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Abstract

This paper extends to surfaces the multi-scale approach
of edge detection on images. The common practice for de-
tecting curves on surfaces requires the user to first select the
scale of the features, apply an appropriate smoothing, and
detect the edges on the smoothed surface. This approach
suffers from two drawbacks. First, it relies on a hidden
assumption that all the features on the surface are of the
same scale. Second, manual user intervention is required.
In this paper, we propose a general framework for auto-
matically detecting the optimal scale for each point on the
surface. We smooth the surface at each point according to
this optimal scale and run the curve detection algorithm on
the resulting surface. Our multi-scale algorithm solves the
two disadvantages of the single-scale approach mentioned
above. We demonstrate how to realize our approach on two
commonly-used special cases: ridges & valleys and relief
edges. In each case, the optimal scale is found in accor-
dance with the mathematical definition of the curve.

1. Introduction
3D feature curves on surfaces carry important informa-

tion regarding the shape of the object. Therefore, a lot

of effort has been devoted to charactering curves and de-

tecting them. Examples of types of curves include ridges

& valleys [19], parabolic curves [8], zero-mean curvature

curves [8], demarcating curves [9], and relief edges [10], to

name a few. Each type of curve is used to detect a different

3D feature. Curves on surfaces are equivalent to edges in

images, which are basic low-level features in images. Con-

sequently, 3D curves are inherently important in 3D shape

analysis.

In images, each edge is associated with a scale. This

scale is related to the image gradient; the steeper and

stronger the edge, the smaller the scale. This is because

steep edges are thinner, occupying a smaller area in the im-

age than fuzzy moderate edges. This concept exists also in

3D curves on surfaces. For instance, the eye of the horse in

Figure 1 has a smaller scale than its harness.

(a) Smallest-scale curves (b) Average-scale curves

(c) Large-scale curve (d) Our multi-scale curves

Figure 1. The benefit of using multi-scale curves. When relief

edges [10] are detected using a single scale, some features are

missed and others are inaccurate (a)-(c). Conversely, when using

multiple scales, the detected curves are more correct (d).

As illustrated in Figure 1, no single scale suffices to cap-

ture all the features. If the scale is too large, fine details

are missed. On the other hand, if the scale is too small,

coarse features are localized inaccurately and false features

appear. However, most state-of-the-art curve detection al-

gorithms use a single scale [1, 5, 9, 10, 19]. Moreover, the

user is required to manually choose the “correct” scale.

Our goal is to propose a general framework for automat-

ically estimating the optimal scale at each point on the sur-

face. This general scheme can then be applied to every type

of 3D curve, assuming it can be defined by the curvature and

its derivatives. Hence, our technique not only eliminates the

needed user intervention, but is also able to detect feaures

of different scales on a single object.

A couple of algorithms address scale selection. Pauly

et al. [20] propose a scheme that is designed for a single

type of curves, defined as the loci of points whose curvature

variation is persistent over all scales. It cannot be applied

in a straightforward manner to other types of curves. Luo et

al. [14] propose a method that is independent of the curve
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type. Rather, they essentially apply multi-scale smoothing

to the object, hopefully leaving the surface features intact.

However, the scale must be proportional not only to the sur-

face features, but also to the curve type. When the latter is

not taken into account, the extracted curve might be inac-

curate. Moreover, their approach is quite slow (might take

hours), whereas ours takes only a couple of minutes.

Our technique is inspired by the scale-selection theory

developed by Lindeberg [13] for images (on which SIFT is

based). We extend this theory to three dimensions. Given a

definition of a curve type, we show how to calculate the op-

timal scale directly from the definition. Briefly, every curve

type is associated with a function,whose value indicates the

strength of the feature. This function typically depends on

the surface curvature and its derivatives. We show how to

select a parameter, in order for this function to have a single

maximum over the range of scales. We define the scale at

which the maximum is obtained as the optimal scale. Using

this local optimal scale, the surface is smoothed in a multi-

scale manner. On this surface, the curves are detected, uti-

lizing the original curve detection algorithms.

We demonstrate the benefit of our approach by applying

it to two popular types of curves: ridges & valleys and relief

edges. We show that our curves outperform their counter-

parts computed with a manually-selected single scale, both

in terms of accuracy and in terms of robustness to noise.

This is especially evident in objects having features of sev-

eral scales.

