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Abstract

Urban models are key to navigation, architecture and
entertainment. Apart from visualizing façades, a number
of tedious tasks remain largely manual (e.g. compression,
generating new façade designs and structurally comparing
façades for classification, retrieval and clustering).

We propose a novel procedural modelling method to au-
tomatically learn a grammar from a set of façades, gener-
ate new façade instances and compare façades. To deal
with the difficulty of grammatical inference, we reformu-
late the problem. Instead of inferring a compromising, one-
size-fits-all, single grammar for all tasks, we infer a model
whose successive refinements are production rules tailored
for each task. We demonstrate our automatic rule inference
on datasets of two different architectural styles. Our method
supercedes manual expert work and cuts the time required
to build a procedural model of a façade from several days
to a few milliseconds.

1. Introduction
In [15], Mitchell claims that architecture is structured by

a certain logic which can be captured by formal grammars.

Procedural modelling has extensively been used by archi-

tects, urban planners, the film and game industries, map

makers and cultural heritage specialists to generate large-

scale models of cities [26]. The introduction of procedu-

ral modelling has cut down the required amount of work

to synthesize convincing models of cities, which used to

take several man-years [17]. Procedural models are seman-

tic and highly structured, and are very well-suited for simu-

lations [2] and planning [11] compared to conventional 3D

models. The main features of procedural models are that

they are compact, editable, readable, semantic and advanta-

geous for retrieval and fast graphics generation [10].

While whole virtual cities can be generated in minutes

thanks to procedural modelling, it takes a lot more effort

when it comes to constructing a model of an existing city.

Existing inverse procedural modelling pipelines for exam-
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Figure 1. Pure mesh-based or semantic labelled models suffer from

a limited field of uses. In this work we propose methods to auto-

matically build procedural façade models in milliseconds for com-

pression, comparison and new virtual façade creation.

ple [25, 24, 14] require an expert to manually design a set of

style-specific rules. Architects estimate that manual mod-

elling takes them up to two days to model a single building

—several years to model a city. In addition to the colossal

amount of work involved, it also makes any update process

very slow.

The quality of 3D city modelling for visualization has

dramatically improved over the past few years. Using

Structure-from-Motion pipelines, works such as [28] have

achieved a very high degree of realism. Yet, the resulting

meshes are only good for visualisation. In parallel, semantic

labelling has shown very encouraging results [13, 8]. How-

ever, the possibilities given by a set of labelled façades is

limited compared to the set of applications offered by a pro-

cedural model (see Fig. 1). In this work, we transform a set

of labelled façades into a procedural model, automatically.

Additionally, we use the procedural models to generate new

façade instances and compare façades layouts.

In a procedural model, rules are the backbone of the se-

mantic information. They describe how architectural ele-

ments are grouped together and organised. The rules cre-

ated for inverse procedural modelling should not only be

able to generate a set of exemplar buildings in a style, but

specifically only the possible buildings from a style. This

poses the problem of finding a principled way of inferring
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such a rule set. As opposed to automatic inference, man-

ual work takes a considerable amount of time and does not

ensure consistency between the different models. Finally,

the resulting rule set may contain a very large set of param-

eters, making the optimization intractable. To circumvent

these problems, we propose a new formulation where the

grammar is directly inferred from the labelling of a façade

or a set of façades (see Fig. 2).

Our main contributions are: (1) an inverse procedural

modelling pipeline where both rules and parameters are au-

tomatically inferred, (2) a method to measure the struc-

tural distance between façades for retrieval and clustering,

(3) a method to synthesise new, non-existent façades from

a model describing a set of façades in the same style, (4) a

compression of the data by two orders of magnitude and a

speedup of the processing time from days to milliseconds.

2. Related work
Façade modelling in form of image-based architectural

modelling [1, 28] and semantic segmentation [3] is not rel-

evant to our problem due to its restrictions to pure visual-

ization and reporting. In fact, the work performed in image-

base city modelling is a pre-processing step to our pipeline.

