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Abstract. Functional-structural modeling and high-throughput pheno-
mics demand tools for 3D measurements of plants. In this work, struc-
ture from motion is employed to estimate the position of a hand-held
camera, moving around plants, and to recover a sparse 3D point cloud
sampling the plants’ surfaces. Multiple-view stereo is employed to extend
the sparse model to a dense 3D point cloud. The model is automatically
segmented by spectral clustering, properly separating the plant’s leaves
whose surfaces are estimated by fitting trimmed B-splines to their 3D
points. These models are accurate snapshots for the aerial part of the
plants at the image acquisition moment and allow the measurement of
different features of the specimen phenotype. Such state-of-the-art com-
puter vision techniques are able to produce accurate 3D models for plants
using data from a single free moving camera, properly handling occlu-
sions and diversity in size and structure for specimens presenting sparse
canopies. A data set formed by the input images and the resulting cam-
era poses and 3D points clouds is available, including data for sunflower
and soybean specimens.

Keywords: plant phenotyping; SLAM, structure from motion; segmen-
tation

1 Introduction

In recent years, high-throughput plant phenotyping earned momentum, focusing
mainly on non-invasive image-based techniques [40, 17, 39, 21]. Several of these
phenotyping efforts rely on some sort of 3D digitizing for the characterization of
shoots or roots [12], a useful snapshot of the plant macroscopic state at a precise
moment. If the 3D model presents an appropriate sampling of the plant sur-
face at a convenient resolution, different measurements can be performed, such
as leaf area, leaf angle and plant topology. Even biomass could be estimated
using regression methods. Although phenotypes cannot be fully characterized,
3D models are a multipurpose representation: a batch of models produced for
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leaf area measurements, for example, could be reused in a further study inter-
ested in leaf orientation or plant morphology, considering that germplasm and
experimental setting data is also available.

A 3D model is also useful for automation. If a robotic device has to interact
with a plant, for sensing, pruning or tissue sampling, knowledge about the 3D
structure of the plant and the relative pose of the device is essential [2]. For the
automation of sensing methodologies such as thermal imaging or chlorophyll flu-
orescence, pose information can meet requirements regarding sensor orientation
relative to the leaf surface.

A system employing 3D modeling for plant phenotyping has to address at
least two steps. In the localization and mapping step, the sensors’ poses must
be defined or recovered and the scene 3D model has to be computed. Further,
in the understanding step, the plant must be detected, its parts segmented and
classified, and measurements must be performed.

The present work approaches the first step employing a hand-held, free mov-
ing camera. Plant phenotyping systems described in literature use a set of few
fixed cameras and a motorized turning table under the specimen to capture im-
ages from different poses [34, 48]. Those fixed-camera-moving-plants approaches
are suitable for automation, but present issues regarding occlusion. Alterna-
tively, a fixed-plant-moving-camera approach can address occlusions for plants
of different species, sizes and development stages. It is also convenient for low-
cost phenotyping solutions, since digital cameras are affordable and ubiquitous.
A structure from motion (SfM) framework is employed: visual local features
in video frames are detected in the plant surface and in surrounding objects,
matched across frames and used to recover the camera pose and the 3D location
using projective geometry and robust estimation techniques [20]. Once the cam-
era’s poses are defined, multiple-view stereo can be used to get a sampling for
the plant’s surface with greater resolution.

This work also presents alternatives for two parts of the understanding step:
segmentation of plants’ parts and surface estimation. After segmentation, the
surface of each part is estimated by fitting trimmed B-splines to the segment’s
3D points. For measurements such as leaf area, a proper surface representation
is more adequate than a set of irregularly-spaced points.

2 Related work

The first attempts to perform 3D digitizing for plants employed mechanical de-
vices [25], sonic digitizers [47] or magnetic trackers [38]. These contact methods
were important on the development of functional-structural models for plant de-
velopment [19], but are unable to scale for high-throughput phenotyping. Current
phenotyping initiatives generally rely on contactless methods such as laser scan-
ning using LiDAR devices [10, 9], Time-of-Flight (ToF) cameras [50, 1] or stereo
vision [6, 34, 44, 48].

