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3-D Histogram-Based Segmentation and Leaf
Detection for Rosette Plants

Jean-Michel Pape1 and Christian Klukas1
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Abstract. Recognition and segmentation of plant organs like leaves is
one of the challenges in digital plant phenotyping. Here we present a 3-
D histogram-based segmentation and recognition approach for top view
images of rosette plants such as Arabidopsis thaliana and tobacco. Fur-
thermore a Euclidean-distance-map-based method for the detection of
leaves and the corresponding plant leaf segmentation was developed.
An approach for the detection of optimal leaf split points for the sep-
aration of overlapping leaf segments was created. We tested and tuned
our algorithms for the Leaf Segmentation Challenge (LSC). The results
demonstrate that our method is robust and handles demanding imaging
situations and different species with high accuracy.

Keywords: 3-D Histogram Thresholding, Distance Map, Graph Analy-
sis, Leaf Counting, Leaf Segmentation

1 Introduction

The analysis of digital plant images is an important task in phenotyping to
evaluate plant parameters in a non-invasive fashion. A wide variety of different
screening systems with varying requirements to the image analysis have been
developed and are in part commercially available. Fully automated systems try
to establish constant environments for image acquisition, but due to the high
costs, space requirements and installation effort of those systems the utilization
of more flexible ad-hoc installations would often be desirable. The demanding
non-constant imaging situations with respect to varying plant background and
fluctuating illumination cause similar problems for image analysis as field-based
imaging. Challenging are big differences in image-quality like image resolution
and lightning conditions, which need to be handled by image-processing algo-
rithms. Improvements in these areas, would allow an easier monitoring of plant
growth in non-automated greenhouses and would also be useful for improved
imaging-based field-phenotyping solutions.

1Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop
Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany.
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State of the Art Software A comprehensive overview about phenotyping soft-
ware can be found at http://www.plant-image-analysis.org/. There are a various
number of applications which support fully automated or semi-automated plant
image analysis, especially for rosette plants, as described in [1],[2],[3],[4],[5] and
[6]. Some tools already provide general pipelines for shoot analysis and differ-
ent plant species including the possibility for rosette plant analysis [7]. In most
biological experiments which are designed to be analyzed by automated imaging
solutions the growth conditions are modified in comparison to normal field and
greenhouse growth, and pot handling conditions. For example, instead of soil,
nutrient solutions are used for root phenotyping, and special carrier systems and
pot soil covering solutions are used in automated greenhouses. One of the goals
of these modifications is to ensure that in respect to the imaging conditions the
input data is as homogeneous as possible. However, to reduce effort and cost for
setting up high-throughput phenotyping experiments, it is desirable to handle
even disturbed images by image analysis tools. Image analysis frameworks such
as ImageJ and Fiji include state of the art image processing algorithms which
can be utilized for algorithm and framework development [8], [9]. To enhance
the robustness of segmentation approaches texture features can be utilized [10],
additionally active contours are used to improve segmentation [11]. Active Con-
tours are also used for leaf shape classification [12]. Nevertheless, including these
algorithms and methods in a framework which is applicable for high-throughput
analysis proves to be challenging due to the storage and processing requirements
and the need for processing plant identifiers and meta-data.

2 Methods

The main steps of our method are depicted in figure 1. After image acquisition
the pre-processing procedures are performed. Based on the training data two 3-
D color-histograms for foreground and background data are calculated, they are
used in the segmentation phase to separate the testing image set into foreground
and background. The segmentation results are further processed in the feature
extraction phase to detect the leaf segments. This involves the detection of leaf
center points and skeleton generation. Skeleton-points with minimal distance to
the background are starting points for the calculation of split lines. These lines
are used as borders during segmentation of overlapping leaves. In a last step the
separated leaves are labeled by a region-growing algorithm. Our methods devel-
opment are related to a dataset provided through the Leaf Segmentation Chal-
lenge (LSC) of the Computer Vision Problems in Plant Phenotyping (CVPPP
2014) workshop organized in conjunction with the 13th European Conference
on Computer Vision (ECCV) [13]. The dataset is used for testing the methods,
further details are provided in the results section.

