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Abstract
The use of semantic attributes in computer vision prob-

lems has been gaining increased popularity in recent years.
Attributes provide an intermediate feature representation in
between low-level features and the class categories, lead-
ing to improved learning on novel categories from few ex-
amples. However, a major caveat is that learning semantic
attributes is a laborious task, requiring a significant amount
of time and human intervention to provide labels. In order
to address this issue, we propose a weakly supervised ap-
proach to learn mid-level features, where only class-level
supervision is provided during training. We develop a novel
extension of the restricted Boltzmann machine (RBM) by in-
corporating a Beta-Bernoulli process factor potential for
hidden units. Unlike the standard RBM, our model uses
the class labels to promote category-dependent sharing of
learned features, which tends to improve the generalization
performance. By using semantic attributes for which an-
notations are available, we show that we can find corre-
spondences between the learned mid-level features and the
labeled attributes. Therefore, the mid-level features have
distinct semantic characterization which is similar to that
given by the semantic attributes, even though their labeling
was not provided during training. Our experimental results
on object recognition tasks show significant performance
gains, outperforming existing methods which rely on manu-
ally labeled semantic attributes.

1. Introduction
Modern low-level feature representations, such as SIFT

and HOG, have had great success in visual recognition
problems, yet there has been a growing body of work sug-
gesting that the traditional approach of using only low-level
features may be insufficient. Instead, significant perfor-
mance gains can be achieved by introducing an interme-
diate set of features that capture higher-level semantic con-
cepts beyond the plain visual cues that low-level features of-
fer [29, 27, 13]. One popular approach to introducing such

mid-level features is to use semantic attributes [7, 16, 9].
Specifically, each category can be represented by a set of
semantic attributes, where some of these attributes can be
shared by other categories. This facilitates the transfer of
information between different categories and allows for im-
proved generalization performance.

Typically, the attribute representation is obtained using
the following process. First, a set of concepts is defined by
the designer, and each instance in the training set has to be
labeled with the presence or absence of each attribute. Sub-
sequently, a classifier is trained for each of the attributes
using the constructed training set. Furthermore, as was
reported in [7], some additional feature selection schemes
which utilize the attribute labels may be necessary in order
to achieve satisfactory performance. Obtaining the seman-
tic attribute representation is clearly a highly labor-intensive
process. Furthermore, it is not clear how to choose the con-
stituent semantic concepts for problems in which the shared
semantic content is less intuitive (e.g., activity recognition
in videos [22]).

One approach to learning a semantic mid-level feature
representation is based on latent Dirichlet allocation (LDA)
[2], which uses a set of topics to describe the semantic con-
tent. LDA has been very successful in text analysis and
information retrieval, and has been applied to several com-
puter vision problems [3, 20]. However, unlike linguistic
words, visual words often do not carry much semantic in-
terpretation beyond basic appearance cues. Therefore, the
LDA has not been very successful in identifying mid-level
feature representations [21].

Another line of work is the deep learning approach (see
[1] for a survey), such as deep belief networks (DBNs) [12],
which tries to learn a hierarchical set of features from un-
labeled and labeled data. It has been shown that features
in the upper levels of the hierarchy capture distinct seman-
tic concepts, such as object parts [19]. The DBNs can be
effectively trained in a greedy layer-wise procedure using
the restricted Boltzmann machine [25] as a building block.
The RBM is a bi-partite undirected graphical model that is
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capable of learning a dictionary of patterns from the unla-
beled data. By expanding the RBM into a hierarchical rep-
resentation, relevant semantic concepts can be revealed at
the higher levels. RBMs and their extension to deeper archi-
tectures have been shown to achieve state-of-the-art results
on image classification tasks (e.g., [26, 14]).

In this work, we propose to combine the powers of topic
models and DBNs into a single framework. We propose to
learn mid-level features using the replicated softmax RBM
(RS-RBM), which is an undirected topic model applied to
bag-of-words data [24]. Unlike other topic models, such
as LDA, the RS-RBM can be expanded into a DBN hierar-
chy by stacking additional RBM layers with binary inputs
on-top of the first RS-RBM layer. Therefore, we expect
that features in higher levels can capture important seman-
tic concepts that could not be captured by standard topic
models with only a single layer (e.g., LDA). To our knowl-
edge, this work is the first application of the RS-RBM to
object recognition problems.

