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Abstract
We posit that user behavior during natural viewing of im-

ages contains an abundance of information about the con-
tent of images as well as information related to user intent
and user defined content importance. In this paper, we con-
duct experiments to better understand the relationship be-
tween images, the eye movements people make while view-
ing images, and how people construct natural language to
describe images. We explore these relationships in the con-
text of two commonly used computer vision datasets. We
then further relate human cues with outputs of current vi-
sual recognition systems and demonstrate prototype appli-
cations for gaze-enabled detection and annotation.

1. Introduction
Every day we consume a deluge of visual information

by looking at images and video on the web and more gener-

ally looking at the visual world around us in our daily lives.

In addition, the number of cameras that could conceivably

watch us back is increasing greatly. Whether it is webcams

on laptops, or front-facing cell phone cameras, or Google

Glass, the media that we use to access imagery increasingly

has the potential to observe our viewing behavior. This cre-

ates the unprecedented opportunity to harness these devices

and use information about eye, head, and body movements

to inform intelligent systems about the content that we find

interesting and the tasks that we are trying to perform. This

is particularly true in the case of gaze behavior, which pro-

vides direct insight into a person’s interests and intent.

We envision a day when reliable eye tracking can be

performed using standard front facing cameras, making it

possible for visual imagery to be tagged with individual-

ized interpretations of content, each a unique “story” sim-

ply through the act of a person viewing their favorite images

and videos. In this paper we provide a glimpse into this

exciting future by analyzing how humans interact with vi-

sual imagery in the context of object detection, and how this
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Figure 1: Left: baseline detection results including correct

detections (green) and incorrect detections (blue). Right:

gaze-enabled detection results with fixations (yellow). Bot-

tom: objects described by people and detected objects from

each method (green - correct, blue - incorrect).

symbiotic relationship might be exploited to better analyze

and index content that people find important. Understand-

ing how humans view and interpret images will lead to new

methods to design, train, evaluate, or augment computer vi-

sion systems for improved image understanding.

1.1. Visual Recognition and Detection
In computer vision, visual recognition algorithms are

making significant progress. Recent advances have started

to look at problems of recognition at a human scale, classi-

fying or localizing thousands of object categories with rea-

sonable accuracy [19, 24, 5, 6, 18]. However, despite rapid

advances in methods for object detection and recognition in

images [11, 5], they are still far from perfect. As evidenced

in Figure 1, running object detectors (20 deformable part

models [12] with default thresholds) on an image, still pro-

duces unsatisfactory results. Detectors still produce noisy

predictions. In addition, even if the detectors were com-

pletely accurate, they would produce an indiscriminate la-

beling of all objects in an image. For some applications,

such as image retrieval, a more human-centric annotation

of the most important content might be desired.
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1.2. Information from Gaze

It has long been known that eye movements are not di-

rectly determined by an image, but are also influenced by

task [33]. The clearest examples of this come from the ex-

tensive literature on eye movements during visual search

[8, 21, 34, 35]; specifying different targets yields different

patterns of eye movements even for the same image. How-

ever, clear relationships also exist between the properties of

an image and the eye movements that people make during

free viewing. For example, when presented with a complex

scene, people overwhelmingly choose to direct their initial

fixations toward the center of the image [27], probably in

an attempt to maximize extraction of information from the

scene [27]. Figure/ground relationships play a role as well;

people prefer to look at objects even when the background

is made more relevant to the task [22]. All things being

equal, eye movements also tend to be directed to corners

and regions of high feature density [20, 29], sudden onsets

[30, 31], object motion [14, 15], and regions of brightness,

texture, and color contrast [16, 17, 23]. These latter influ-

ences can all be considered saliency factors affecting object

importance. The focus of our experiments is on less well

explored semantic factors – how categories of objects or

events might influence gaze [9] and how we can use gaze to

predict semantic categories.

Eye movements can inform image understanding in two

different but complementary ways. First, they can be used

to indicate the relative importance of content in an image by

providing a measure of how a person’s attention was spa-

tially and temporally distributed. Second, the patterns of

saccades and fixations made during image viewing might

be used as a direct indication of content information. To the

extent that gaze is drawn to oddities and inconsistencies in

a scene [28], fixations might also serve to predict unusual

events [1].