2.1 Image Acquisition

Our segmentation approach requires plant images and manually labeled images
as input for the training phase. Within the Leaf Segmentation Challenge (LSC)
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3-D color histogram generation 
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Fig. 1: Method overview, main pipeline steps based on the traditional image processing
pipeline.

a comprehensive set of images and label data (so called ground-truth data) has
been made available. There are three training datasets: Two Arabidopsis thaliana
plant image datasets with 95 (A1) and 31 (A2) images, and one dataset consisting
of 27 tobacco plant images (A3) (fig. 2). The datasets A1 and A2 are similar
with respect to their image quality (resolution A1: 500×530 px, A2: 530×565 px).
A1 includes more artifacts, e.g. moss. The background and lightning conditions
are homogeneous. In opposite, the dataset A3 has a much better image quality
(resolution 2448×2048 px), but the background and lightning conditions are very
in-homogeneous, also the plant is not strictly located in the image center and
other plants are partially visible at the image borders, parts of some of the plants
are cut off at the image borders.

2.2 Preprocessing

L*a*b* Color Space Conversion All RGB images are converted into the L*a*b*
color space (color components are normalized and discretized between 0 - 255).
Using L*a*b* channels as features for segmentation has some advantages over
using the RGB color space. In comparison to the RGB color space the L*a*b*
color components are better suited to separate foreground and background, also
the color components are less correlated to each other [14].

Simple Color Thresholding To prevent influences of very dark and very bright
pixels to the training data, a color thresholding is applied. These pixels with a
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Fig. 2: Example training images from datasets A1, A2 and A3 (left, middle, right).
Top - RGB images, bottom - provided ground-truth label images, representing desired
optimal thresholding and leaf segmentation results.

L-value near the white and black point are mostly the result of an overexposure,
reflections or shadows and include no reasonable color information.

Creation of Color Cubes The segmentation approach based on a supervised
classification in foreground and background orientated on the kernel density
estimation approach. Therefore a 3-D histogram creation for all training images
(with labels) from a given dataset A1, A2 and A3 are processed individually. Each
pixel from the training image is categorized into foreground or background by
inspecting the provided label data. The corresponding L*a*b* pixel color values
are used as indices for the 3-D histogram cubes. For each pixel the corresponding
histogram bin is incremented. During this procedure a overall foreground and
background 3-D histogram is accumulated. To improve the robustness of the
thresholding approach, all input images for the cube calculation were filtered in
the pre-processing phase by a Gaussian blur operation.

2.3 Segmentation

As described in Kurugollu et al. a simple histogram thresholding for each channel
would result in a partitioning of the 3-D histogram into rectangular regions [15]
with non-optimal results. For this reason a direct look-up in the 3-D histogram
cubes instead of (multiple) one-dimensional color component thresholds are used:
The cubes act as a look-up table which stored the classification probabilities for
each color feature. The indices for look-up of the histogram values belonging to
particular pixel color, are again based on the discretized L*a*b* color values.
For color values not present in the training data, the histogram values are zero.
In such a case the surrounding of the particular histogram cell is considered
by calculating down-sampled cubes, containing the average of multiple adjacent
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cells. The histogram values are then interpreted as probabilities and the pixels
are therefore assigned to foreground if the corresponding cube contains a higher
value than the cell of the background cube.

As the color information is not sufficient to separate the image error-free,
the results still include noise and artifacts. As shown in figure 3, it becomes
obvious that a simple multiple histogram thresholding would not result in a good
segmentation quality, especially the foreground and background components in
the A3 dataset contain many overlapping areas.