As another contribution, we propose a new approach to
include class labels in training an RBM-like model. Al-
though unsupervised learning can be effective in learning
useful features, there is a lot to be gained by allowing some
degree of supervision. To this end, we develop a new ex-
tension of the RBM which promotes a class-dependent use
of dictionary elements. This can be viewed as a form of
multi-task learning [4], and as such tends to improve the
generalization performance.

The idea underlying our approach is to define an undi-
rected graphical model using a factor graph with two kinds
of factors; the first is an RBM-like type, and the second
is related to a Beta-Bernoulli process (BBP) prior [28, 23].
The BBP is a Bayesian prior that is closely related to the
Indian buffet process [10], and it defines a prior for binary
vectors where each coordinate can be viewed as a feature
for describing the data. The BBP has been used to al-
low for multi-task learning under a Bayesian formulation
of sparse coding [30]. Our approach, which we refer to
as the Beta-Bernoulli Process Restricted Boltzmann Ma-
chine (BBP-RBM), permits an efficient inference scheme
using Gibbs sampling, akin to the inference in the RBM. Pa-
rameter estimation can also be effectively performed using
Contrastive Divergence. Our experimental results on ob-
ject recognition show that the proposed model outperforms
other baseline methods, such as LDA, RBMs, and previous
state-of-the-art methods using attribute labels.

In order to analyze the semantic content that is captured
by the mid-level features learned with the BBP-RBM, we
used the datasets from [7] which include annotations of
manually specified semantic attributes. By using the learned
features to predict each of the labeled attributes in the train-
ing set, we found the correspondences between the learned
mid-level features and the labeled attributes. We performed

localization experiments where we try to predict the bound-
ing boxes of the mid-level features in the image and com-
pare them to their corresponding attributes. We demonstrate
that our method can localize semantic concepts like snout,
skin, and furry, even though no information about these at-
tributes was used during the training process.

The rest of the paper is organized as follows. In Sec-
tion 2, we provide background on the RBM and the BBP.
In Section 3, we describe the DBN architecture for object
recognition. In Section 4, we formulate the BBP-RBM
model, and in Section 5, we evaluate the BBP-RBM ex-
perimentally. Section 6 concludes the paper.

2. Preliminaries
In this section, we provide background on RBMs and the

BBP. We review two forms of the RBM which are both used
in this work: the first assumes binary observations, and the
second is the RS-RBM which uses word count observations.

2.1. RBM with binary observations
The RBM [25] defines a joint probability distribution

over a hidden layer h = [h1, . . . , hK ]T , where hk ∈ {0, 1},
and a visible layer v = [v1, . . . , vN ]T , where vi ∈ {0, 1}.
The joint probability distribution can be written as

p(v,h) =
1

Z
exp(−E(v,h)). (1)

Here, the energy function of v,h is defined as

E(v,h) = −hTWv − bTh− cTv, (2)

where W ∈ RK×N , b ∈ RK , c ∈ RN are parameters.
It is straightforward to show that the conditional proba-

bility distributions take the form

p(hk = 1|v) = σ
(∑

i

wk,ivi + bk
)
, (3)

p(vi = 1|h) = σ
(∑

k

wk,ihk + ci
)
, (4)

where σ(x) = (1 + e−x)−1 is the sigmoid function. Infer-
ence can be performed using Gibbs sampling, alternating
between sampling the hidden and visible layers. Although
computing the gradient of the log-likelihood of training data
is intractable, the Contrastive Divergence [11] approxima-
tion can be used to approximate the gradient.

2.2. The Replicated Softmax RBM
The RBM can be extended to the case where the ob-

servations are word counts in a document [24]. The word
counts are transformed into a vector of binary digits, where
the number of 1’s for each word in the document equals
its word count. A single hidden layer of a binary RBM
then connects to each of these binary observation vectors

475475477



(with weight sharing), which allows for modeling of the
word counts. The model can be further simplified such that
it deals with the word count observations directly, rather
than with the intermediate binary vectors. Specifically, let
N denote the number of words in the dictionary, and let vi
(i = 1, . . . , N ) denote the number of times word i appears
in the document, then the joint probability distributions of
the binary hidden layer h and the observed word counts v
is of the same form as in Equations (1) & (2), where the
energy of v,h is defined as

E(v,h) = −hTWv −DbTh− cTv, (5)

and D =
∑N
i=1 vi is the total word count in a document.

