as the areole.
Features #38, #39, #40: Median/min/max areole minor axis. The minor
axis (in mm) corresponds to the ellipse with the same normalized second mo-
ments as the areole.
Features #41, #42, #43: Median/min/max areole eccentricity. The eccen-
tricity is a dimensionless parameter between 0 (a circle) and 1 (a line), which
measures the ratio of the distance between the foci of the ellipse having the same
normalized second moments as the areole and its major axis.
Features #44, #45, #46: Median/min/max areole equivalent diameter. The
equivalent diameter (in mm) is the diameter of a circle having the same area as
the areole.
Features #47, #48, #49: Median/min/max areole mean distance. The mean
distance (in mm) is the mean value of the Euclidean distances between each are-
ole pixel and the nearest vein pixel.
Features #50, #51, #52: Median/min/max areole variance distance. The
variance distance (in mm) is the variance of the Euclidean distances between
each areole pixel and the nearest vein pixel.
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Fig. 1. Sample leaves from each class. First row: Soybean (cultivar #1). Second row:
Soybean (cultivar #2). Third row: Soybean (cultivar #3). Fourth row: Red bean. Fifth
row: White bean.
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(a) (b) (c) (d) (e)

Fig. 2. Example leaves with their corresponding segmented veins and (amplified)
cropped centered patches (only segmentation for the combined UHMT is shown). (a)
Soybean (cultivar #1). (b) Soybean (cultivar #2). (b) Soybean (cultivar #3). (d) Red
bean. (e) White bean.