To handle this disturbances a connected components detection is performed
to delete artifacts with an area below a certain threshold. Background areas
within the filled image area are also investigated according to their size, and
filled, if they fall below a threshold. Morphological operations are used to smooth
the object borders. In case of the A3 images, plants are not strictly located at the
center of the image and other plant parts protrude into the image from the side.
Therefore, all foreground parts which are connected to the border are removed
(e.g. leaves from neighbor plants), except if this removal operation would remove
the largest connected component.

Remaining large greenish objects within the image are further evaluated in
the post-processing phase, once structural shape information (needed for the leaf
segmentation), is available.

2.4 Feature Extraction

The segmentation results serve as input for the leaf detection. Especially the
leaves of the Arabidopsis thaliana plants are considered as compact objects which
only partly overlap. In the corresponding euclidean distance map (figure 4 top
right) the leaf center points appear as peaks. Before calculating the distance map
a morphological erode operation is performed for a better separation of leaves.
The Euclidean distance map (Edm) is processed by a maximum search. The
result is shown in the bottom left of figure 4. Slightly overlapping leaves are in
still detected separately. In cases where overlapping leaves form a single compact
object this approach may fail to detect specific leaves. Finally, a skeleton image
is calculated for the subsequent analysis steps.

Graph Representation The plant leaves are mostly connected with each other
(either overlapping or connected by the plant center). To detect split points
for leaf-separation, a graph structure for efficient traversal of the plant mask
image skeleton is generated (see fig. 5). Before generating the graph, values
of the calculated distance map are mapped on the skeleton image. The result
image is used for creation of the skeleton graph: Leaf center points, skeleton
end-points and skeleton branch-points are represented as nodes in the graph.
Edges are created if the according image points are connected by the skeleton.
Additionally, a list of the positions and minimal distances of each particular
edge segment is saved as an edge-attribute. This list is used to detect the exact
positions of the leaf split points.
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Fig. 3: Accumulated foreground (green) and background (blue) probabilities, stored in
3-D histogram cubes derived from all images of the three training datasets (A1 in first
line, A2 second line, A3 third line). For illustration the cube cell values were normalized
between 0 - 255 and converted to 8-bit grayscale TIFF images and then visualised
using ParaView [16]. Afterwards the values were mapped to green (foreground) and
blue (background) color table (left and middle of the image, combined view in the third
column). Light colors indicates low values (and thus a low probability) and saturated
colors indicate high values. L*a*b* color axes: z-axis: L-value, x-axis: a-value, y-axis:
b-value.
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Fig. 4: Segmentation result (top left), distance map (top right), distance map with
highlighted peaks, which serve as leaf center points (bottom left) and skeleton image
(bottom right).

Fig. 5: Derived graph from leaf center points and skeleton image.
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Split Point and Split Lines Estimation To separate all leaves from each other, all
paths between the leaves are investigated using the corresponding graph struc-
ture. The minimum distance points (points where the distance to the image
background is minimal) between any two leaf center point nodes are determined
by investigating the path edges minimum distance attributes and saved as leaf
split points. The according edges are removed from the graph structure. This
procedure continues until all leaf center point nodes in the graph are discon-
nected from each other. Based on the calculated split points the exact split lines
are needed to separate overlapping leaves (see fig. 6). For each split point the
nearest background point is searched. The second coordinate of the split line is
searched at the opposite position relative to the split point (a background pixel
near the opposite point but with minimum distance to the split point). After
the split line estimation a region filling, considering the segmentation result and
the split line positions is performed starting from the leaves center points. The
result represents the leaf labels.

Fig. 6: Example for split point and split line estimation. For illustration the euclidean
distance map derived skeleton is mapped on the segmented plant image (gray val-
ues indicate the euclidean distance to the background). (from left to right) Identified
split points, detected start points for split line detection (nearest outline points to the
individually split point), corresponding endpoints for split lines, resulting split lines.