Inference is performed using Gibbs sampling, where the
posterior for the hidden layer takes the form

p(hk = 1|v) = σ
(∑

i

wk,ivi +Dbk
)
. (6)

Sampling from the posterior of the visible layer is per-
formed by sampling D times from the following multino-
mial distribution:

pi =
exp(

∑K
k=1 hkwk,i + ci)∑N

i=1 exp(
∑K
k=1 hkwk,i + ci)

, i = 1, ..., N, (7)

and setting vi to the number of times the index i appears in
the D samples.

Parameter estimation is performed in the same manner
as the case of the RBM with binary observations.

2.3. Beta-Bernoulli process
BBP is a Bayesian generative model for binary vectors,

where each coordinate can be viewed as a feature for de-
scribing the data. In this work, we use a finite approxima-
tion to the BBP [23] which can be described using the fol-
lowing generative model. Let f1, . . . , fK ∈ {0, 1} denote
the elements of a binary vector, then the BBP generates fk
according to

πk ∼ Beta(α/K, β(K − 1)/K), (8)
fk ∼ Bernoulli(πk),

where α, β are positive constants (hyperparameters), and
we use the notation π = [π1, . . . , πK ]T . Equation (8) im-
plies that if πk is close to 1 then fk is more likely to be 1,
and vice versa. Since the Beta and Bernoulli distributions
are conjugate, the posterior distribution for πk also follows
a Beta distribution. In addition, for a sufficiently large K
and reasonable choices of α and β, most πk will be close to
zero, which implies a sparsity constraint on fk.

Furthermore, by drawing a different πk for each class,
we can impose a unique class-specific sparsity structure,
and such a prior allows for multi-task learning. The BBP

RS-RBM ... 

Binary RBM 

Binary RBM 

Layer 1 

Layer 2 

Layer 3 

... 

HOG 
Texture 

Color 

RS-RBM RS-RBM RS-RBM 

Bag-of-words 
features 

Image 

Figure 1. A pipeline for constructing mid-level features. For both
the RS-RBM and the binary RBM, we propose their extensions by
incorporating the Beta-Bernoulli process factor potentials.

has been used to allow for multi-task learning under a
Bayesian formulation of sparse coding [30, 5]. The multi-
task paradigm promotes sharing of information between re-
lated groups, and therefore can lead to improved generaliza-
tion performance. Motivated by this observation, we pro-
pose an extension of the RBM that incorporates a BBP-like
factor and extend to a deeper architecture.

3. The object recognition scheme
Our mid-level feature extraction scheme is described in

Figure 1. We use a low-level feature extraction method fol-
lowing [7], where the image is first partitioned into a 3× 2
grid, and HOG, texture, and color features are extracted
from each of the cells, as well as from the entire image.
In order to obtain the bag-of-words representation, we first
compute the histogram over the visual words, and then ob-
tain the word counts by multiplying each histogram with a
constant (we used the constant 200 throughout this work)
and rounding the numbers to the nearest integer values.

The word counts are used as the inputs to RS-RBMs (or
BBP-RS-RBMs which we describe in Section 4), where dif-
ferent RS-RBM units are used for each of the histograms.
The binary outputs of all the RS-RBM units are concate-
nated and fed into a binary RBM (or a binary BBP-RBM)
at the second layer. The outputs of the hidden units of the
second layer are then used as input to the third layer binary
RBM, and similarly to any higher layers. Training the DBN
is performed in a greedy layer-wise fashion, starting with
the first layer and proceeding in the upward direction [12].

Each of the RS-RBM units independently captures im-
portant patterns which are observed within its defined fea-
ture type and spatial extent. The binary RBM in the sec-
ond layer captures higher-order dependencies between the
different histograms in the first layer. The binary RBMs
in higher levels could model further high-order dependen-
cies, which we hypothesize to be related to some semantic
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concepts. In Section 5, we find associations between the
learned features and manually specified semantic attributes.

The feature vector which is used for classification is ob-
tained by concatenating the outputs of all the hidden units
from all the layers of the learned DBN. Given a training set,
we compute the feature vector for every instance and train a
multi-class classifier. Similarly, for every previously unseen
test instance, we compute its feature vector and classify it
using the trained classifier.

