
Compressed Hashing

Yue Lin∗ Rong Jin† Deng Cai∗ Shuicheng Yan‡ Xuelong Li§

∗State Key Lab of CAD&CG, College of Computer Science, Zhejiang University, Hangzhou, China
†Dept. of Computer Science & Eng., Michigan State University, East Lansing, MI, U.S.A.

‡Dept. of Electrical and Computer Engineering, National University of Singapore, Singapore
§OPTical IMagery Analysis and Learning, Chinese Academy of Sciences, China

linyue29@gmail.com, rongjin@cse.msu.edu, dengcai@cad.zju.edu.cn, eleyans@nus.edu.sg, xuelong li@opt.ac.cn

Abstract

Recent studies have shown that hashing methods are

effective for high dimensional nearest neighbor search.

A common problem shared by many existing hashing

methods is that in order to achieve a satisfied perfor-

mance, a large number of hash tables (i.e., long code-

words) are required. To address this challenge, in this

paper we propose a novel approach called Compressed

Hashing by exploring the techniques of sparse coding

and compressed sensing. In particular, we introduce a

sparse coding scheme, based on the approximation the-

ory of integral operator, that generate sparse represen-

tation for high dimensional vectors. We then project

sparse codes into a low dimensional space by effectively

exploring the Restricted Isometry Property (RIP), a key

property in compressed sensing theory. Both of the the-

oretical analysis and the empirical studies on two large

data sets show that the proposed approach is more ef-

fective than the state-of-the-art hashing algorithms.

1. Introduction

Nearest Neighbor (NN) search is one of the most es-

sential problem in machine learning and has found ap-

plications in many computer vision tasks [19, 14]. Given

the intrinsic difficulty of exact nearest neighbor search,

many hashing algorithms are proposed for Approximate

Nearest Neighbor (ANN) search [5, 6, 21]. The key idea

of these approaches is to generate binary codewords for

high dimensional data points that preserve the similarity

between data points.

Many hashing algorithms found their theoretic root

in random projection, which is proved to be an effective

method for preserving pairwise distances. One problem

with most random projection theories is that, in order

to achieve a small error in distance preservation, a large

number of random projections are required. Even more

disturbingly, the number of required random projections

depends on the size of data set, making it less attractive

for large databases. For example, according to Jonson

Lindenstrauss Theorem [10], to preserve the pairwise

distances for a database of n data points, the number

of needed random projections is O(lnn/ε2), where ε
is the relative error in distance approximation. There-

fore, it is not a surprise the random projection based

hashing methods do not perform well for short codes.

To address this problem, several learning based hashing

methods are proposed. Most of these algorithms learn

the binary codes by exploiting the spectral properties of

the data affinity matrix. In spite of the success for rela-

tive small codes, these learning based approaches often

fail to make significant improvement as code length in-

creases [11].

In this paper, we propose a novel approach called

Compressed Hashing to address this challenge by ex-

ploring the techniques of sparse coding [8] and com-

pressed sensing [7]. The main idea is based on the Re-

stricted Isometry Property (RIP) [3], which states that

for any sparse vector, the random projection is able to

preserve the Euclidean distances between high dimen-

sional vectors with an overwhelming probability. It is

important to distinguish the RIP condition from Jonson

Lindenstrauss (JL) theorem. The probability in JL the-

orem is related to each vector, namely for any vector,

there is a chance for the property to be failed. As a re-

sult, to preserve the pairwise distance for all the data

points, the number of random projections has to be de-

pendent on the size of the database. In contrast, the prob-

ability in RIP condition is related to the random matrix,

namely nearly all random matrix generated by iid Gaus-

sian will be able to preserve Euclidean distance for all

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.64

444

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.64

444

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.64

446

data points. Because of this difference, the performance

guarantee delivered by RIP applies to all vectors, mak-

ing the number of random projections independent from

the size of the database.

Note that the RIP only applies to the sparse vectors.

In order to meet the sparse requirement in RIP, we use

a sparse coding scheme similar to [14] that generates

compact sparse codes for high dimensional vectors. The

sparse codes are generated based on the approximation

theory of integral operator and well preserve the rela-

tionship between vectors. Given the sparse codes, we

then explore the theory of compressed sensing [7] to

project the sparse codes into a low dimensional space,

and generate the hash codes based on the low dimen-

sional projection.