The paper is structured as follows. Section 2 provides the

essential background. Section 3 formally defines the notion

of optimal scale. Section 4 describes the algorithm for com-

puting the optimal scale at every point. Section 5 applies the

general method to two specific cases and demonstrates our

results. We conclude in Section 6.

2. Background

This section describes the background on curve detection

on surfaces and on multi-scale processing on surfaces.

Curves on surfaces: Curves on surfaces can be classified

as view-dependent or view-independent. View-dependent
curves depend not only on the differential geometric proper-

ties of the surface, but also on the viewing direction [1, 5, 7].

They change whenever the camera changes its position or

orientation. View-independent curves depend solely on ge-

ometric properties of the surface [6, 8, 9, 10, 16, 19]. Our

approach is general and applies to both categories of curves.

For demonstration, we apply our approach to two types of

view-independent curves. The first is ridges & valleys [19],

which are the extrema of principal curvatures and the sec-

ond are relief edges [9, 10], which are the loci of zero cross-

ings of the curvature in the edge direction.

Mutli scale processing of surfaces: Multi-scale process-

ing of surfaces can be divided into two separate, yet related,

tasks. The first is the creation of scale space, which si-

multaneously represents the surface at different scales. The

second is the optimal scale selection, which automatically

selects the scale that best represents the surface locally.

1. Scale space representation: Scale space can be intu-

itively thought of as a collection of smoothed versions of

the original surface. While in images, which are defined

on a regular grid scale space, smoothing is a matter of con-

sensus [13], for surfaces there are many ways to perform

smoothing [3, 11, 17, 20, 21].

Formally, given a surface S(u, v) : R2 → R
3, its scale

space representation is

S(u, v, t) : R2 → R
3,

where t is the scale parameter, which is proportional to the

amount of smoothing applied to the object. In our work,

we use the diffusion-based smoothing of [23], though other

methods could also be used.

2. Optimal scale selection: In images, the optimal scale

selection was developed for edge detection and point-based

features by Lindeberg [13]. He proved that a function of the

image spatial derivatives, which is normalized in a certain

way, obtains a single maximum in scale space. The scale at

which the maximum is obtained is termed the optimal scale.

Formally, let g : R2 → R be an image, L(x; t) be its

scale space representation, and δxk be its kth derivative.

Then, the γ-normalized function of the derivatives of the

image, defined as

tγ/2f(δxkL(x; t)) (1)

obtains a single maximum at the optimal scale to. The func-

tion f and the kth derivative depend on the desired feature.

Optimal scale for surfaces was mostly used for interest

point detection. At these points, a function of some sur-

face properties, normalized by the scale parameter, obtains

a maximum both in the spatial and in the scale domains.

These properties can be either normals [4], curvatures [22],

or functions of curvatures [18]. These SIFT-like features

are applied together to photometric and geometric features

in [3].

A different approach, to which our method belongs, ex-

plicitly chooses a region on the surface, where the variation

of some surface property is small. For instance, [20] com-

pute the ratio between the eigenvalues; [14] compute the

area with the minimal descriptor length; [12] compute the

optimal size of the support region for computing surface

normals.

3. Definition of the Optimal Scale
Intuitively, the optimal scale at point p is the scale at

which the likelihood that a curve passes through p is max-
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imal. Therefore, we consider the likelihood to be propor-

tional to the curve strength. However, the more smoothing

applied to the surface, the weaker the curves become. To

compensate for this, the strength is normalized by a func-

tion of the scale. Hence, the optimal scale is reformulated

as the scale at which the normalized curve strength obtains

a maximum in scale space.

Definition: Let curve c have an associated strength func-

tion f(K), which depends on the curvature and the curva-

ture derivatives K. Let t be the scale parameter, which is

related to the amount of smoothing applied to the surface.

Let f(K(t)) be the result of applying f to the smoothed

surface. Then, the optimal scale sc of curve c is defined as

the scale at which the function obtains a maximum:

sc = argmax
t

tγf(K(t)), (2)

where tγ is the normalization coefficient, similar to what is

used in Equation (1). We denote the expression tγf(K(t))
as the normalized function.

The strength function f(K(t)) monotonically decreases

with scale, since as the surface becomes smoother, the fea-

tures appear less prominent. Conversely, tγ monotonically

increases with scale. We should therefore choose γ cor-

rectly, so as to ensure a single maximum of the normalized

function tγf(K(t)) in Equation (2). This single-maximum

property is proved in Section 5 for two commonly-used spa-

tial curve types: ridges & valleys and relief edges.