4. The BBP-RBM
In this section, we develop the BBP-RBM, both when as-

suming that all the training examples are unlabeled, and also
when each example belongs to one of C classes. We refer
to these two versions as single-task BBP-RBM and multi-
task BBP-RBM, respectively. The single-task version can
be considered as a new approach to introduce sparsity into
the RBM formulation, which is an alternative to the com-
mon approach of promoting sparsity through regularization
[18]. It is also related to “dropout”, which randomly sets in-
dividual hidden units to zeros during training and has been
reported to reduce overfitting when training deep convolu-
tional neural networks [15]. The BBP-RBM uses a factor
graph formulation to combine two different types of factors:
the first factor is related to the RBM, and the second factor is
related to the BBP. Combining these factors together leads
to an undirected graphical model for which we develop ef-
ficient inference and parameter estimation schemes.

4.1. Proposed Model
We define a binary selection vector f = [f1, . . . , fK ]T

that is used to choose which of the K hidden units to ac-
tivate. Our approach is to define an undirected graphical
model in the form of a factor graph with two types of fac-
tors, as shown in Figure 2(a) for the single-task case and
Figure 2(b) for the multi-task cases. The first factor is ob-
tained as an unnormalized RBM-like probability distribu-
tion which includes the binary selection variables f :

ga(v,h, f) = exp(−E(v,h, f)), (9)

where the energy term takes the form

E(v,h, f) = −(f � h)TWv − bT (f � h)− cTv, (10)

and � denotes element-wise vector multiplication.
The second factor is obtained from the BBP generative

model (described in Equation (8)) as follows:

gb({f (j)}Mj=1, π) =

K∏
k=1

π
∑M

j=1 f
(j)
k

k (1− πk)
∑M

j=1(1−f
(j)
k )

× πα/K−1k (1− πk)β(K−1)/K−1, (11)

where j denotes the index of the training sample, and M
denotes the number of training samples.

 𝐡  𝐯 

𝑀 𝑔𝑎 𝑔𝑏 

 𝝅  𝐟 

(a) Single-task BBP RBM

 𝐡  𝐯 

𝑀𝑐 
𝐶 

𝑔𝑎 𝑔𝑏 

 𝝅  𝐟 

(b) Multi-task BBP RBM

Figure 2. The factor graphs for the BBP-RBM. ga and gb are the
two factor types, and M denotes the total number of training sam-
ples. C denotes the number of classes in the training set, and Mc

denotes the number of training instances belonging to class c.

Using the factor graph description in Figure 2(a), the
probability distribution for the single-task BBP-RBM takes
the form

p({v(j),h(j), f (j)}Mj=1, π) (12)

∝ gb({f (j)}Mj=1, π)×
M∏
j=1

ga(v
(j),h(j), f (j)).

Using the factor graph description in Figure 2(b), we have
that the joint probability distribution for the multi-task case
takes the form

p({v(j),h(j), f (j)}Mj=1, {π(c)}Cc=1) (13)

∝
C∏
c=1

gb({f (jc)}Mc
j=1, π

(c))

Mc∏
jc=1

ga(v
(jc),h(jc), f (jc))

 ,

whereC denotes the number of different classes in the train-
ing set, and we use the notation jc to denote the unique in-
dex of the training instance which belongs to class c, and
Mc denotes the number of training instances which belong
to class c.

4.2. Inference
Similarly to the RBM, inference in the BBP-RBM can be

performed using Gibbs sampling. We only provide the pos-
terior probability distributions for the multi-task case, since
the single-task can be obtained as a special case by setting
C = 1. Sampling from the joint posterior probability distri-
bution of h and f can be performed using

p(h
(jc)
k = x, f

(jc)
k = y|−) ∝


π
(c)
k eδ

(jc)
k , x = 1, y = 1

π
(c)
k , x = 0, y = 1

1− π(c)
k , x = 0, y = 0

1− π(c)
k , x = 1, y = 0

(14)
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where “−” denotes all other variables, and we define
δ
(jc)
k =

∑
i wk,iv

(jc)
i + bk for binary inputs, or δ(jc)k =∑

i wk,iv
(jc)
i +Dbk for word count observations.

The posterior probability for π(c) takes the form

p(π
(c)
k |−) = (15)

Beta(α/K +

Mc∑
jc=1

f
(jc)
k , β(K − 1)/K +

Mc∑
jc=1

(1− f (jc)k )).

Sampling from the posterior of the visible layer is per-
formed in a similar way that was discussed in Section 2
for the RBM with either binary or word count observations,
where the only difference is that h is replaced by f � h.