2. Related Work

Most hashing methods can be classified into two cat-

egories: the random projection based methods and the

learning based methods.

The most notable approach for random projection

based methods is Locality Sensitive Hashing [5, 1],

which offers a sub-linear time search by trying to hash

similar data points into the same entry of a hash table(s).

One drawback of many LSH approaches is that in order

to preserve the locality of the data points, they have to

generate long codewords, leading to large storage space

and high computational cost. Both entropy-based LSH

approach [16] and Multi-Probe LSH [15] are proposed

to reduce the storage limitation at the sacrifice of in-

creasing the query time. Moreover, several studies ex-

tend LSH from the Euclidean space to the Reproducing

Kernel Hilbert Space (RKHS) [12, 17].

A common problem of random projection based

hashing algorithms is that in order to achieve a satisfied

performance, they require a large number of hash tables

and long codewords. To address this limitation, many

learning based algorithms are proposed. Example algo-

rithms in this category include Spectral Hashing [21],

Unsupervised Sequential Projection Learning for Hash-

ing [19], Spherical Hashing [9], Kernel-based Super-

vised Hashing [13], Anchor Graph Hashing [14] and so

on. However, the learning based hashing algorithms of-

ten work well for short codewords but fail to make sig-

nificant improvement as code length increases [11].

3. Compressed Hashing

In this section, we will first describe the sparse coding

scheme, which is based on the kernel density estimation,

followed by the approach of projecting sparse vectors

into low dimensional space using compressed sensing

theory.

3.1. Sparse Coding using RBF Kernel

Our goal is to create the sparse representations that

preserve the relationship between the data points. Let

D = {x1, . . . ,xN} be a large database, where xi ∈ R
d

is a vector with d� 1 dimension. Assume xa and xb are

two data points inD. we consider the following measure

g(xa,xb) =
1

N

N∑
i=1

κ(xa,xi)κ(xb,xi) (1)

Here κ(x,x′) is a RBF kernel given by

κ(x,x′) = exp

(
−|x− x

′|2
2

2h2

)

Since g(xa,xb) defined in Eq.(1) can also be writ-

ten as g(xa,xb) = u
�(xa)u(xb), where u(x) =

1√
N
(κ(x,x1), . . . , κ(x,xN))�, we can use u(x) as the

representation of x. The main problem of using the rep-

resentation u(x) is its high dimensionality as the size

of u(x) is N , where N is the size of the database D.

We address this problem by exploring the concentration

inequality of integral operator [4].

Let H be the Reproducing Kernel Hilbert Space

(RKHS) endowed with the kernel κ(·, ·), and let |f |H =√〈f, f〉H be the norm defined inH. We define an inte-

gral operator L : H �→ H as

L[f](·) = 1

N

N∑
i=1

κ(xi, ·)f(xi) (2)

It is easy to see that

g(xa,xb) = 〈κ(xa, ·), L(κ(xb, ·))〉H
Based on the concentration inequality for integral op-

erator, we can approximate L by a low rank operator,

leading to a compact representation for data points inD.

More specifically, let x̂1, . . . , x̂m be m anchor points

generated from D. One can simply use random sam-

pling or k-means 1 to generate the anchor points [14]

and we will discuss this in our experiments.

Using the anchors, we approximate L by L̂

L̂[f](·) = 1

m

m∑
i=1

κ(x̂i, ·)f(x̂i) (3)

1The anchor points can be set to the cluster centers returned by the

k-means algorithm with cluster number m. There is no need to wait

the k-means converges and we can stop it after p iterations, where p is

a parameter (5 is usually enough).

445445447

As a result, we obtain a compact representation û(x) =
1√
m
(κ(x̂1, ·), . . . , κ(x̂m, ·))�. The following theorem

shows that with a high probability, for any xa and xb,

|u�(xa)u(xb) − û
�(xa)û(xb)| is small if m is suffi-

ciently large.