To get a feeling why this is true, recall that a surface can

be presented locally, at every point on the surface, as a third

degree polynomial (the Monge form) defined on the point’s

tangent plane. The surface curvature is proportional to the

polynomial second derivative. According to Equation (2),

the normalized second derivative obtains a single maximum

in the scale space. Therefore, the surface curvature should

also obtain a maximum in scale space.

Note that in featureless areas, the feature strength is zero

for all scales. Thus, the optimal scale (the maximum) is

undefined there. However, since there exist no curves in a

featureless region and our goal is to detect curves, any scale

chosen is valid and our definition holds.

4. Multi-Scale Curve Detection

The goal of this section is to describe an algorithm that

detects the curves, given the definition of the optimal scale,

described above. Our algorithm consists of three steps.

First, we compute the optimal scale at every point on the

surface. This computation depends on the type of curve

we want to detect, and specifically on its corresponding

strength function f . Second, we create a new surface, where

each point is smoothed according its optimal scale. Obvi-

ously, this step does not depend on the type of curves. On

this smoothed surface, the curves are finally computed us-

ing their original detection algorithms. This is in contrast

to the regular curve detection algorithms, which perform a

uniform smoothing on the whole surface, prior to detection.

Computing the optimal scale at every point: For points

with features, we apply Equation (2) as is and obtain the

optimal scale. For featureless points, any value of scale is

valid, and yet we need to choose a single scale. Since our

goal is to produce the optimally-scaled surface, the scale

should be a continuous function over the surface. We there-

fore require that the following conditions hold:

1. The scale at a point with high strength is equal to the

solution of Equation (2).

2. The scale changes smoothly along the surface.

Formally, the first condition is a simple equality con-

straint. The second condition is realized by requiring that

the weighted Laplacian of the scalar scale function, defined

on the surface, is zero. These two conditions are combined

into a system of linear equations, as follows.

Let p be a point on the surface and ti(p) be the scale

that solves Requirement 1. The final scale t(p) is found by

solving the following system:

t(p) = ti(p)

w(p)Δt(p) = 0,
(3)

where w(p) is a weight function inversely proportional to

the strength at p and Δ is the Laplacian. We define w(p)
as 1/(1 + af), where f is the strength function value at the

point and a is chosen so that afmax = 9.

In our work, we assume that the surface is represented

by a triangular mesh. The Laplacian Δ of a scalar function

t at point p on a mesh is calculated as in [15]:

Δt(p) =
1

2A

∑
j∈N(p)

(cot(γj) + cot(δj))(t(p)− t(pj)),

(4)

where N(p) is the set of neighbors of p on the mesh, A is

the Voronoi area of p, and γj and δj are the angles opposite

to ppj (see Figure 2). We solve the system of equations (3)

with an SVD-based solver [2].

Creating an optimally-smoothed surface: After the opti-

mal scale at each point has been computed, we create a sur-

face in which each point is smoothed to its optimal scale.

This is done as follows. First, the surface is smoothed uni-

formly for each scale, using [23]. For each of these surfaces,

we maintain the locations of its vertices. Next, we create a

surface for which the coordinates of every vertex are taken

from the surface of its corresponding scale. Finally, the re-

sulting surface is smoothed in order to remove artifacts.
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Figure 2. Notations of Equation (4). The Laplacian Δ of a scalar

function t at point p on a mesh is a linear combination of the values

of t on the neighbors pj of p.

5. Specific Cases
In this section we demonstrate how to apply our method

to commonly-used curves: ridges & valleys and relief

edges. We show how to choose the strength function f and

the normalization coefficient γ from Equation (2), which

are used in the first step of our algorithm (Section 4).

Recall that the normalization coefficient γ should be cho-

sen such that to ensure a single maximum of the normalized

strength function. In order to simplify the task, we make

three assumptions. First, we make the standard assumption

that the surface in the curve’s neighborhood is a function

defined on the tangent plane, i.e. the surface is defined by

s(x, y). Second, we assume that s(x, y) is constant along

the curve, i.e. the surface can be modeled locally by a 1D

function. For example, if the curve has direction y, then

s(x, y) ≡ s(x). In other words, we assume that s(x, y)
is locally developable in the vicinity of the curve. Third,

we make the commonly-used assumption that the smooth-

ing process can be approximated by convolving the function

with a Gaussian. Our experiments show that this approxi-

mation is sufficiently accurate.