From Equation (14), we observe that if π(jc)
k = 1 then

the BBP-RBM reduces to the standard RBM, since the pos-
terior probability distribution for h(jc)k becomes p(h(jc)k =

1|−) = σ(δ
(jc)
k ) (i.e., the standard RBM has the same pos-

terior probability for h(jc)k ).

4.3. Parameter estimation
Using the property of conditional expectation, we can

show that the gradient of the log-likelihood of v(jc) with
respect to the parameter θ ∈ {W,b, c} takes the form

∂ log p(v(jc))

∂θ
=Eπ(c)

[
− Eh,f ,|π(c),v(jc)

[
∂

∂θ
E(v(jc),h, f)

]
+Eh,f ,v|π(c)

[
∂

∂θ
E(v,h, f)

]]
. (16)

The expression cannot be evaluated analytically; however,
we note that the first inner expectation does admit an ana-
lytical expression, whereas the second inner expectation is
intractable. We propose to use an approach similar to Con-
trastive Divergence to approximate Equation (16). First, we
sample π(c) using Gibbs sampling, and then use a Markov
chain Monte-Carlo approach to approximate the second in-
ner expectation. The batch version of our approach is sum-
marized in Algorithm 1. In practice, we use an online ver-
sion where we update the parameters incrementally using
mini-batches. We also re-sample the parameters {π(c)}Cc=1

only after a full sweep over the training set is finished.

4.4. Object recognition using the BBP-RBM
When using the BBP-RBM in the DBN architecture de-

scribed in Figure 1, there is an added complication of deal-
ing with the variable π since it cannot be marginalized effi-
ciently. Our solution is to train each layer of a BBP-RBM as
described in the previous section. However, when comput-
ing the output of the hidden units to be fed into the consecu-
tive layer, we choose π(c)

k = 1, ∀c = 1, ..., C, k = 1, ...,K,
which corresponds to the output of a standard RBM (as ex-
plained in Section 4.2). Using this approach, we avoid the
issues which would otherwise arise during the recognition
stage (i.e., class labels are unknown for test examples).

Algorithm 1 Batch Contrastive Divergence training for the
multi-task BBP-RBM.

Input: Previous samples of {π(c)}Cc=1, training samples
{v(j)}Mj=1, and learning rate λ.

• For c = 1, . . . , C, sample π(c)
new as follows

1. Sample h(jc), f (jc)|π(c),v(jc), ∀ jc = 1, . . . ,Mc

using Equation (14).

2. Sample π(c)
new using Equation (15).

• For c = 1, . . . , C, jc = 1, . . . ,Mc

1. Sample h(jc,0), f (jc,0)|π(c)
new,v(jc).

2. Sample v(jc,1)|π(c)
new,h(jc,0), f (jc,0).

3. Sample h(jc,1), f (jc,1)|π(c)
new,v(jc,1).

• Update each of the parameters θ ∈ {W,b, c} using

θ ← θ − λ
C∑
c=1

Mc∑
jc=1

( ∂
∂θ
E(v(jc),h(jc,0), f (jc,0))

− ∂

∂θ
E(v(jc,1),h(jc,1), f (jc,1))

)

5. Experimental results
We evaluated the features learned by the BBP-RBM

using two datasets that were developed in [7], which in-
clude annotation for labeled attributes. We refer to the
two datasets as the PASCAL and Yahoo datasets. We per-
formed object classification experiments within the PAS-
CAL dataset and also across the two datasets (i.e., learning
the BBP-RBM features using the PASCAL training set, and
performing classification on the Yahoo dataset). Finally, we
examined the semantic content of the features by finding
correspondences between the learned features and the man-
ually labeled attributes available for the PASCAL dataset.
We also used these correspondences to perform attribute lo-
calization experiments, by predicting the bounding boxes
for several of the learned mid-level features.