Our goal is to use the procedural structure of façades for

compression, comparison and virtual layout generation by

exploiting shape grammars.

Shape grammars were intially proposed by

Stiny et al. [23] as a generation tool for geometric

paintings and sculptures. Later, Wonka et al. [27] and

Müller et al. [18] proposed to use split shape grammars to

describe architecture. The idea is to describe a building as

a sequence of formal rules which gradually refine and add

details to the model. Next we detail two main approaches

that have been pursued to tackle architectural inverse

procedural modelling using shape grammars, and then

present related work in the field of grammatical inference.

The first inverse procedural modelling approaches as-

sume that a grammar is given as input and infer the appro-

priate parameters to represent a given building [21, 24, 25].

These methods offer the advantage of systematically yield-

ing architecturally sound buildings, but the actual correct-

ness depends on whether the grammar can create the build-

ing at hand as an instantiation. Recent work relaxes the re-

strictions and use rather general architectural principles [13]

or symmetries and repetitions [20] to infer the parameters.

In the second approach, both the rule set and the pa-

rameters are inferred. Inverse procedural modelling of L-

systems has been tackled by Št’ava et al. [22]. In [4],

Bokeloh et al. produce procedural models of a mesh as-

suming it contains partial symmetries. Grammatical infer-

ence is also of interest in the analysis of natural language,

music and genetics. In [9], de la Higuera et al. present a

comprehensive survey about grammatical inference. In [6],
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Figure 2. Our inverse procedural modelling pipeline. First, la-

bellings of rectified façade pictures are the input to our method.

A split tree is inferred for each façade. Those trees are combined

and constitute a set of rules that describe the façade style. These

inferred rules are then used for comparison, editing, virtual façade

synthesis, and rendering.

Charikar et al. examine the smallest context-free gram-

mar problem. They show that it is an NP-complete prob-

lem and compare grammar-based compression algorithms,

such as [19].

However, to the best of our knowledge, grammatical in-

ference has never been performed for more than one façade

at a time and without any architectural style nor grid layout

restrictions.

3. Approach
Our goal is to automatically derive a set of procedural

rules to describe a set of façades of the same style, generate

new ones and compare them for classification and retrieval.

One or several Manhattan-world segmentations of façades

are given as input, which can be obtained manually or auto-

matically [3, 8, 13, 20].

Our weakly supervised algorithm for inverse procedural

modelling provides as output, sets of style rules and for each

façade, a set of parameters. We employ different represen-

tations for each different application.

3.1. Shape grammars for architecture

A shape grammar G is a context-free grammar consist-

ing of a tuple (N ,Σ,R,S), where N is a finite set of non-

terminal shapes, Σ is a finite set of terminal shapes, R is a

finite set of production rules and S is a starting shape (ax-

iom). A shape is enclosed in a 3D bounding box called

scope. A terminal symbol shape can be a 3D model or a tex-

ture which we will refer to as asset (as in computer graphics

terminology). An asset is hence an architectural element,

such as a door, a window or a piece of wall. A produc-
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tion rule r ∈ R consists of a sequence of operations. An

operation transforms a shape into other shapes. We con-

sider insert, horizontal and vertical split operations. Insert

operations insert an asset in the current scope, while split

operations divide a shape into n newly created shapes. We

distinguish between two kinds of split operations: binary

and n-ary. We call a binary split a split between two ele-

ments such as

rbinary → split(d){s1 : r1|s2 : r2} (1)

where d is the splitting direction (horizontal or vertical), s1
and s2 are the sizes of the newly created shapes, and r1 and

r2 their associated rules.

With shape grammars, a façade is described as a recur-

sive splitting procedure from the root node (corresponding

to the axiom S) to the leaf nodes (each a single asset). Se-

mantically higher level operations are compact notations for

a series of lower level operations. Higher-level operations

provide an interpretation, an understanding of the building.