Theorem 1. Let L̂ be the integral operator constructed

based on m anchor points, as shown in Eq.(3). With a

probability 1− δ, for any xa and xb, we have

∣∣u�(xa)u(xb)− û
�(xa)û(xb)

∣∣ ≤ 2 ln(2/δ)

m
+

√
2 ln(2/δ)

m

The Theorem 1 can be directly derived from the

Lemma 2 in [18]. As indicated by Theorem 1, with ap-

propriate m, it is sufficient to represent each data point

x by

û(x) =
1√
m

(κ(x̂1,x), . . . , κ(x̂m,x))
�

Subsequently, we normalize û(x) by |û(x)|1 so that

the sum of entries in the vector representation is equal to

1, which leads to the representation of x

z(x) =
1∑m

i=1
κ(x̂i,x)

(κ(x̂1,x), . . . , κ(x̂m,x))
�

This normalization step makes all the vectors z more

comparable. More importantly, based on the observa-

tion that all vectors lying in a �1 ball, to preserve pair-

wise distance, it is sufficient to keep the largest entries

in vectors. More specifically, let hs : Rm �→ R
m be a

vector function, where the output of hs(z) is the vector

z with everything set to zero except for its first s entries

with the largest absolute values. Then, according to [7],

for any vectors z ∈ R
m in a �1 ball, i.e., |z1|1 ≤ 1 and

|z2|1 ≤ 1, there exists a constant C, independent from

z1, z2 and m, such that for any integer s > 0, we have

|(z1 − z2)− hs (z1 − z2)|2 ≤
C√
s+ 1

|z1 − z2|1 (4)

Note that we only need to keep a part of informa-

tion for each point, which leads to the sparse representa-

tion. It is this reduced requirement that makes it possible

to generate a small number of projections to accurately

preserve the distances between the vectors.

Based on Eq.(4), we are determined to keep the in-

formation of a small number of nearest anchors for each

point and we get the final sparse representation of x

z(x) =
1∑m

i=1
ψ(x̂i,x)

(ψ(x̂1,x), . . . , ψ(x̂m,x))
�

(5)

where

ψ(x̂i,x) =

{
κ(x̂i,x) xi ∈ S(x)

0 otherwise
i = 1, 2, ...,m

S(x) stands for the s nearest anchors of x among an-

chor points. It is important to note that the above sparse

coding scheme is also used by Anchor Graph Hashing

(AGH) [14]. AGH uses this coding strategy to speed

up the spectral analysis of the data while our motivation

is to generate sparse codes to meet the sparse require-

ment in RIP. In the next subsection, we show how the

approximate nearest neighbor search can be effectively

performed using these sparse vectors by exploring the

RIP condition.

3.2. Approximate Sparse Representation by
Random Projection

Given the sparse representation of the data points, our

next goal is to create binary codes that approximate the

distances between the sparse vectors. For any data point

x and its sparse representation z(x) ∈ R
m generated by

the proposed sparse coding scheme, we create a K-bits

code b(x) = (b1(x), . . . , bK(x))� by a linear hashing

method: it first projects z to a low dimensional space by

K linear operators {φi ∈ R
m, i ∈ [K]}, i.e., yi(z) =

φ�i z, i ∈ [K]; it then creates a binary codeword b(x)
for z(x) by thresholding each dimension by its median,

i.e.,

bi(x) =
1

2
(1 + sgn(yi(z(x)) − ȳi)), i ∈ [K] (6)

where ȳi is the median value in the vector φ�i z(xi), and

sgn(a) = 1 if a > 0 and −1 otherwise. We choose

{φi}Ki=1
randomly by drawing {φij , i ∈ [K], j ∈ [m]}

independently from a Gaussian distributionN (0, 1/K).
The detailed theoretical analysis is showed as follows.

We first present the Restricted Isometry Property of

random matrices as below.

Theorem 2. (Restricted Isometry Property)(inferred

from Lemma 3.1 in [2]) Assume K < m and let Φ be

a random matrix of size m ×K whose entries are i.i.d.

Gaussian with mean zero and variance 1/K . If s/m is

small enough and K = cs log(m/s), where c is a con-

stant independent of s, there exists a positive constant

δs < 1 such that with an overwhelming probability, we

have the following inequality hold for any z ∈ R
m with

at most s non-zero entries

(1 − δs)|z|22 ≤
m

K
|Φ�

z|2
2
≤ (1 + δs)|z|22

Below, we present the property of the random projec-

tion for sparse vectors, which follows directly from the

Theorem 2 and the inequality in Eq.(4). We now state

our main result.