Having made these assumptions, we perform the follow-

ing general steps for finding γ. For each curve type we need

to realize these steps differently.

1. Choose the strength function.

2. Choose a 1D function s(x) that represents the surface

locally.

3. Derive the expression for the scale at which the nor-

malized strength obtains a maximum. This maximum

is the optimal scale.

4. Choose γ values for which the expression in step 3 is

maximized by a single scale value.

5.1. Ridges & valleys

The most prevalent curves on surfaces are ridges & val-

leys [19]. They are similar to their geographical counter-

parts and usually indicate sharp changes in the surface ori-

entation. A ridge (valley) point is a point on a manifold,

where the positive (negative) principal curvature obtains

a maximum (minimum) along its principal direction. We

now discuss the four steps mentioned above, for the case of

ridges, whereas the case of valleys is similar.

Strength function f : The strength function f we use is the

maximal value of the curvature. This is the standard method

to measure the strength of ridges.

Surface representation: We approximate a ridge s(x; t0)
of scale t0 with a Gaussian of standard deviation σ =

√
t0:

s(x; t0) =
1√
2πt0

e−x2/2t0 .

The ridge point is obtained at x = 0.

We assume that the scale space is represented by convo-

lutions with Gaussians with smoothing parameter t:

s(x; t+ t0) = s(x; t0) ∗ g(x; t). (5)

Thus, the ridge s(x; t0) at scale t is

s(x; t+ t0) =
1√

2π(t0 + t)
e−x2/2(t0+t).

Optimal scale: We want to show that the normalized curva-

ture of s(x; t0) obtains a single maximum in scale space at

x = 0. First, we express the normalized curvature at x = 0
as a function of t and γ:

tγκ(x; t0 + t). (6)

Then, we take its derivative with respect to t and prove

that this derivative is equal to zero only at a single t. Let

us start with finding the expression for κ(x; t0 + t). The

curvature κ(x) of a curve s(x) is known to be:

κ(x) = − s′′(x)
(1 + s′(x)2)3/2

, (7)

where the derivatives are with respect to x.

We need to compute the derivatives of the surface (curve)

s′(x) and s′′(x). It is easy to see that the first derivative is:

s′(x; t0 + t) =
−x

t0 + t
· e
−x2/2(t0+t)√
2π(t0 + t)

and the second derivative is:

s′′(x; t0 + t) =

( −1
t0 + t

+
x2

(t0 + t)2

)
· e
−x2/2(t0+t)√
2π(t0 + t)

.

Substituting x = 0, we obtain

s′(0; t0 + t) = 0, (8)

s′′(x; t0 + t) =
−1

t0 + t
· 1√

2π(t0 + t)
=

−1√
2π(t0 + t)3/2

.

(9)

228228228



P
er

si
an

fi
g
u
ri

n
e

W
in

g
G

re
ek

fa
ce

D
o
g

m
o
d
el

(a) surface (b) small scale (c) large scale (d) our multiscale

Figure 3. Ridges and valleys on objects with various scales. When the chosen scale is small (b), the results are noisy. When the scale is

large (c), some features disappear. With our multi-scale approach (d), all the features are nicely captured and the curves are smooth. The

red circles indicate problematic areas.

Therefore, by substituting Equations (8)-(9) into Equa-

tions (7)-(6), we get that the value of the strength function

at x = 0 for different scales t and different normalization

coefficients γ is:

tγκ(x; t0 + t)

∣∣∣∣
x=0

=
tγ√

2π(t0 + t)3/2
. (10)

In order to check when Equation (10) obtains a maxi-

mum, we set its derivative with respect to t to 0:

d

dt
tγκ(x; t0 + t)

∣∣∣∣
x=0

= 0, or

γtγ−1

√
2π(t0 + t)3/2

− 3tγ

2
√
2π(t0 + t)5/2

= 0.

After some simple algebraic manipulations, we obtain an

equation for the optimal scale:

tmax = 2t0/(3− 2γ). (11)

Choice of γ: We conclude that when γ < 1.5, the optimal

scale is unique. In our experiments, we use γ = 1. We ob-

served that small changes of γ do not influence the results.