1.3. Human-Computer Collaboration

In this paper, we explore the potential for combining

human and computational inputs into integrated collabo-

rative systems for image understanding. There are many

recognition tasks that could benefit from gaze information.

The prototype system in [4] looked at methods for human-

computer collaborative image classification. In this paper,

we focus on object detection and annotation (Figure 1 sug-

gests potential benefits of such a system). Rather than ap-

plying object detectors at every location in an image arbi-

trarily, they could be more intelligently applied only at im-

portant locations as indicated by gaze fixations. This would

not only minimize the potential for false positives, but also

constrain the true positives to only the most user-relevant

content. It might also have implications for efficiency in

real-time detection scenarios.

Central to making these systems work is our belief that

humans and computers provide complimentary sources of

information for interpreting the content of images.

Humans can provide:

• Passive indications of content through gaze patterns.

These cues provide estimates about “where” important

things are, but not “what” they are.

• Active indications of content through descriptions.

These cues can directly inform questions of “what” is

in an image as well as indicating which parts of the

content are important to the viewer.

Computer vision recognition algorithms can provide:

• Automatic indications of content from recognition al-

gorithms. These algorithms can inform estimates of

“what” might be “where” in visual imagery, but will

always be noisy predictions and have no knowledge of

relative content importance.

It is our position that image understanding is ultimately

a human interpretation, making it essential that inputs from

humans be integrated with computational recognition meth-

ods. Attempts to solve this problem through analysis of pix-

els alone are unlikely to produce the kind of image under-

standing that is useful to humans, the ultimate consumers

of imagery. In order to build such a human-computational

collaborative system we first have to comprehend the rela-

tionship between these disparate modalities.

In this paper we describe several combined behavioral-

computational experiments aimed at exploring the relation-

ships between the pixels in an image, the eye movements

that people make while viewing that image, and the words

that they produce when asked to describe it. To the extent

that stable relationships can be discovered and quantified,

they can be integrated into image interpretation algorithms,

used to build better applications, and generally contribute

to basic scientific knowledge of how humans view and in-

terpret visual imagery. For these experiments we have col-

lected gaze fixations and some descriptions for images from

two commonly used computer vision datasets. Our data,

the SBU Gaze-Detection-Description Dataset, is available

at http://www.cs.stonybrook.edu/∼ial/gaze.html

2. Dataset & Experimental Settings
We investigate the relationships between eye move-

ments, description, image content, and computational

recognition algorithms using images from two standard

computer vision datasets, the Pascal VOC dataset [10] and

the SUN 2009 dataset [3].

PASCAL VOC: The PASCAL VOC is a visual recogni-

tion challenge widely known in the computer vision com-

munity for evaluating performance on object category de-

tection (among other tasks). We use 1,000 images from the

738738738738740740



2008 dataset [10], selected by Rashtchian et al [26] to con-

tain at least 50 images depicting each of the 20 object cat-

egories. For each object category, Felzenszwalb et al. [12]

provide a pre-trained deformable part model detector. For

each image, we also have 5 natural language descriptions

obtained by Rashtchian et al [26] using Amazon’s Mechan-

ical Turk (AMT) service. These descriptions generally de-

scribe the main image content (objects), relationships, and

sometimes the overall scene.

SUN09 Dataset: The second dataset we use is a subset

of the SUN09 dataset [3] of scene images with correspond-

ing hand labeled object segmentations. In our experiments

we use 104 images of 8 scene categories selected from the

SUN09 dataset, each having hand-labeled object segmen-

tations. We train 22 deformable part model object detec-

tors [12] using images with associated bounding boxes from

ImageNet [7]. These categories were selected to cover, as

much as possible, the main object content of our selected

scene images.

Experimental Settings

PASCAL VOC: On this dataset we explore short time-

frame viewing behavior. Each of 1,000 images is presented

for 3 seconds to 3 human observers. The observers’ task

is to freely view these images in anticipation of a memory

test. Eye movements were recorded during this time using

a remote eye tracker (EL1000) sampling at 1000 Hz. Im-

age descriptions were not collected from observers during

the experiment, as we wanted to examine the general re-

lationships between gaze and description that hold across

different people.