A number of implementations have been developed such as

CGA [18], GML [12] and Teboul et al.’s [25].

Operations, and therefore rules, are parametric. Hence,

a rule set plus a set of parameters generate a single façade.

Altering one or the other will result in a different façade.

We refer to a grammar instance as a set of shape grammar

production rules plus a set of associated parameters.

3.2. What makes a good grammar?

The same façade can be represented by many different

sequences of operations, therefore rule sets. Hence, we pay

special attention to defining the properties a “good” gram-

mar should fulfill. The value of a grammar depends on its
intended usage. In the case of façade modelling, we con-

sider visualization of an existing city, novel building gener-

ation, comparison between façades, reporting and compres-

sion. Bearing in mind the targeted applications, we propose

to adopt the following criteria for the grammar generation.

The grammar inference should be: consistent, fast, online

and should produce an accurate, generative (within class),

specific (between class) and compact grammar. Here, con-

sistency means that two similar façade labellings will be

described by two similar rule sets. By online algorithm,

we mean that new façade instances can be added iteratively.

This is a very important property, as in practice a city model

needs to be constantly updated. Often, optimizing for one

criteria will degrade the others. For instance, achieving

Minimum Description Length (MDL) is likely to come at

the cost of longer computations and the need to run an opti-

mization over the whole dataset. Consequently, we propose

to use different representations for different applications.

The generative model, which creates new, virtual building

instances for visualization, should be conservative and spe-

cific, as any error will be caught by the human eye. The

analytic model, which can be used to compare buildings,

should generalize such that it encompasses all façades from

the style.

3.3. Façade parse tree generation

In this section, we describe the parsing algorithm which,

starting from a labelling, encodes a façade as a binary split

tree whose nodes correspond to façade regions, operations

and parameters. The collection of trees is the starting point

for all subsequent processing in Section 4. The parsing al-

gorithm recursively splits the façade into smaller façade re-

gions until all of them consist of a single asset. This can be

seen as a top-down tree clustering of the façade.

Generating the split trees boils down to defining an en-

ergy function to select the split lines. The structure of the

parse tree will solely be affected by the order of the split, de-

termined according to this energy function. The rest of this

section describes the energy function given in Eq. 3. Intu-

itively, the energy function aims at grouping assets which

occur frequently next to each other and are not separated

by a long edge. As the parsing is performed on labelled

images, an edge designates a straight line that separates re-

gions with different labels. The set of asset labels is L.

In the rest of this section, d designates a direction, h
means horizontal and v vertical. For each scope s, we start

from a set of horizontal and vertical split line proposals P
defined as

P = Ph ∪ Pv (2)

where Ph is the set of horizontal split line proposals and

Pv the set of vertical split line proposals. A line is a split

proposal p ∈ P if a) it contains at least an edge collinear

to the direction of p and b) it does not intersect with any

edge perpendicular to p. The latter condition prevents from

splitting across an asset. For simplicity, we only write the

equations for horizontal split proposals, which can be easily

be extended to vertical proposals. (x, y) refer to the coordi-

nates of a pixel on a proposal line. For each split proposal

py ∈ P , we compute an energy function f(py) using an

edge length term ex and an asset affinity vd such that

f(py) = b(h)b(p)

(
α

1

W

W∑
x=0

ey + (1− α) 1

W

W∑
x=0

vd(x, y)

)

(3)

where b(h) is a horizontal vs. vertical bias, b(p) is a parental

bias, α ∈ [0, 1] is a weight between the edge support term

and the affinity term, W is the size of the façade (the height

respectively the width depending on the direction of py),

ex = 0 if a pixel y is an edge, 1 otherwise. The edge length

term ex rewards splitting along a longer line, while the affin-

ity term vd penalizes splitting between assets with stronger

affinity. The biases are
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b(h)

{
∈]0, 1] if p is horizontal

= 1 if p is vertical
(4)

b(p)

{
∈]0, 1] if d(p) = d(a)

= 1 otherwise
(5)

where d(a) is the direction of the last accepted proposal (of

the parent scope) and d(p) the direction of p.