446446448

Theorem 3. Assume K < m and let Φ ∈ R
m×K be

a random matrix whose entries are i.i.d. Gaussian with

mean zero and variance 1/K . Choose s
 m andK =
cs log(m/s), where c is a constant independent of s. Let

hs : Rm �→ R
m be a vector function, where the output

of hs(z) is the vector z with everything set to zero except

for its first s entries with the largest absolute values. Let

L = |Φ�hs(z1 − z2)|2, there exists a positive constant

δs < 1 such that with an overwhelming probability, for

any two vectors |z1|1, |z2|1 ≤ 1, we have

L ≥
√
K(1− δs)

m
(|z1 − z2|2 − C√

s+ 1
|z1 − z2|1)

L ≤
√
K(1 + δs)

m
(|z1 − z2|2 + C√

s+ 1
|z1 − z2|1)

Theorem 3 provides both lower and upper bounds for

the �2 norm of the difference between two sparse vec-

tors, which justify the random projection approach for

approximating the difference between sparse vectors in

a �1 ball. Algorithm 1 shows the steps of the proposed

algorithm.

3.3. Computational Complexity Analysis

Given N data points with the dimensionality d, the

computational complexity of Compressed Hashing in

the training stage is as follows:

1. O(pNmd): k-means with p iterations to generate m
groups (Step 1 in Alg. 1).

2. O(Nm(d+ s)): Generate sparse representation for data

points (Step 2 in Alg. 1).

3. O(NmK): Compute the embedding of the data (Step 3

in Alg. 1).

4. O(NK): Compute the hashing codes with respect to the

median values (Step 4 in Alg. 1).

As we can see, the overall computational complex-

ity of Compressed Hashing training is dominated by the

k-means clustering step, which is O(pNmd). In the

testing stage, given a query point, Compressed Hash-

ing needsO(m(d+ s)) to compress the query point into

a sparse representation and needs O(mK) to obtain the

binary codes.

4. Experiments

In this section, we evaluate our Compressed Hashing

(CH) algorithm on the high dimensional nearest neigh-

bor search problem. Two large scale real-world data

sets SIFT1M and GIST1M are used in our experiments.

Algorithm 1 Compressed Hashing

Input:

D = {x1, . . . ,xN}: the database;

K: the number of bits for hashing codes;

m: the number of anchor points;

h > 0: the kernel width used by RBF;

s: the number of nearest anchors in sparse coding;

1: Apply k-means to compute m cluster centers from the data

points inD, and use them as the anchor points V ∈ R
m×d.

2: Generate sparse representation Z ∈ R
n×m for data points

in D, based on the anchor points in V , using Eq.(5).

3: Generate linear projections Φ ∈ R
m×K by drawing Φj,k

from N (0, 1/K) independently. Compute the embedding

of data by Y ′ = ZΦ.

4: Compute the hashing code Y by thresholding Y ′i,k with

respect to the median ȳk.

Output:

The model:

The anchor points: {x̂i}
m
i=1, x̂i ∈ R

d;

The random projection matrix: Φ ∈ R
m×K ; Binary

hashing codes for the training samples: Y ∈ {0, 1}N×K

Both data sets contain one million image features. SIFT

feature is represented by a 128-dim vector and GIST fea-

ture is represented by a 960-dim vector. The data sets are

publicly available2.

For each data set, we randomly select 10k data points

as the queries and use the remaining to form the gallery

database. We use the same criterion as in [19], that

a returned point is considered to be a true neighbor if

it lies in the top 2 percentile points closest (measured

by the Euclidian distance in the original space) to the

query. For each query, all the data points in the database

are ranked according to their Hamming distances to the

query. We evaluate the retrieval results by the Mean Av-

erage Precision (MAP) and the precision-recall curve. In

addition, we also report the training time and the testing

time (the average time used for each query) for all the

methods.

4.1. Compared Algorithms and Settings

We evaluate our proposed Compressed Hashing

method by comparing with seven state-of-the-art meth-

ods for high dimensional nearest neighbor search: Lo-

cality Sensitive Hashing (LSH) [5], Kernelized Local-

ity Sensitive Hashing (KLSH) [12], Shift-Invariant Ker-

nel Hashing (SIKH) [17], Principal Component Analy-

sis Hashing (PCAH) [20], Spectral Hashing (SpH) [21],

Unsupervised Sequential Projection Learning for Hash-

ing (USPLH) [19], Anchor Graph Hashing (AGH) [14].