5.1. PASCAL and Yahoo datasets
The PASCAL dataset is comprised of instances corre-

sponding to 20 different categories, with pre-existing splits
into training and testing sets, each containing over 6400
images. The categories are: person, bird, cat, cow, dog,
horse, sheep, airplane, bicycle, boat, bus, car, motorcy-
cle, train, bottle, chair, dining-table, potted-plant, sofa,
and tv/monitor. The Yahoo dataset contains 2644 images
with 12 categories which are not included in the PASCAL
dataset. Additionally, there are annotations for 64 attributes
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Overall Mean per-class
# Layers 1 2 3 1 2 3

LDA 54.0 - - 32.1 - -
RBM 55.5 55.9 56.5 32.6 33.6 33.8

sparse RBM 60.0 60.8 61.0 40.5 41.1 41.8
single-task BBP-RBM 61.7 62.0 61.7 42.3 42.3 41.7
multi-task BBP-RBM 62.5 63.2 63.2 42.7 45.5 46.1

Table 1. Test classification accuracy for the dataset proposed in [7] using LDA, baseline RBMs, and BBP-RBMs.

which are available for all the instances in the PASCAL and
Yahoo datasets. We used the same low-level features (re-
ferred to as base features) which were employed in [7] and
are available online. The feature types that we used are:
1000 dimensional HOG histogram, 128 dimensional color
histogram, and 256 dimensional texture histogram. In [7],
an eight dimensional edge histogram was used as well; how-
ever, we did not use it in our RBM and BBP-RBM based ex-
periments since the code to extract the edge features and the
corresponding descriptors were not available online. Note
that not using the edge features in our methods may give
an unfair disadvantage when comparing to the results in [7]
and [29] that used all the base features. The HOG, color,
and texture descriptors which we used are identical to [7].
When learning an RBM based model, we used 800 hidden
units for the HOG histogram, 200 hidden units for the color
histogram, and 300 units for the texture histogram. The
number of hidden units for the upper layers was 4000 for
the second layer, and 2000 for the third layer.

5.1.1 Recognition on the PASCAL dataset
In Table 1, we compare the test classification accuracy for
the PASCAL dataset using features that were learned with
the following methods: LDA, the standard RBM, the RBM
with sparsity regularization (sparse RBM) [18], the single-
task BBP-RBM, and the multi-task BBP-RBM. The LDA
features were the topic proportions learned for each of the
histograms (see Section 3), and we used 50 topics for each
histogram. For evaluating features, we used the multi-class
linear SVM [6] in all the experiments. When performing
cross validation, the training set was partitioned into two
sets. The first was used to learn the BBP-RBM features, and
the second was used as a validation set. For both the over-
all classification accuracy and the mean per-class classifica-
tion accuracy, the sparse RBM outperformed the standard
RBM and LDA, but it performed slightly worse than the
single-task BBP-RBM. This could suggest that the single-
task BBP-RBM is an alternative approach to inducing spar-
sity in the RBM. Furthermore, the multi-task BBP-RBM
outperformed all other methods, particularly for the mean
per-class classification rate.1 Adding more layers generally

1We note that a supervised version of the RBM (referred to as “dis-
cRBM” here) which regards the class label as an observation was intro-
duced in [17]. In our experiments, the discRBM’s classification perfor-

Using attributes Without attributes
Method Overall Per-class Overall Per-class

[7] 59.4 37.7 58.5 34.3
[29] w/loss-1 62.16 46.25 58.77 38.52
[29] w/loss-2 59.15 50.84 53.74 44.04
BBP-RBM - - 63.2 46.1

Table 2. Comparison of test accuracy between several methods us-
ing the same dataset and low-level features used in [7]

improved the classification performance; however, the im-
provement reached saturation at approximately 2-3 layers.

In Table 2, we compare the classification results obtained
using the multi-task BBP-RBM to the results reported in [7]
and [29] for the same task. Note that the baseline methods
were adapted to exploit the information from the labeled
attributes (which the BBP-RBM did not use). In [7], scores
from attribute classifiers were used as input for a multi-class
linear SVM. In [29], the attribute classifier scores were used
in a latent SVM [8] formulation, using two different loss
functions (referred to as “loss-1” and “loss-2” in the table).
Note that attribute annotations are very expensive to obtain,
and for many visual recognition problems, such as activity
recognition in videos [22], it is even harder to identify and
label the semantic content that is shared by different types of
classes. The results show that, even though our method did
not use the attribute annotation, it significantly improved
both the overall classification accuracy and the mean per-
class accuracy in comparison to the baseline methods.