The second term sums over the affinity vd(x, y) between

the asset at the edge pixel (x, y) and the asset at the nearest

facing edge pixels (x, ȳ∗), which is located according to

ȳ∗ = argmin
ȳ∈PĀ

(Δy,ȳ) (6)

where PĀ is the set of split proposals which do not belong

to the same asset. Δy,ȳ is the distance between proposals

py and pȳ . The search space in Eq. 6 can be reduced by

only considering edges located in the direction of the nor-

mal vector to the edge. The affinity vd(x, y) is defined as:

vd(x, y) = cd(lx,y, lx,ȳ∗) (7)

where lx,y is the asset label at position (x, y) and lx,ȳ∗ the

asset label at the nearest facing edge.

The co-occurrence cd between asset pairs, where d is the

direction, is computed across all façades and stored in two

affinity matrices Ch and Cv . These matrices Cd are nor-

malized weighted co-occurrence matrix of size |L| × |L|,
where |L| is the number of asset labels. Each value in Cd is

defined by

cd(lx,y, lx,ȳ∗) =
ν∑

i=1

| yi − ȳi∗ |
W

(8)

where ν is the total number of pixels belonging to split pro-

posal lines, and the proximity measure is the normalized

distance between a pixel belonging to a split proposal py
and its nearest facing asset edge located along pȳ∗ . In order

to reduce the number of computations, the affinity coeffi-

cients are pre-computed for each pixel over the façade in

both horizontal and vertical directions.

At the end of this parsing step, we obtain a binary tree

of split operations that describes the façade. This tree can

be represented as set of binary split rules (see Eq. 1). The

whole process is exactly lossless, i.e. the original labelling

can be re-generated from the tree of rules.

In the next section we show how to use these parse trees

to optimize for compression, retrieval and virtual generation

of new façades.

4. Optimization of Shape Grammars

Given the general method to construct a parse tree of the

façade layouts, it is our goal to optimize the grammar with

respect to its production rules for the each of following spe-

cific applications, separately.

1. Compression reduces the size of the grammar by ex-

amining redundancies within and between parse trees.

2. Comparison defines structural features to create a re-

trieval metric capturing differences in façade layout.

3. Virtual façade synthesis analysis examples of façade

types and creates a new set of consistent parameters to

instantiate a façade of the same style.

4.1. Grammatical inference

In the previous section, we presented a way to infer a

parse tree depicting a given façade. However, the inferred

tree consists only of binary split operations, i.e. single op-

eration rules. The grammatical inference phase is a succes-

sion of steps to group those single operation rules to infer

a shorter representation. Note that the inferred grammar

provides us with an understanding of the building as lower

level operations are combined into fewer number of higher

level operations. For instance, repetitions of the same rule

across the building are detected. In addition, rendering per-

formance benefits from using a compact grammar as fewer

rules need to be evaluated at render time. The grammatical

inference is a two step process. First, the binary split nodes

in each parse trees are converted into n-ary split nodes.

Then, more complex production rules are inferred by com-

paring n-ary split nodes over all parse trees.

4.1.1 Transformation to n-ary split nodes

Nested binary splits in the same direction (horizontal or ver-

tical) are re-written as n-ary splits following

{
ri → split(d){sj : rj |sk : rk}
rj → split(d){sj1 : rj1|sj2 : rj2}⇔
rc → split(d){sj1 : rj1|sj2 : rj2|sk : rk}

(9)

Since the position and size of each scope remains identical,

this transformation is guaranteed to be lossless. Each such

transformation reduces the total number of rules |R| by 1

(two rules were turned into one). It is performed multiple

times by recursively exploring the parse tree until no more

occurrences can be re-written.
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4.1.2 Production rule inference

The production rule inference is based on a similar principle

as [5, 19]. We recursively replace repeating structures with

a rule. When two or more similar nodes are found, those are

re-written as a single parametric rule.