2http://corpus-texmex.irisa.fr

447447449

16 32 48 64 80 96

0.1

0.2

0.3

0.4

0.5

Code Length

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

LSH
KLSH
SIKH
PCAH
SpH
USPLH
AGH
CH

(a) SIFT1M

16 32 48 64 80 96
0.05

0.1

0.15

0.2

0.25

0.3

Code Length

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

LSH
KLSH
SIKH
PCAH
SpH
USPLH
AGH
CH

(b) GIST1M

Figure 1. The Mean Average Precision of all the algorithms on SIFT1M and GIST1M data sets.

Table 1. Training and testing time of all algorithms on SIFT1M and GIST1M data sets.

Method SIFT1M GIST1M

Training Time (s) Test Time (s) Training Time (s) Test Time (s)

K = 32 K = 64 K = 32 K = 64 K = 32 K = 64 K = 32 K = 64

LSH 0.3 0.6 1.1× 10−6 1.9× 10−6 1.4 2.1 2.7× 10−6 3.0× 10−6

KLSH 10.5 10.7 14.6× 10−6 16.2× 10−6 29.5 30.7 27.2× 10−6 38.0× 10−6

SIKH 1.1 2.3 3.4× 10−6 3.9× 10−6 1.8 3.4 13.9× 10−6 27.5× 10−6

PCAH 6.5 7.4 1.1× 10−6 2.0× 10−6 49.2 52.3 2.7× 10−6 3.0× 10−6

SpH 25.8 88.2 28.0× 10−6 101.9 × 10−6 65.3 130.8 40.2× 10−6 116.3 × 10−6

USPLH 234.1 484.8 3.1× 10−6 3.7× 10−6 1357.2 2732.0 5.3× 10−6 9.2× 10−6

AGH 144.7 184.2 55.7× 10−6 72.0× 10−6 242.5 279.4 83.7× 10−6 95.6× 10−6

CH 93.4 98.2 53.5× 10−6 54.4× 10−6 194.3 210.5 64.1× 10−6 71.5× 10−6

We implement LSH, PCAH by ourselves, and use the

codes provided by the authors for the algorithms KLSH,

SIKH, SpH, USPLH and AGH. To run KLSH, we use

the Gaussian kernel and sample 300 training points to

form the empirical kernel map. The bandwidth of Gaus-

sian kernel is set to 0.3. AGH with two-layer is used in

our comparison for its superior performance over AGH

with one-layer [14]. Both our CH method and the AGH

need an anchor-based sparse coding step and we use the

exactly same strategy. There are three parameters: the

number of anchor points (m), the number of iterations

(p) in k-means and the number of nearest anchors in

sparse coding (s). We empirically set m = 200, p = 5
and s = 50 for both algorithms. For both methods, the

Gaussian kernel width parameter h is empirically3 set to

be 0.3 on SIFT1M and 0.5 on GIST1M.

4.2. Experimental Results

Figure 1 shows the MAP curves of all the algorithms

on the SIFT1M and GIST1M data sets. We can see that

the random projection based algorithms (LSH, SIKH

and KLSH) have a low MAP when the code length is

short. As the code length increases, the performances

3We estimate h by randomly choose 3000 samples and let h equal

to the average of the pairwise distances.

of both the two methods consistently increases. On the

other hand, the learning based algorithms, such as SpH

and PCAH, have a high MAP when the code length is

short. However, they fail to make significant improve-

ments as the code length increases. Particularly, the

performance of PCAH decreases as the code length in-

creases. This is consistent with previous work [19] and

is probably because that most of the data variance is

contained in the top few principal directions so that the

later bits are calculated using the low-variance projec-

tions, leading to the poorly discriminative codes [19].

By combining the techniques of sparse coding and com-

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

LSH
KLSH
SIKH
PCAH
SpH
USPLH
AGH
CH

(a) SIFT1M

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

LSH
KLSH
SIKH
PCAH
SpH
USPLH
AGH
CH

(b) GIST1M

Figure 2. The precision-recall curves of all algorithms on

SIFT1M and GIST1M data sets for the codes of 64 bits.

448448450

pressed sensing, we successfully preserve the informa-

tion in the low dimensional space. As a result, the pro-

posed CH method achieves satisfied performances on

both data sets and almost outperforms its competitors

for all code lengths. Figure 2 presents the precision-

recall curves of all the algorithms on two data sets with

the code of 64 bits.