SUN09 Dataset: On this dataset we explore somewhat

longer timeframe viewing behavior. Each image is pre-

sented to 8 human observers for 5 seconds. Subjects are

instructed to freely view these images. After presentation

subjects are asked to describe the image they previously saw

and are given 20 seconds to provide an oral description. De-

scriptions are then manually transcribed to text. In addition,

we also collect text descriptions via AMT in a similar man-

ner to Rashtchian et al [26]. Figure 2 shows an example

gaze pattern and description.

3. Experiments & Analysis

In this section, we address several general questions re-

lating gaze, description, and image content. 1) What do

people look at? (Sec 3.1) 2) What do people describe?

(Sec 3.2), and 3) What is the relationship between what peo-

ple look at and what they describe? (Sec 3.3).

3.1. What do people look at?

Gaze vs Selected Objects: To determine whether the

objects we have selected for consideration (the 20 Pascal

What do subjects describe? 
A bedroom with mostly white uh pictures on the wall and 
a bed spread bright all in colors.  And it has a television 
and um a window seat. 

Where do subjects look? 
bed  pictures  curtains  night table 
painting  cushion  window  television 
wall  book     

What’s in this image? 
window, curtain, painting, wall, ceiling, remote control, 
bed, books, telephone, lamp, cushion, television, � 

Figure 2: Left: An example of a gaze pattern and descrip-

tion. Each dot indicates a fixation. Colors indicate earlier

(blue) to later (red) fixations. Right: A person’s description

of the image, together with the object ground truth and the

objects that were fixated. Red words indicate objects auto-

matically extracted from the sentence.

categories, and 22 classes from SUN09) represent the in-

teresting content of these images, we first need to validate

to what degree people actually look at these objects. For

example, Pascal was collected to depict certain objects for

evaluating detection algorithms, but it also contains other

unrelated objects. The SUN09 dataset has labels for almost

every object including background elements like floor, or

tiny objects like remote control, most of which we have not

selected for consideration in our experiments. Hence, we

first compute how many fixations fall into the image regions

corresponding to selected object categories. We find that

76.33% and 65.57% of fixations fall into selected object cat-

egory bounding boxes for the PASCAL and Sun09 datasets

respectively. Therefore, while these objects do reasonably

cover human fixation locations they do not represent all of

the fixated image content.

Gaze vs Object Type: Here we explore which objects

tend to attract the most human attention by computing the

rate of fixation for each category. We first study the per

image fixation rate for each category, that is, given an im-

age what is the rate at which each object category will be

fixated, NF (I, b):

F (I, b) =
# fixations in bounding box b

# fixations in image I
(1)

B(I, b) =
size of bounding box b

size of image I
(2)

NF (I, b) =
F (I, b)

B(I, b)
(3)

where F (I, b) indicates the percentage of fixations falling

into bounding box b in image I , and B(I, b) indicates the

ratio of the size of bounding box b to the whole image.

NF (I, b) denotes the normalized percentage of fixations of

bounding box b in image I .

Figure 3 shows the results. In the Pascal dataset peo-

ple preferentially look at animals like cow or dog, or (rela-

tively) unusual transportation devices like boats or airplanes

739739739739741741



(a) PASCAL

(b) SUN09

Figure 3: (a) In the PASCAL dataset, given an image people

preferentially look at some object categories (dog, cat, per-

son) over others (chair, potted plant). (b) Similar patterns

can be seen in the SUN09 dataset.

over other common scene elements in an image like dining

tables, chairs, or potted plants. In the SUN dataset, people

are more likely to look at content elements like televisions

(if they are on), people, and ovens than objects like rugs or

cabinets.

We also study the overall fixation rate for each category

(results are shown in Figure 4). We evaluate this in two

ways, 1) by computing the average percentage of fixated in-

stances for each category (blue bars), and 2) by computing

the percentage of images where at least one instance of a

category was fixated when present (red bars). We calculate

the second measure because some images contain many in-

stances of a category, e.g. an image containing a number

of sheep. While viewers will probably not take the time to

look at every single sheep in the image, if sheep are impor-

tant then they are likely to look at at least one sheep in the

image. We find that while only 45% of all sheep in images

are fixated, at least one sheep is fixated in 97% of images

containing sheep. We also find that object categories like

person, cat, or dog are nearly always fixated on while more

common scene elements like curtains or potted plants are

fixated on much less frequently.