To perform this transformation, each pairs of the nodes

are first compared. Two nodes are considered similar if they

have the same operation and similar children, regardless of

their numerical parameters (i.e. size values). Formally, as

shown in Eq. 10, rα and rβ can be re-written as a parametric

rule rφ such that

{
rα → split(d){s1 : r1|...|sk : rk}
rβ → split(d){sI : r1|...|sK : rk}

⇔
rφ(x) → split(d){x1 : r1|...|xk : rk}

(10)

Now a single split rule is to be invoked by changing the

values of the parameter vector x = (x1, x2, ..., xk). This

transformation is guaranteed to losslessly preserve the lay-

out of the scopes.

After each transformation, the number of rules is

changed by the reduction of repeated rules as

|R|t = |R|t−1 + 1− θ(ψ + 1) (11)

where |R|t is the total number of rules at the iteration t,
|R|t−1 the total number of rules before the transformation,

θ the number of occurrences of the rule and ψ the number

of child rules. From Eq. 11, we note that the more similar

rules exist, the more efficient the rule inference will be at

reducing the total number of rules. In order to produce sim-

ilar rules, the split tree should be as consistent as possible.

Also, the more child rules ψ, the smaller the total number

of rules |R|t with respect to |R|t−1.

Comparing two nodes in the tree implies comparing their

children. In order to avoid traversing the tree multiple times,

the nodes are compared in a bottom-up fashion. First, only

nodes whose children are insert operation are compared

and replaced by production rules if possible. Later, nodes

whose children are insert or production rules are consid-

ered until it is not possible to create any new production

rule. Note that the parameters of the child rules are carried

over the parameter vector of the newly inferred rule.

4.2. Compression

The rule set R is optimized for the smallest number of

rules following the Minimum Description Length (MDL)

principle by solving for

argmin
α,bp,bh

(|R|) (12)

where R is a rule set describing the input façades inferred

by the method given in Sect. 3.3 to Sect. 4.2 , α, bp and bh
are the parameters defined in Eq 3.

4.3. Comparing façades

Retrieval and clustering are two application examples

for comparing façades. More formally, comparing façades

means finding an adequate distance function δ as

δ : R×R → R
+ (13)

As all façades of the same style are similar and share visual

features, using a feature-based distance would be inappro-

priate. We propose two different distance measurements.

The first is based on an MDL paradigm, while the second is

a powerset-based distance derived from the parse trees.

The MDL-based approach measures the similarity of

façades in terms of their common rules. As [7] we define

that two façades A and B are more similar than A and C if

|RA ∪RB|
|RA|+ |RB| <

|RA ∪RC |
|RA|+ |RC | (14)

where |RA| is the number of rules used to describe façadeA
after compression. We create a histogram of the frequency

of rules shared by two façades and use a χ2 as an appropri-

ate distance. We refer to this distance as δcommon.

In the second approach, we compare the binary split

trees. To this end, we consider the powerset PS(O∪L) of

the set of operations O and asset labels L. For each façade

parse tree, we draw a histogram which reflects the number

of the elements of PS(O ∪ L) and use a χ2 as a distance

measure. We refer to this distance as δpowersets.

4.4. Virtual façade synthesis

In this section, we show how to create new, non-existent

façades from a set of real building façades in the same style.

To build virtual cities, experts manually model a few typi-

cal buildings and relax their parameters by assigning ranges

from which the parameters are randomly drawn. This ap-

proach is inspiring since it produces valid buildings as the

structures are not altered, and yet it delivers a good illusion

of diversity.