Kaminuma et al. [24] employed a laser range finder for building three-di-
mentional models for Arabidopsis thaliana. Leaves and petioles were represented
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as polygonal meshes. The meshes were used to quantitatively determine two
morphological attributes: the direction of the leaf blade and leaf epinasty, in order
to characterize two different ecotypes. The setting was able to produce a good
sampling for surfaces: the distance and the sample size allowed a resolution of
0.045 mm per pixel, producing a dense 3D points cloud. However, different plants
presenting larger dimensions, or even Arabidopsis specimens in more advanced
stages of development, could produce a sparse set of points.

The work of Ivanov et al. [23] is possibly the first work in the literature using
stereo vision to reconstruct the 3D surface of a plant for measurement and anal-
ysis. The authors estimated the position, orientation and area of maize leaves
(Zea mays L.). Unfortunately, the difficulties imposed by the equipment available
at the time (digital photography was not yet widespread) undermined the ex-
periments. The segmentation of the leaves and determination of correspondences
between images were performed manually, using photographic enlargements. De-
spite the limitations, this work was the forerunner of more recent systems, which
employ more up-to-date advances in computing performance, digital imaging
and computer vision. Biskup et al. [6] developed a stereo vision system based
on two digital cameras to create three-dimensional models of soybean plants fo-
liage, aiming to analyze the angle of inclination of leaves and their movement
throughout the day. Given the importance of movement for the experiment, the
system was able to process up to three images per second, recovering the needed
3D information for slope computation.

Depth data from ToF cameras can be fused to RGB data from common
cameras to produce 3D reconstructions for leaves, despite the low resolution
of ToF devices. Song et al. [50] fused data from a stereo RGB camera pair
(480×1280 pixels) and a ToF camera (64×48 pixels) using the graph-cut energy
minimization approach [7]. The stereo pair provided a higher resolution while the
ToF information addressed disparity failures caused by occlusion and matching
on textureless areas. Alenyà et al. [1] employed a simpler fusion approach: the 3D
points from ToF data were transformed to the coordinates of the RGB camera
reference frame, and then projected to the camera image plane - color points
not having a 3D counterpart were discarded. Although simple, this approach
was able to produce good results because (i) the employed ToF camera presents
a greater resolution (200× 200) and (ii) a robotic arm could move the cameras
to new positions and acquire more data, under the sensing-for-action method
proposed by the authors.

Under the stereo vision framework, a camera from the stereo pair can be
replaced by a projector. The same ray intersection principle can be applied if
the projector position and intrinsics are known and the pixel correspondences can
be found. Bellasio et al. [5] used a calibrated camera-projector pair and a coded-
light method to find pixel correspondences, recovering the 3D surface of pepper
plant leaves. Chéné et al. [8] employed a RGB-D camera (a Microsoft Kinect
device) to segment leaves and estimate their orientation and inclination. These
RGB-D devices are camera-projector triangulation-based systems assembled in
a single device, also using coded-light to infer pixel correspondences [16].
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Recently, multiple-view stereo (MVS) has been applied on plant digitizing
to address the occlusion problems found in 3D plant reconstruction. Paproki et
al. [35] employed the 3D S.O.M. software [3] to create 3D models for cotton
plants and then estimate stem heights, leaf widths and leaf lengths. The cotton
specimens were placed in a rotating tray presenting a calibration pattern used by
the 3D S.O.M. software to estimate the camera relative position at each frame.

Santos and Oliveira [44] employed the structure from motion (SfM) frame-
work [20] to recover the camera calibration data. SfM extends the stereo vision
framework incorporating a step that simultaneously look for the best estima-
tion for camera positions and 3D point locations. This process, called bundle-

adjustment [51, 20], is a global maximum-likelihood estimation process that eval-
uates all the multiple-views at the same time, minimizing the re-projection error
for each view. Instead of using a calibration pattern, the authors employed a
local feature detection and matching approach combined to bundle-adjustment
to recover the camera parameters, as proposed by Snavely et al. [49] in the con-
text of city architecture 3D modeling. This camera data and the initial sparse
point cloud was employed as input for the patch-based MVS (PMVS) algorithm
[18], which produced dense point clouds that represent the surface of leaves and
internodes in experiments with basil, Ixora [44] and mint [43].