5.1.2 Learning new categories in the Yahoo dataset
An important aspect of evaluating the features is the degree
to which they generalize well across different datasets. To
this end, we used the PASCAL training set to learn the fea-
tures and evaluated their performance on the Yahoo dataset.
We partitioned the Yahoo dataset into different proportions
of training samples and compared the performance when
using the multi-task BBP-RBM and base features, respec-
tively. Table 3 summarizes the test accuracy averaged over
10 random trials for several training set sizes. The results
suggest that our method using the BBP-RBM features can
recognize new categories from the Yahoo dataset with fewer
training samples, as compared to using the base features.

mance was not significantly better than that of the sparse RBM.
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Base features BBP-RBM features
Training % Overall Per-class Overall Per-class

10% 56.3 44.2 65.8 54.1
20% 61.0 48.2 70.6 60.0
30% 64.5 49.9 73.6 62.4
40% 68.3 51.4 75.3 64.8
50% 71.0 52.2 77.1 66.6
60% 71.0 52.5 78.4 68.4

Table 3. Average test classification accuracy on the Yahoo dataset
when using the base features and when using the BBP-RBM fea-
tures learned from the PASCAL training set.

For example, the overall classification performance with the
BBP-RBM features using only 20% of the dataset for train-
ing is comparable to or better than that with the base fea-
tures using 60% of the dataset for training.

5.2. Correspondence between mid-level features
and semantic attributes

In this experiment, we evaluated the degree to which the
features learned using the BBP-RBM demonstrate identi-
fiable semantic concepts. For each feature and labeled at-
tribute pair, we used the score given by Equation (3) to pre-
dict the presence of manually labeled semantic attributes
in each training example and computed the area under the
ROC curve over the PASCAL training data. The feature
corresponding to each attribute is determined as that which
has the largest area under the ROC curve. Figure 3 shows
the corresponding area under the ROC curve for every at-
tribute on the PASCAL test data (i.e., using the training set
to determine the correspondences, and the test set to com-
pute the ROC area). The area under the ROC curve ob-
tained using attribute classifiers (linear SVMs trained using
the attribute labels and the base features [7]) is also shown
together. The figure shows that the learned features without
using attribute labels performed reasonably well, and some
learned features performed comparably to the attribute clas-
sifiers that were trained using the attribute labels. We note
that all the semantic attributes were associated to features in
either the second layer or the third layer in Figure 1, which
supports our hypothesis that the higher levels of the DBN
can capture semantic concepts.

5.2.1 Predicting attribute bounding boxes
We also performed experiments where the mid-level fea-
tures corresponding to the attributes “snout”, “skin”, and
“furry” were used to predict the bounding boxes of these
attributes. For fine-grained localization, we ran simple
sliding-window detection using bounding boxes of differ-
ent aspect ratios on each image, and show only the first
few non-overlapping windows that achieved the best scores.
As shown in Figure 4, although there were some miss-
detections in the “skin” case, we were able to identify ap-
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Figure 3. The area under the ROC curve of each of the 64 attributes
for (1) the BBP-RBM features corresponding to labeled attributes
(circles) and (2) the attribute classifiers trained using the base fea-
tures (squares). The attributes that are used to predict bounding
boxes in Figure 4 are marked with arrows. See text for details.
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Figure 4. Predicting the bounding boxes for features correspond-
ing to the attributes “snout”, “skin”, and “furry”.

propriate bounding boxes. Note that there were no bound-
ing boxes available for these attributes in the training set
(i.e., the bounding boxes were provided only for the entire
objects); yet in some cases the BBP-RBM could localize the
subparts of the categories which the attributes describe.

5.3. Choice of hyperparameters
In our experiments, we used the hyperparameter values

α = 1, β = 5 for the BBP-RBM. We observed that the ex-
act choice of these hyperparameter had very little effect on
the performance. The parameters W,b, and c were initial-
ized by drawing from a zero-mean isotropic Gaussian with
standard deviation 0.001. We also added `2 regularization
for the elements of W, and used the regularization hyper-
parameter 0.001 for the first layer and 0.01 for the second
and third layers. We used a target sparsity of 0.2 for the
sparse RBM. These hyperparameters were determined by
cross validation.

6. Conclusion
In this work, we proposed the BBP-RBM as a new

method to learn mid-level feature representations. The
BBP-RBM is based on a factor graph representation that
combines the properties of the RBM and the Beta-Bernoulli
process. Our method can induce category-dependent shar-
ing of learned features, which can be helpful in improving
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the generalization performance. We evaluated our model in
object recognition experiments, and showed superior per-
formance compared to recent state-of-the-art results, even
though our model does not use any attribute labels. We also
performed qualitative analysis on the semantic content of
the learned features. Our results suggest that the learned
mid-level features can capture distinct semantic concepts,
and we believe that our method holds promise in advancing
attribute-based recognition methods.
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