At the end of the production rule generation, we have a

set of parametric rules, each dependent on one or more pa-

rameter vectors x. Each façade of the input set is identified

by a starting rule and a parameter vector. The starting rules

correspond to rules that split the whole façade, generally

into floors and balcony layout. Each of these starting rules

will then call the hierarchy of rules describing the struc-

ture of the façade. The parameter vectors specifies all the

sizes used in the rules. To generate a new façade, we in-

stantiate the starting rule with a new set of parameters. By

doing so, we sample the parameter space while preserving
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Figure 3. Distance matrix for the ECP2011 and Graz2012 datasets,

re-ordered according to its dendrogram (log scale). Some of the

associated labellings are shown on the right.

the structure. We have to make sure the new parameters will

be consistent, i.e. it is important to preserve the correlations

between the different vector variables. Assuming these pa-

rameters follow Gaussian distributions, the correlations are

discovered by applying a PCA on the parameter vector set.

5. Evaluation
In this section, we evaluate the compression, façade re-

trieval and virtual façade generation. Further we discuss the

losslessness and computational cost of the rule inference.

5.1. Experimental setup

In our setup we evaluate on two different datasets. First,

the ECP2011 façades dataset [24] comprises 104 labelled

images taken in rue Monge, a street in Paris. The archi-

tecture is representative for Haussmannian style, which is

also found in other cities like Buenos Aires or Brussels.

Second, a subset of Graz2012 [20] is selected, which con-

sists of 30 annotated façades in Gruenderzeit style, which is

widespread in Germany and Austria.

5.2. Losslessness and computational cost

Each step of the grammatical inference algorithm is per-

fectly lossless. In fact, one can regenerate the original la-

belled image by replacing the assets by colour patches.

As shown in Fig. 5, the computational cost of the infer-

ence algorithm (i.e. parsing, n-ary split compression, rule

inference and data collection for statistics) is linear with re-

spect to the number of input façades. This is a very impor-

tant property, as it shows the inference algorithm scales up

to the size of whole cities. Our implementation of the in-

ference algorithm takes about 32 ms per façade on a single

core of an Intel Core i7 930. Our method works online and

is applicable in practice to model whole cites. A new façade

can be added to the dataset at a linear cost. Finally, all steps

in the inference algorithm can be parallelized as well.
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for semantic façade retrieval. The powersets distance better cap-

tures the structural similarities over common rules distance.

5.3. Compression

Our findings indicate that the parameters are robust for a

large range. For example, for ECP2011 the minimal number

of inferred rules is 68, and is found for all values of α ∈
[0.25, 1.0], bp ∈ [0.0625, 0.5] and bh ∈ [0.125, 1.0]. In the

results shown in this section, we use parameters α = 0.6,

bp = 0.25 and bh = 0.5.

The growth of the number of inferred rules with re-

spect to the number of input façades is shown in Fig. 5 for

ECP2011 and Graz2012. We can reduce the number of rules

using compression by two orders of magnitude (notice the

logarithmic scale). Especially, the more regular ECP2011

dataset shows a clear drop in rule growth. This shows that

the core logic principles of the Haussmannian style can be

explained after examining about 20 façades.

However, we also see that in addition to core principles

within a style, exceptions are the rule. This translates to

a continual growth of the number of rules in Fig. 5 when

new façade samples are added. In the Graz2012 dataset, a

large number of rules are ony used once. Further investiga-

tions would elucidate whether this stems from architectural

diversity (needed for all applications) or annotation noise.

5.4. Façade comparison

The goal of façade retrieval is to compare a query facade

to the set of known façades and determine the most similar

ones. In our scenario we are not comparing appearance or

the sizes of architectural elements, but the procedural layout

of the façade. It is our goal to group façades which have the

same layout in terms of floors, window columns, balconies

and door placement.

Following the two distance measures δcommon and

δpowersets defined in Sect. 4.3, we evaluated a façade re-

trieval and clustering on the datasets1. Creating a ground

truth for measuring distances is a tedious task due to the

1Examples of retrieval are shown in the supplementary material.
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number of pairs to evaluate (1042 for the ECP2011 dataset).

We defined a gold standard distance function as the number

of architectural changes in the number of floors, window

columns, door placement and location of running balconies.