Sirault et al. [48] also reported 3D reconstruction results using the PMVS
system. In their work, the calibration data came from a setting using fixed cam-
eras and potted plants placed in a very precise turntable (2.5 million counts per
revolution). Their digitizing platform, PlantScanTM, is a chamber equipped with
three RGB CCD cameras, a NIR camera and two LiDAR laser scanners, plus
two termobolometer sensors that collect thermal information. Their stereo re-
construction fuses PMVS, voxel coloring [26] and LiDAR data using registration
algorithms (RANSAC [13] and ICP [41]). The authors report their platform is
able to digitize plants from a few centimeters up to two meters height and up to
a meter thick, enabling the phenotyping of a broad range of different species.

Fixed camera settings can be cursed by occlusion problems. In contrast, a
free-moving camera has more flexibility on getting images from different poses,
adapting the acquisition to different plant architectures and sizes. A calibration
artifact [3] could be used to provide the landmarks needed to camera localization.
However, considering the diversity of plant architectures and sizes, the use of
such artifacts would impose hard constraints in the camera acquisition, since
they must be visible in every image. The present work relies on visual local
features observed on the plant surface (and on objects nearby) to provide the
landmarks for camera localization. A chessboard pattern is used just to normalize
the scale and orientation of the final 3D model, and there is no need to observe
such pattern in every image.

3 Method

The methodology starts with a computer-aided image acquisition step that helps
the user on getting a set of images suitable for 3D reconstruction (Section 3.1).
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The images (video frames) and the local features acquired are employed in a lo-
calization and mapping step performed under the structure from motion frame-
work, determining the camera parameters for each image and an initial 3D model
for the scene (Section 3.2). A multiple-view stereo step takes the images and
camera parameters for each pose to produce a dense 3D point cloud sampling
the plant’s surface (Section 3.3). Clustering is used to segment the point cloud,
isolating the individual leaves, and then B-spline interpolation is employed to
approximate the surface of each leaf (Section 3.4).

3.1 Computer-aided Image Acquisition

A phenotyping setting employing a free moving camera is able to get poses that
allow a better handling of occlusions and variations on plant size and morphology.
The work of Alenyà et al. [1] illustrates this idea, showing how proper path-
planning for a robotic arm can move the cameras to positions where occlusions
can be easily solved (in their case, using ToF cameras and robot’s positioning
control).

In previous attempts on 3D plant modeling by SfM [44, 43], hundreds of pho-
tographies were taken and used as input. This image capturing procedure was
executed by human operators that spent up to 30 minutes on this acquisition
step. Furthermore, the operator could discover some images out of focus or lack-
ing local features, or even situations in which the wide-baseline between images
produced poor feature matching, making the scene reconstruction impossible.

The aim of the proposed system for computer-aided image acquisition is to
help the user to quickly produce an image set suitable for SfM-based 3D recon-
struction using a video camera. This image set should present feature-rich images
and good feature correspondence between them. Video streams produce thou-
sands of frames in a few minutes, so the method automatically selects frames,
ensuring a reasonable number of feature correspondences between the selected
ones. There is a short-baseline/wide-baseline trade-off: too short baselines be-
tween successive frames would produce an enormous image set. However, too
wide baselines would produce poor feature matching due to plant auto-similarity.
Algorithm F describes the procedure.