Table 1 shows both the training time and test time for

different algorithms on two data sets. Considering the

training time, USPLH is the most expensive to train. The

random projection based algorithms are relatively effi-

cient, especially the LSH. The proposed CH algorithm

uses similar but less training time than AGH due to its

fast process in converting the sparse vectors to binary

codes. Both of them spend most of the training time on

k-means step. In terms of the test time, LSH and PCAH

are the most efficient methods. Both of them simply

need a matrix multiplication and a thresholding to obtain

the binary codes. SpH consumes much longer time than

other methods since it needs to compute the analytical

eigenfunctions involving the calculation of trigonomet-

ric functions. The proposed CH method takes similar

test time with AGH. The most expensive part in CH is

to obtain the sparse representation for the query point.

5. Conclusion

In this paper, we have developed a hashing algorithm

for high dimensional nearest neighbor search by com-

bining the techniques of sparse coding and compressed

sensing. The key idea is to first generate compact sparse

codes based on the theory of density function estima-

tion for high dimensional vectors that preserve the rela-

tionship between the data points, and then project sparse

vectors into low dimensional space to preserve pairwise

distances by exploring the RIP condition. Empirical

studies on the large data sets show that the proposed al-

gorithm scales well to data size and significantly outper-

forms the state-of-the-art hashing methods in retrieval

accuracy. In the future, we plan to further explore an-

chors selection methods that are both effective and com-

putationally efficient for large data sets.

Acknowledgments

This work was supported by the National Ba-

sic Research Program of China(973 Program) under

Grant 2011CB302206, Army Research Office (ARO

Award W911NF-11-1-0383) and National Nature Sci-

ence Foundation of China (Grant Nos: 61125106,

61222207, 91120302).

References

[1] A. Andoni and P. Indyk. Near-optimal hashing algo-

rithms for approximate nearest neighbor in high dimen-

sions. Commun. ACM, 51(1):117–122, 2008.

[2] E. Candès. The restricted isometry property and its

implications for compressed sensing. Comptes Rendus

Mathematique, 346:589–592, 2008.

[3] E. Candes and T. Tao. Decoding by linear programming.

IEEE Transactions on Information Theory, 51:4203 –

4215, 2005.

[4] E. J. Candès, L. Demanet, and L. Ying. Fast compu-

tation of fourier integral operators. SIAM J. Scientific

Computing, 29(6):2464–2493, 2007.

[5] M. Charikar. Similarity estimation techniques from

rounding algorithms. In STOC, pages 380–388, 2002.

[6] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.

Locality-sensitive hashing scheme based on p-stable dis-

tributions. In SCG, pages 253–262, 2004.

[7] D. Donoho. Compressed sensing. IEEE Transactions on

Information Theory, 52:1289–1306, 2006.

[8] D. L. Donoho and M. Elad. Optimally sparse representa-

tion in general (non-orthogonal) dictionaries via �1 min-

imization. In PNAS, pages 2197–2202, 2003.

[9] J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and S.-E. Yoon.

Spherical hashing. In CVPR, pages 2957–2964, 2012.

[10] W. Johnson and J. Lindenstrauss. Extensions of Lip-

schitz mappings into a Hilbert space. Contemporary

mathematics, 26:189–206, 1984.

[11] A. Joly and O. Buisson. Random maximum margin

hashing. In CVPR, pages 873–880, 2011.

[12] B. Kulis and K. Grauman. Kernelized locality-sensitive

hashing for scalable image search. In ICCV, 2009.

[13] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang.

Supervised hashing with kernels. In CVPR, pages 2074–

2081, 2012.

[14] W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing

with graphs. In ICML, 2011.

[15] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li.

Multi-probe lsh: Efficient indexing for high-dimensional

similarity search. In VLDB, pages 950–961, 2007.

[16] R. Panigrahy. Entropy based nearest neighbor search in

high dimensions. In SODA, pages 1186–1195, 2006.

[17] M. Raginsky and S. Lazebnik. Locality-sensitive binary

codes from shift-invariant kernels. In NIPS, 2009.

[18] S. Smale and D.-X. Zhou. Geometry on probability

spaces. Constr Approx, 30:311–323, 2009.

[19] J. Wang, S. Kumar, and S.-F. Chang. Sequential projec-

tion learning for hashing with compact codes. In ICML,

2010.

[20] X. Wang, L. Zhang, F. Jing, and W. Ma. Annosearch:

Image auto-annotation by search. CVPR, 2, 2006.

[21] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing.

In NIPS, pages 1753–1760, 2008.

449449451