We manually annotated each façade with its related data2.

For retrieval, we evaluate the distance measures δcommon

and δpowersets and count if the ground truth façades with

no architectural changes (deemed identical) are retrieved

in the top-K ranking. This measure is typically known in

identification retrieval as the Cumulative Match Character-

istics (CMC) [16] and shows how many retrieved results to

look at before finding the desired result.

Optimizing the parameters in Eq. 3 in order to maximize

this CMC retrieval score at rank k = 20 for the ECP2011

dataset gives α = 0.5, bp = 0.0625 and bh = 0.125.

In Fig. 4, we compare the two methods detailed in

Sect. 4.3. Using the powerset method, we see that retriev-

ing the exact instance within k = 1 has a mean expecta-

tion accuracy of 87% whereas within k = 2 all the cor-

rect façades are retrieved. The common rule approach does

not yield such good results in comparison (56% at k = 2).

This strongly supports our claim that different representa-

tions are suitable for different applications.

For clustering, we use the distance measure δpowersets

and can show distinct groups between and within each of the

façade datasets for Haussmannian and Gruenderzeit styles,

as indicated by the dendrogram and the linked heat maps as

shown in Fig. 3. We can see that the distance measurement

effectively accounts for structural changes. The distinction

between the two styles is clear due to the differences in the

frequency of asset types. For instance, shops and balconies

are more common in Haussmannian. Consequently, the two

logics can be automatically separated and hence two style

grammars can be inferred.

5.5. Virtual façade synthesis

For virtual façade synthesis, the quality of the sampling

improves when the number of parameter vector instances

2The ground truth annotation is available on the author’s website.
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Figure 6. Rows correspond to different façade structure type (i.e.

different starting rules), columns correspond to different σ values

which influence parameter variations.

associated with each rule increases. Hence, the optimiza-

tion of the grammatical inference for virtual façade syn-

thesis follows the same objective function as for compres-

sion (see Eq. 12). Examples of virtual façades are shown

in Fig. 6. Notice the greater variance of the door position,

heights of the balconies and roof, in contrast to the variance

of the width of windows. Here textures and colours were not

randomized to emphasize the structural changes only. Stiny

et al. [23], Mitchell [15], and Wonka [27] have developed

an ontology for architecture. We were able to judge how

well shape grammars are suited for capturing a set of real

examples from a style by evaluating compression, compari-

son and synthesis. The generated rule set for Haussmannian

summarizes the main features of the style. The most fre-
quent rules correspond to: 7 floors (including the ground

and roof floor), 4 window columns, running balconies on

the 2nd and 5th floors and shops on the ground floor.
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6. Conclusion

In this work we show that procedural models provide a

much larger flexibility than pure mesh-based or semantic

labelled representations by enabling compression, façade

comparison and new virtual façade synthesis. Our method

starts by a binary split procedure on labelled image to cre-

ate parse trees and consequent procedural rule sets. The

final grammar models are optimized on the requirements

for compression and virtual synthesis (minimum number of

rules inspired by MDL) and retrieval (best ranking perfor-

mance inspired by bag-of-words models).

Our evaluations confirm that a single grammar model

is not enough. The optimization results for compression

and retrieval produce different models with different perfor-

mances. In case of retrieval the performance nearly doubles

with a more tailored grammar model. In all, our method

removes the need for manual expert work and cuts time to

build a procedural façade model from days to milliseconds.

The benefits of our procedural knowledge can be used

to highlight the atypical parts in a façade and automatically

complete occluded areas. Also the generated grammar rules

could be translated to human language to teach architectural

principles to humans.

Future work entails lifting the process to 3D and include

depth as well as entire buildings into the grammar models.

We will also investigate improving noisy semantic image

labelling methods with the inferred grammar rules and build

joint labelling and grammar inference methods. Finally, the

answer to the title is yes.
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tures using a formal grammar and RjMCMC. DAGM, 2006.

2
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