Algorithm F (Frame Selection). This procedure produces a sequence of keyfra-
mes K = 〈K1,K2, . . .Kn〉 such that there is a proper local features matching
between any pair of successive frames Ki and Ki+1. A feature matching is
considered proper if (i) at least 10% of the found local features in Ki+1

were properly matched to features in Ki and (ii) the estimated fundamental
matrix F can properly map 70% of the matched features (inliers rate).
F1. [Initialize.] At the initialization, grab the first keyframe, K1. Consider

to select a frame presenting a large number of features.
F2. [Frame process.] Grab an input frame F . Detect local features using

SURF [4] and compute their descriptors. Consider to use a GPU based im-
plementation of SURF to ensure processing at the frame-rate.
F3. [Feature matching to the last keyframe]. Match the feature descriptors
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found in frame F to the ones in the last keyframe Kn, using the Lowe’s
criteria (see [28] and Section 3.2). Set rmatch to the ratio of successfully
matched features.
F4. [Compute fundamental matrix.] Compute the fundamental matrix F us-

ing RANSAC for robustness (see [20]). Set rin to the ratio of inliers, i.e. the
ratio of the points consistent to F

1.
F5. [Frame selection.] If rmatch > 0.1 and rin > 0.7, then Flast ← F . Other-

wise, if Flast 6= Nil, push Flast into K and set Flast ← Nil. Return to step
F2.
Flast is the last frame (i) presenting a good matching to the last keyframe

(the test in step F5) and (ii) that is not yet a keyframe (Flast /∈ K). If the current
frame F does not present a proper matching to the last keyframe and Flast =
Nil, then the system is in lost state. The system will present the last keyframe
to the user, who have to move the camera to new positions until a new grabbed
frame F presents a good matching, turning the system back to a tracking state.
The user can drop keyframes from K, in an attempt to help on seeking a new
frame that put the system in the tracking state again. Figure 1 (c) shows the
acquisition user interface.

3.2 Visual Odometry

Visual odometry is the process of estimating the ego-motion of an agent [45],
in this case a single hand-held camera. As the present work is concerned about
3D reconstruction of plants, global map consistency regarding the camera poses
and the object is essential, so such an odometry is a simultaneous localization
and mapping (SLAM) problem. The local features act as landmarks for the
localization step, recovering the relative pose between two frames. The mapping
step is performed registering the features in the current map, thus defining the
absolute pose of the current frame. Global consistency can be enforced by bundle
adjustment [20, 51].

Windowed feature matching As the local features are employed as land-
marks, their positions in different frames have to be found. In the SfM frame-
work [20], the feature correspondences between two frames K and K ′ allow a
robust estimation of the fundamental matrix F. Furthermore, F is used on the
computation of the relative pose, in the form of two projection matrices P and
P
′.
The local feature matching is performed using the stored SURF local fea-

tures and their descriptors computed in the acquisition step, as presented in
Algorithm F, step F2. The employed matching criteria is the one presented by
Lowe [28]. For a feature descriptor f in K, its two nearest neighbors f ′

1 and f ′

2

1
F maps a point x in frame K to an epipolar line l′ = Fx in frame K′. A pair x,x′ is
consistent to F iif the distance between x′ and the line l is under a defined threshold.
See [20] for details.
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(a) (b)

(c)

Fig. 1. Computer-aided image acquisition for structure from motion. (a) User freely
moves a camera around the specimen, getting images from different poses to solve
occlusions. (b) The employed machine-vision camera and a pattern used to recover the
scale, essential to further metrology. (c) The acquisition system interface aids the user.

are found in K ′, presenting Euclidean distances d1 and d2 respectively. A match
(f, f ′

1) is declared if d1

d2

< 0.6 and if there is no other feature in K that matches
f ′

1 in K ′.

For fast nearest neighbors searches, a KDTree is employed. Unfortunately,
KDTree performance degenerates for large dimensions. Using PCA, the original
SURF descriptors, which are 64-element vectors, are transformed into shorter
vectors of dimension 16. Such dimensionality reduction did not degenerate the
feature matching: just a few matches are lost if compared to the original 64-D
descriptor space.

As discussed previously in Section 3.1, auto-similarity in plants can produce
spurious matches between features from different frames in the wide-baseline
case. Instead of looking for matches for each possible pair of frames, a windowed

matching is employed: for each frame Fi, the matching is performed relative to
frames 〈Fi−m, ..., Fi−2, Fi−1〉. An example of feature matching between two near
frames is shown in Figure 2.