2.5 Post-processing

During the segmentation phase only color and size information is considered for
artifact removal. For the A3 dataset and the large greenish noise objects, the
structural information from the skeleton and graph structure is evaluated. The
average distance from node to node is calculated for each connected component.
While the shape of plant objects is relatively compact the noise objects contain
many skeleton branch points. Therefore, the average distance for noise objects
is small. To increase the difference of this property for plant and noise objects
the distance is scaled according to the average distance of the object relative to
the image center. Objects at the image border are then more likely removed.

The last step of the workflow includes the output image generation (labeled
result images) and the measurement of quality statistics based on the provided
evaluation functions.
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3 Implementation

Our approach is implemented in Java, taking advantage of its platform indepen-
dence and the availability of numerous libraries like ImageJ and Fiji. As shown in
figure 7, the pipeline consists of four main blocks. The provided training images
and their labels are used to calculate the foreground and the background 3-D
color histogram cubes. These cubes are then used in a first segmentation phase to
process the provided testing images and extract the foreground and background.
The segmentation result is used to detect leaves by detecting leaf center points
and the corresponding split points and split lines based on distance map and
skeleton calculation. In the last step the region growing algorithm labels each
leaf region.

Pipeline Parameters Besides the trained 3-D histogram cubes several parameters
influence the segmentation and leaf detection. Individually for the three datasets
well suited parameter values were selected. Depending on the dataset noise level
in the pre-processing according blurring factors, noise removal and gap fill size
limits for disconnected components were determined. The segmentation results
were further improved by introduction of a weighting factor in order to increase
the probability for detection of foreground pixels. This way the plant is better
recognized, additionally introduced noise objects are removed if they fall below
the noise area limit or during the post-processing based on their irregular shape.

4 Results and Discussion

Training Results The images (fig. 8 and fig. 9) show the result of different
pipeline-steps. Table 1 contains the statistical results of the leaf area labeling
(column 1), foreground/background separation (column 2) and leaf detection
(average absolute and mean errors per image in column 3 and 4) of the training
data. The foreground and background separation of the three datasets is nearly
optimal (97.4 - 99.7%).

Testing Results The result for the testing data are shown in table 2. The fore-
ground and background segmentation and the leaf labeling was performed mostly
successfully with similar results as for the training data (fig. 10).

For the testing phase three datasets, belonging to the training data without
the according ground-truth images have been provided by the organizers of the
Leaf Segmentation Challenge. The test data images for A1 (33) and A2 (9) are
very similar to the training data, the 56 A3 test images show more differences to
the training data in respect to the imaging background and plant colorization.

Overall, the results of the test data are similar to those of the training data.
Problematic for segmentation was discoloration of some of the images in the A3
dataset. In one case the whole (very small plant) was removed completely, as the
cut-off value for the size of noise objects was tuned for the smallest plants in the
training dataset and proved to be too high for the testing-data. The quality of
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Fig. 7: Design of the implemented processing pipeline. Green: training phase including
the histogram estimation for foreground and background. Brown: segmentation and
noise removal. Orange and Blue: Extraction of features for
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Fig. 8: From left to right: input image, provided image label, segmentation result, color
coded difference image (yellow - false positive, red - false negative).

Fig. 9: Left: Leaf center points (rectangles), split points (blue circles), split lines (orange
lines). Right: Result of the leaf segmentation.

Table 1: Results of the evaluation of the training data. BestDice: Quality of the idividual
leaf segmentation. FGBGDice: Quality of the foreground and background separation.
AbsDiffFGLabels: Average absolute difference of the number of the detected leaves.
DiffFGLabels: Average difference of the detected number of leaves. For all values the
standard derivation is indicated. Calculation details are described in [13].

BestDice [%] FGBGDice [%] AbsDiffFGLabels DiffFGLabels

A1 74.2 (±7.7) 97.4 (±1.8) 2.6 (±1.8) -1.9 (±2.5)

A2 80.6 (±8.7) 99.7 (±0.3) 0.9 (±1.0) -0.3 (±1.3)

A3 61.8 (±19.1) 98.2 (±1.1) 2.1 (±1.7) -2.1 (±1.7)

all 73.5 (±11.5) 98.0 (±1.9) 2.2 (±1.7) -1.7 (±2.3)

Table 2: Statistical evaluation results provided by the Leaf Segmentation Challenge
board, based on the submitted image analysis results for the testing-dataset.