Results: Figure 3 shows ridges and valleys on objects con-

sisting of features of different scales. When the chosen scale

is small (b), the results are noisy. When we increase the

scale (c), the curves become smoother, but some features

disappear. We were unable to find a single scale that yields a

good trade-off between smoothness and detectability. Con-

versely, with our multi-scale approach (d), the curves are

smooth and even small details are nicely captured. See the
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(a) Input (b) fine scale (c) coarse scale (d) coarsest scale (e) multi scale

Accuracy: 85% 77% 42% 91%
Figure 4. Quantitative evaluation. The noisy cylinder has both fine and coarse valleys (a). The results of our multi-scale approach (e)

outperforms those of the single-scale approach (b-d). The accuracy measure is given underneath the images.

supplementary for additional results.

To provide quantitative evaluation, we created a syn-

thetic example, for which we can calculate the ground truth.

It is a cylinder with ridges and valleys of a couple of dif-

ferent scales, to which we added noise, as shown in Fig-

ure 4. We ran the single-scale algorithm using various sin-

gle scales and our multi-scale algorithm. When the (single)

scale is small, the coarse features are not detected accu-

rately. When it is large, the fine features disappear. With our

multi-scale approach, the features are nicely captured. In

terms of error, we computed the percentage of the ground-

truth valleys for which there exist real valleys within a pre-

defined distance. In practice, we counted the number of

faces with ground truth valleys for which there exists a face

with a detected valley within 0.5% of the cylinder radius.

While the accuracy of the multi-scale results is 91%, for the

single scale algorithm the results are between 79% for the

finest scale to 42% for the coarsest, The results are: Scale 0

(finest): 79%, Scale 1: 85%, Scale 2: 77%, Scale 3 (coars-

est): 42%, and Multiscale: 91%.

5.2. Relief edges

Relief edges are defined as zero crossings of the curva-

ture in the direction of the step edge model that best ap-

proximates the surface locally [10]. They run on the slopes

between ridges and valleys and are parallel to them.

Strength function f : As a strength function f , we employ

the curvature derivative with respect to the arclength λ in

the edge direction, as proposed in [10]. Thus,

f =
∂κ(x; t0)

∂λ
.

Surface representation: A relief edge is represented, by

definition, by a smoothed step edge. Let s(x; t0) be a relief

edge of an initial scale t0 (an ideal step edge smoothed with

a Gaussian of standard deviation σ0 =
√
t0):

s(x; t0) =
1√
2πt0

∫ x

−∞
e−u2/2t0du.

Optimal scale: The proof is similar to that in Section 5.1.

We want to show that the normalized curvature derivative of

s(x; t0) obtains a single maximum in scale space at x = 0.

First, we express the normalized curvature at x = 0 as a

function of t and γ:

tγf = tγ
∂κ(x; t+ t0)

∂λ
. (12)

Then, we take its derivative with respect to t and prove

that it is equal to zero only at a single t. The curvature

derivative is:
∂κ

∂λ
=

∂κ

∂x
· ∂x
∂λ

. (13)

We now show how to compute ∂k/∂x and ∂k/∂λ and

then combine them. To compute ∂k/∂x, we take the deriva-

tive of the curvature defined in Equation (7). The scale

space is generated using a convolution with a Gaussian

(Equation (5)):

s(x; t+ t0) =
1√

2π(t0 + t)

∫ x

−∞
e−u2/2t0+tdu.

Then, the derivative of s(x) with respect to x is

s′(x; t0 + t) =
e−x2/2(t0+t)√
2π(t0 + t)

and the second derivative is

s′′(x; t0 + t) =
−x

t0 + t
· e
−x2/2(t0+t)√
2π(t0 + t)

.
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(a) surface (b) small scale (c) large scale (d) our multi-scale

Figure 5. Relief edges on objects having various scales. When the scale is small (b), the resulting single scale curves are noisy. When

the scale is big (c), the single scale curves are smooth but not accurate enough. For example, they do not capture the head of the dog in the

top row and create topological mistakes in the arm on the bottom row. Our multi-scale relief edges are more accurate.

We now proceed to compute the curvature κ(x)

κ(x) =
−xe−x2/2(t0+t)

(t0 + t)3/2
√
2π
· 1

[1 + e−x2/(t0+t)/(2π(t0 + t))]3/2

and the curvature derivative

∂k

∂x

∣∣∣∣
x=0

=
−e− x2

2(t0+t)

(t0 + t)
√

2π(t0 + t)
· 1[

1 + e
− x2

t0+t

2π(t0+t)

]3/2
∣∣∣∣
x=0

=
2π

(1 + 2π(t0 + t))
3/2

.