SfM Considering the chain formed by the matches, (f, f ′), (f ′, f ′′), . . ., it is
possible to define feature tracks. The localization and mapping procedure is per-
formed by the SfM system called Bundler, developed by Snavely et al. [49]. At
each step, Bundler selects the pose that observes the largest number of tracks
whose 3D locations have already been estimated. This pose’s extrinsic parame-
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K67 K69

557 matches between K67 and K69

Fig. 2. Local feature matching between two keyframesK67 andK69 from the keyframes
sequence produced for a sunflower specimen using Algorithm F. Local feature matching
is performed using Lowe’s method [28]. The robust RANSAC procedure can estimate
the fundamental matrix F, considering wrong matches as outliers.

ters are estimated by the direct linear transform (DLT) described by Hartley and
Zisserman [20] under a RANSAC procedure for robustness. New 3D points are
added to the map by triangulating the matching features between the new pose
and the previous ones. After each pose estimation step, Bundler performs a bun-
dle adjustment optimization, using the SBA package by Lourakis and Argyros
[27].

Bundler’s standard procedure employs David Lowe’s SIFT implementation
[28] for feature detection and matching. Matching is performed for every com-

bination of two frames, and the intrinsic and extrinsic parameters for each pose
are estimated. In this work, this procedure is modified: the windowed matching
using SURF features is employed, and the intrinsic parameters are set to fixed
values. If a pair of nearby frames (i.e., in a same window) presents less than
128 matches, it will not be considered for extrinsic parameters computation,
since it could produce a poor estimation. In relation to the intrinsic parameters,
Bundler was designed for SfM using pictures from different consumer cameras.
In this work, the same fixed focus camera is moved around the plant, so the
intrinsic parameters are the same for every camera pose.

In the experiments, Bundler produced some spurious camera poses. These
wrong poses can affect the subsequent multiple-view stereo step, when a dense
3D model is computed. Fortunately, those wrong poses are detached from the
right camera path. DBSCAN clustering [11] is employed to group camera lo-
cations in tracks. This clustering algorithm is able to group elongated clusters
of points together, making it suitable to identify a long camera track and iso-
late spurious poses forming short tracks. Spurious camera positions and the 3D
points triangulated from them are removed and a final bundle adjustment is
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performed for the remaining poses and points. The adjusted poses and the set
of frames are then used as the input for the multiple-view stereo step.

Fig. 3. Structure from motion results for the sunflower sequence. The red and light
green squares show the camera position for each input frame. The scene mapping
is produced incrementally by the triangulation of the local features found, using the
recovered pose information. Even in this sparse map, it is possible to see the plant’s
leaves, internodes and its pot.

3.3 Multiple-View Stereo

Camera poses retrieved in the previous step can be used by a multiple-view
stereo (MVS) method to produce a dense 3D model. The method used here
is the patch-based MVS (PMVS) proposed by Furukawa and Ponce [18]. This
method produces a set of surfels, oriented 3D patches that cover a small area of
an object surface (the surfel orientation should correspond to the surface normal
vector). PMVS is composed by matching and expanding steps that create new
patches and estimate their surface orientation while enforcing local photomet-
ric consistency, and a filtering step that removes erroneous patches, enforcing
visibility consistency (exploring the camera poses and the patches projections).
This point cloud (or surfels cloud) is used in the next step for segmentation.

Object segmentation No screen or shield was employed to form a standard
background behind the plant during image acquisition. Such shields could con-
strain the user movement around the specimen. Furthermore, features identified
on other objects in the scene actually help the SfM step, providing information
from different depths that improves the pose estimation. However, after the 3D
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reconstruction, it is necessary to identify what elements of the point cloud that
correspond to the objects of interest: the plant, its pot and the reference pattern
(employed in a further step for scale correction). Again, DBSCAN clustering
provides a proper solution: the objects of interest form a dense and possibly
elongated cluster in the scene. Because the camera is always pointing to the
plant, the objects of interest form the densest and largest cluster in the point
cloud.