Gaze vs Location on Objects: Here we explore the

gaze patterns people produce for different object categories,

examining how the patterns vary across categories, and

whether bounding boxes are a reasonable representation for

object localization (as indicated by gaze patterns on ob-

jects). To analyze location information from fixations, we

first transform fixations into a density map. For a given im-

age, a two-dimensional Gaussian distribution that models

the human visual system with appropriately chosen param-

eters is centered at each fixation point. Specifically, sigma

was chosen by 7.0% of the image height – to be slightly

larger than fovea size. Then, a fixation density map is cal-

culated by summing the Gaussians over the entire image.

For each category, we average the fixation density maps

(a) PASCAL

(b) SUN09)

Figure 4: Blue bars show the average percentage of fixated

instance per category. Red bars show the percentage of im-

ages where a category was fixated when present (at least

one fixated instance in an image).

(a) person (b) horse (c) tvmonitor

(d) bicycle (e) chair (f) diningtable

Figure 5: Examples of average fixation density maps. Fixa-

tion patterns tend to be category dependent.

over the ground truth bounding boxes to create an “aver-

age” fixation density map for that category. Figure 5 shows

how gaze patterns differ for example object categories. We

find that when people look at an animal such as a person

or horse (5a, 5b), they tend to look near the animal’s head.

For some categories such as bicycle or chair (5d, 5e), which

tend to have people sitting on them, we find that fixations

are pulled toward the top/middle of the bounding box. Sim-

ilarly, there are often objects resting on top of dining tables

(5f). For other categories like tv monitor (5c), people tend

to look at the center of the object. This observation suggest

that designing or training different gaze models for different

categories could potentially be useful for recognizing what

someone is looking at.

We also analyze the relationship between gaze, bound-

ing boxes, and object segmentations in the SUN09 dataset

which provides segmentations of all labeled objects. We

compute the percentage of fixations that fall into the true

740740740740742742



All Person Chair Painting

% of area 68.41% 52.74% 57.51% 91.09%

% of fixations 68.97% 58.84% 59.14% 91.47%

Table 1: Comparison between segmentations and bounding

boxes. We measure what percentage of the bounding box

is part of the segmented object, and what percentage of the

human fixations in that bounding box fall in the segmented

object.

object segmentation compared to the entire bounding box

(results are shown in Table 1). We find that the percent-

age of fixations in the object segmentation compared to the

bounding is similar to their ratios in area, indicating that

while human gaze cues can help provide some rough local-

ization information, they will not necessarily be useful for

refining bounding box predictions to object segmentations.

3.2. What do people describe?

In this section we study what people describe in image

descriptions. To extract object words from descriptions, we

use a Part of Speech tagger [25] to tag nouns. We com-

pare the extracted nouns to our selected object categories

using WordNet distance [32] and keep nouns with small

WordNet distance. Since WordNet distance is not perfect,

we further manually correct the extracted word-object map-

pings. Experimentally, we find that 85.4% and 58.75% of

the ground truth objects are described in the PASCAL and

SUN09 datasets respectively. Since the depictions in the

SUN09 dataset are somewhat more complex and cluttered,

subjects are less likely to describe all selected objects all of

the time. Previous work has shown that object categories

are described preferentially [2]. For example, animate ob-

jects are much more likely to be described than inanimate

categories.

3.3. What is the relationship between gaze and de-
scription?

We examine the relationship between gaze and descrip-

tion by studying: 1) whether subjects look at the objects

they describe, and 2) whether subjects describe the objects

they look at. We quantify the relationship between spe-

cific gaze patterns and word choices for description by com-

puting the probability that someone will look at the de-

scribed objects, P (fixated | described) and the probability

that someone will describe the fixated objects, P (described
| fixated). Note that we look at these probabilities in two

different, but interesting scenarios: when the viewer and de-

scriber are the same individual (SUN09) and when they are

two different individuals (PASCAL) – to determine whether

relationships hold across people. Results are shown in Table

2. We find that there is a strong relationship between gaze

and description in both datasets. However, since the Pascal

P(fixated|described) P (described|fixated)

PASCAL 86.56% 95.22%

SUN09 73.67% 72.49%

Table 2: The relationship between human description and

fixation.

Figure 6: Fixation percentage versus detection score.

Scores in the top 10% (bin 10), top 10%-20% (bin 9), etc.