After having computed ∂κ/∂x of Equation (13), we now

derive ∂x/∂λ:

∂λ =
√

∂x2 + ∂y2,
∂λ

∂x
=

√
1 + s′(x)2,

∂x

∂λ
=

1√
1 + s′(x)2

.

Equation (13) now becomes

∂κ

∂λ
=

2π

(1 + 2π(t0 + t))
3/2

· 1√
1 + s′(x)2

=

2π

(1 + 2π(t0 + t))
3/2
·

√
2π(t0 + t)√

1 + 2π(t0 + t)
=

4π2
√
t0 + t

(1 + 2π(t0 + t))2
.

In turn, Equation (12) now becomes

tγ
∂κ(x; t+ t0)

∂λ
= tγ

4π2
√
t+ t0

(1 + 2π(t+ t0))2
. (14)

Equation (14) specifies the value of the strength function

at x = 0 for different scales t and different normalization

coefficients γ. We next find when it obtains a maximum.

Taking the derivative with respect to t and setting it to zero,

we obtain a quadratic equation whose roots are:

tmax = (A±B)/C, (15)

where

A = 2γ − 6πt0 + 8πγt0 + 1,

B = (4γ2 + 40πγt0 + 4γ + 36π2t20 − 12πt0 + 1)1/2,

C = 4(3π − 2πγ).

The derivation of Equation (15) is given in Appendix A.

Choice of γ: We show in Appendix A that (A − B)/C is

always negative and thus irrelevant, whereas (A+B)/C is

always positive for γ < 1.3. Hence, for γ < 1.3 the optimal

scale is unique.

Results: Figure 5 depicts relief edges on surfaces having

features of various scales. It compares two single-scale re-

lief edges with our multi-scale edges. The results of the

large scale were found to be the best over all scales. Even

though the large single-scale result of the Iron Age stamp is

pretty, the head is portrayed inaccurately. This is so, since

the depth of the relief varies, thus a single scale is insuffi-

cient. On the other hand, our multi-scale approach detects

the edges accurately. On the bottom row, our multi-scale

curves are much smoother than the best single-scale result,

when tested on the arm of the figurine from Figure 3. To re-

cap, our results are more accurate and smoother than those

produced by the single-scale approach.
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Additional benefit of our approach: In addition to the su-

periority of our approach in cases where the objects have

a variety of scales, it is also beneficial in the case when

objects have a single scale. While in all the single-scale

approaches, the user needs to manually select the scale pa-

rameter, in our approach no manual tuning is necessary.

6. Conclusion
This paper presented a framework for automatic estima-

tion of the optimal scale for curve detection on surfaces. It

can be applied to any curve type, as long as the curve has a

strength function based on the curvature and its derivatives.

This requirement is satisfied by most curve types.

Our experiments show that on objects composed of fea-

tures of various scales, the curves obtained by our method

outperform those computed by the original single-scale al-

gorithms. On objects that consist primarily of features of a

single scale, the benefit of our algorithm is that it does not

require manual parameter tuning.
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A. Maxima of normalized curvature derivative
of a step edge

Here, we find the values of t at which Equation (14) ob-

tains maximum. These are the values at which the derivative

of Equation (14) is equal to zero.

d

dt

tγ
√
t+ t0

(1 + 2π(t+ t0))2
= 0

γtγ−1(t+ t0)
1/2

(1 + 2π(t+ t0))2
+

tγ

2(t+ t0)1/2[(1 + 2π(t+ t0))2]
−

2π2tγ(t+ t0)
1/2

[(1 + 2π(t+ t0))3]
= 0.

After several simple manipulations:

γ(t+ t0)

1
+

t

2
− 2π2t(t+ t0)

[(1 + 2π(t+ t0))]
= 0, or

2π(2γ−3)t2+(2γ−6πt0+8πγt0+1)t+2γt0(2πt0+1) = 0.

This is a quadratic equation whose roots ti are

ti = [2γ−6πt0±(4γ2+40πγt0+4γ+36π2t20−12πt0+1)1/2+

8πγt0 + 1]/(4(3π − 2πγ)).

A positive solution to this equation always exists for

0 < γ < 1.3.
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