Scale correction To recover a proper scale for measurements and to place
the model in a standard orientation, a chessboard-like pattern was inserted in
the scene, near the plant. Two nearby frames where the pattern is visible are
randomly selected. Eight reference points on the planar pattern are manually
marked in each frame (Figure 4) and used to estimate a homography matrix H

[20]. This matrix is able to transform points on the pattern plane in frame K to
their corresponding ones in frame K ′. The matrix H is used to find the points
x′

i
in K ′ corresponding to points xi on the pattern in image K, ensuring the

pairs xi ↔ x′

i
are on the same plane in the scene. This is important because the

method is relying on the 3D location of such reference points to properly align
the model to a standard coordinate frame in millimeter scale.

K4 K10
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−200

−100
0
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200

400

600

Plant model - millimeters

Fig. 4. Changing the model scale and orientation. Eight points on the pattern were
marked in frames K4 and K10. The estimated homography ensures the points are in
the same plane in both images. Three points (shown as circles) are used to define
a new scale and orientation for the model. After the transformation (right image),
measurements in the model can be performed in millimeters.

3.4 Plant segmentation

Segmentation is not just an essential part of the plant model analysis, but it can
also be considered the first step. Once segmented and classified, each part can
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(a)

(b)

(c)

Fig. 5. Point clouds corresponding to the 3D reconstructions by multiple-view stereo for
sunflower (left and middle) and soybean (right). (a) Examples of input frames, 1280×
1024 pixels images captured by a machine vision camera (XIMEA model MQ013MG-
E2). (b) 3D models: a 65,145 points model for the sunflower/first take data (left), a
48,974 points model for the sunflower/second take data (middle), and a 167,382 points
model for the soybean data (right). (c) 3D models (top view). Point clouds are available
in the supplementary material set as Stanford Triangle Format files – PLY.
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be further processed under a specific context. For example, internodes could be
modeled by generalized cylinders and leaves by curve fitting.

The point cloud produced by the MVS step is segmented by spectral clustering

[46, 33, 29]. Spectral clustering is a suitable option to problems where the centers
and spreads are not an adequate description of the cluster. The method uses the
top eigenvectors of an affinity matrix. Here, an affinity matrix is built computing,
for each point in the cloud, the similarity to its 20 nearest neighbors (based on the
Euclidean distance between the points’ 3D locations). Examples of the clustering
results can be seen in Figure 6 and Figure 7.

Fig. 6. Spectral segmentation for the sunflower model. Left: side view. Right: top view.

Surface estimation For each leaf point cloud, a surface is estimated using non-
uniform rational B-splines (NURBS) [37]. As the leaf surface presents two main
orientations, the B-spline surface is initialized using PCA to define such principal
directions, adding few control points. In a refinement phase, new control points
are added. Further, the surface is trimmed by a B-spline curve that encloses the
points as proposed by Flöry and Hofer [14]. The entire procedure is described by
Mörwald [30] in the Point Cloud Library documentation. Figure 7 shows some
results for soybean-leaves.

4 Data and results

Frame acquisition was performed using a XIMEA machine vision camera (model
MQ013MG-E2) equiped with a EV76C560 sensor (resolution of 1280×1024 pix-
els), and 6 mm fixed focal length lenses (Fujinon model DF6HA-1B). Acquisi-
tions were performed for a sunflower specimen (two takes), forming the sunflower
dataset, and for a soybean specimen: a take covering the entire plant, the soybean
dataset, and a second take, closing in a few leaves, the soybean-leaves dataset.

During the acquisition step, local feature detection, description and matching
were performed using the GPU SURF implementation available in the OpenCV
library (version 2.4). Structure from motion was performed using Bundler, ver-
sion 0.4 [49] and multiple-view stereo using PMVS, version 2 [18]. DBSCAN
and spectral clustering were performed using scikit-learn [36], version 0.14, and
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NURBS fitting using the Point Cloud Library (PCL) [42], version 1.7. All data
(images, recovered camera poses, 3D models and segmentation) is publicly avail-
able2. The 3D models can be found in the supplementary material, as files in
the Stanford Triangle Format (PLY)3.