BestDice [%] FGBGDice [%] AbsDiffFGLabels DiffFGLabels

A1 74.4 (±4.3) 97.0 (±0.8) 2.2 (±1.3) -1.8 (±1.8)

A2 76.9 (±7.6) 96.3 (±1.7) 1.2 (±1.3) -1.0 (±1.5)

A3 53.3 (±20.2) 94.1 (±13.3) 2.8 (±2.5) -2.0 (±3.2)

all 62.6 (±19.0) 95.3 (±10.1) 2.4 (±2.1) -1.9 (±2.7)
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Fig. 10: Example results from the evaluation-phase. From left to right: input image,
segmentation result, detected leaf center points, labeled leaves. Test-images from top
to bottom: plant 87 from dataset A1, plant 10 from set A2 and plant 47 from set A3.

our segmentation approach depends on the homogeneity of the training data in
comparison to the testing data. The training dataset needs to be representative,
it would desirable to improve the interpolation of missing points (determination
of probabilities for unknown color values) in the histogram cubes. The current
scale space method is an inaccurate approximation, a better option would have
been a blurring operation in the 3-D space.

In the segmentation example for A1 it is noticeable that the petioles are
missing in some images for some leaves. An explanation could be that the color
of these thin areas is similar to the moss and other background parts in the A1
dataset.

A remaining challenge is the recognition of very small leaves and leaves which
overlap strongly. Figure 11 shows some examples for the leaf center point de-
tection based on the euclidian-distance-map and maxima detection. In addition,
the leaf segmentation could perform better at leaf borders which overlap. Due to
current implementation issues regarding the discretization of the distance map,
the split lines sometimes don’t directly connect points of minimal distance. In
addition, within our approach, it is not clear which leaf overlaps the other and
therefore a straight line is constructed for separation. By analyzing the leaf area
next to the line and the borders of the leaves in the surrounding, a better fitting
curve could be estimated. The average leaf count results are too low for all three
datasets (DiffFGLabel-values of -1.8 for A1, -1.0 for A2 and -2.0 for A3). This is
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Fig. 11: Examples for overlapping leaves and the corresponding euclidean-distance-map
with detected maxima. a) - d) Examples for arabidopsis, e) example for tobacco. Cor-
rectly identified are b), d) and e), too few maxima are observed in case a) and c). The
distance map is not fine granular enough in these cases.

mainly caused by very small leaves which are located at the center of the plant,
these leaves are not detected as they don’t appear as peaks in the distance map.
The leaf segmentation for the tobacco images of the A3 dataset performs com-
parably worst (BestDice values of 53% in A3 versus 74 and 77% for A1 and A2).
The leaves of the tobacco plants have a different shape than the Arabidopsis
thaliana plants. In later development stages the leaf overlap becomes so large
that our detection of peaks in the distance-maps fails to recognize those plant
structures.

5 Conclusions

The leaf separation approach was developed for compact leaf shapes as found
in Arabidopsis thaliana. Leaves of tobacco plants are not as well separated from
each other, while the developed approach still works for tobacco plants.

The calculation of color cubes using the L*a*b* color space proved to be a
very good basis for foreground/background separation of images which are not
too different from the training data. We also developed a way for the detection
of leaf center points using a distance map, and an approach for separation of
leaf segments, by calculating split lines.

It is conceivable to use this approach in the future within a semi-automated
segmentation method, outside of this specific Leaf Segmentation Challenge. The
representative training data could be created by the user by marking image re-
gions belonging to foreground and background. In addition, the leaf segmentation
approach could be improved by a an shape-adjusting component.
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