Figure 5 shows the 3D reconstructions for sunflower and soybean. Each plant
presents height larger than 50 cm and, for each keyframe, just a part of the
plant is visible. This contrasts with the small plant scenario found in previous
works [44, 43], where the entire plant could be focused and placed in the camera
field of view. The visual features detected in the plant surface were sufficient to
recover the camera pose and map the entire specimen. Thin structures as the
soybean internodes could be properly reconstructed (see supplementary data for
a detailed view). The complexity and density of the soybean shoot demonstrates
the advantages of a free-moving camera approach.

Figures 6 and 7 show the segmentation results. The graph-cuts performed
by the spectral clustering are able to isolate the leaves, being effective for both
soybean and sunflower plants. However, spectral clustering needs the desired
number of segments be previously defined.

The 167,392 points model in Figure 5 and the 62,677 points model in Figure 7
correspond to the same soybean plant. Approximating the camera to the leaves
produced a denser and more detailed 3D reconstruction. This means closer ac-
quisitions could produce denser models for the full plants, however this would
make the acquisition step longer and more tiresome for human operators.

Fig. 7. Leaf 3D modeling, segmentation and surface estimation using NURBS for the
soybean-leaves dataset. Left: a 62,677 points model created by moving the camera near
a set of 9 leaves in the sunflower specimen. Middle: segmented model. Right: trimmed
NURBS surfaces.

2 https://www.agropediabrasilis.cnptia.embrapa.br/web/plantscan/datasets
3 PLY files can be visualized and manipulated using the open-source software Meshlab
available at http://meshlab.sourceforge.net.
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5 Conclusions

A single hand-held, free-moving camera can be used to create accurate three di-
mensional models for plants by using state-of-the-art structure from motion and
multiple-view stereo techniques. This methodology is suitable for automatized
plant phenotyping facilities or small laboratories with restricted resources.

The presented SfM methodology relies on local features detected in the plant
surface acting as visual landmarks. Unfortunately, the lack of visual features in
some plants can make camera localization unfeasible. Experiments with maize
specimens, presenting almost featureless surfaces, were unsuccessful. Structured
light approaches, that create “artificial features” using light patterns4, or ToF
cameras [15] would be more appropriated in those cases. For smaller plants,
visual markers could be employed [3].

Better feedback could be provided in the acquisition step if real-time recon-
struction was performed. Such information would let the user to evaluate model
completeness and resolution level, allowing proper camera posing. Real-time re-
construction systems for RGB [32] and RGB-D [31, 22] sensors are promising
alternatives in this direction.

Systems based on monocular SfM, LiDAR, RGB-D and ToF cameras are
providing lots of data and moving the computer vision field to the next step: the
analysis of 3D point clouds for automatic scene understanding. This is also true
for plant models, because phenotyping pipelines need to make sense of such 3D
data for phenomic characterization. Automated segmentation, classification and
metrology of each plant part are current research issues.
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4 This is the method behind RGB-D devices as the Microsoft Kinect.
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Saariselkä, Finland (2013)

49. Snavely, N., Seitz, S., Szeliski, R.: Modeling the World from Internet Photo Col-
lections. International Journal of Computer Vision 80(2), 189–210 (Nov 2008)

50. Song, Y., Glasbey, C.A., Polder, G., Dieleman, J.A.: Combining stereo and Time-
of-Flight images with application to automatic plant phenotyping. In: Heyde, A.,
Kahl, F. (eds.) Proceedings of the 17th Scandinavian Conference on Image Anal-
ysis. vol. 1, pp. 467–478. Springer Berlin Heidelberg, Ystad, Sweden (2011)



18 T. T. Santos et al.

51. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle Adjustment
A Modern Synthesis Vision Algorithms: Theory and Practice. In: Triggs, B., Zis-
serman, A., Szeliski, R. (eds.) Vision Algorithms: Theory and Practice, Lecture
Notes in Computer Science, vol. 1883, book part (with own title) 21, pp. 153–177.
Springer Berlin / Heidelberg (Apr 2000)