In the PASCAL dataset, for categories aeroplane, bus, cat,

cow, horse, motorbike, person, sofa, people tends to look

much more in the detection boxes with high scores. For

other categories, people tend to fixate evenly at detection

boxes.

dataset tends to contain cleaner and less cluttered images

than those in our SUN images, the correlation in PASCAL

is higher than in SUN09.

4. Gaze-Enabled Computer Vision
In this section, we discuss the implications of human

gaze as a potential signal for two computer vision tasks –

object detection and image annotation.

4.1. Analysis of human gaze with object detectors

We first examine correlations between the confidence of

visual detection systems and fixation. Positive or nega-

tive correlations give us insight into whether fixations have

the potential to improve detection performance. In this ex-

periment, we compute detection score versus fixation rate

(Equation 3). Results are shown in Fig 6. in general, we find

that observers look at bounding boxes with high confidence

scores more often, but that detections with lower confidence

scores are also sometimes fixated. As indicated by our pre-

vious studies, in general some categories are fixated more

often than others, suggesting that we might focus on inte-

grating gaze and computer vision predictions in a category

specific manner.

Given these observations, we also measure for what per-

centage of cases fixations could provide useful or detrimen-

tal evidence for object detection. In this experiment, we

select the bounding boxes output by the detectors at their

selected default thresholds. Results are shown in Fig 7 eval-

uating the following scenarios: 1) There is no predicted de-

tection box overlapping with the ground truth object (blue

bars). For these cases, gaze cannot possibly help to improve

the result, 2) There are both true positive (TP) and false pos-
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Figure 7: Analysis of where gaze could potentially decrease

(yellow), increase (pink), or not affect (green & blue) per-

formance of detection.

itive (FP) boxes overlapping with the ground truth. In some

of these cases there will be more fixations falling into a FP

box than into a TP. In these cases it is likely that adding gaze

information could hurt object detection performance (yel-

low bars). 3) In other cases, where we have more fixations

in a TP box than in any other FP box, gaze has the poten-

tial to improve object detection (pink bars). 4) Green bars

show detections where the object detector already provides

the correct answer and no FP boxes overlap with the ground

truth (therefore adding gaze will neither hurt nor help these

cases).

4.2. Object Detection

In this section, we employ simple methods for gaze-

enabled object detection, using deformable part models [12]

with detections predicted at their default thresholds. We

first consider the simplest possible algorithm – filter out all

detected bounding boxes that do not contain any fixations

(or conversely run object detectors only on parts of the im-

age containing fixations). This algorithm filters out many

false positive boxes, especially for detectors with lower per-

formance such as bottle, chair, plant, and person. At the

same time, it also removes a lot of true positive boxes for

objects that are less likely fixated such as bottle and plant,

resulting in improvements for some categories, but overall

decreased detection performance (Table 3 shows detection

performance on the 20 PASCAL categories).

Thus, we also propose a discriminative method where

we train classifiers to distinguish between true positive de-

tections and false positive detections output by the baseline

detectors. Features for classification include the detection

score and features computed from gaze. For gaze features,

we first create a fixation density map for each image (as

described in Section 3.1). To remove outliers, fixation den-

sity maps are weighted by fixation duration [13]. Then, we

compute the average fixation density map per image across

viewers. To compute gaze features of each detection box,

we calculate the average and the maximum of the fixation

density map inside of the detection box. Then, the final

gaze feature of each box is a three dimensional feature vec-

tor (eg. detection score, and the average and maximum of

the fixation density map).

For the PASCAL dataset, we split the 1,000 image

dataset equally into training and testing sets. Testing eval-

uation is performed as usual with the standard 0.5 overlap

required for true positives. However, for training, we also

consider bounding boxes with detection scores somewhat

lower than the default threshold for training our gaze classi-

fier and consider a more generous criterion (ie. Pascal over-

lap > 0.30) for positive samples so that we obtain enough

samples to train our classifier. On the other hand, a more

strict criterion (ie. Pascal overlap < 0.01) is applied for

negative samples. Then, we use hard-negative mining to it-

eratively add hard negatives (we use 3 iterations of negative

mining). Finally, we train 20 classifiers, one per object cat-

egory, using Support Vector Machines (SVMs) with RBF

Kernel, and set parameters with 5-fold cross validation.

Table 3 shows results for baseline detectors, our simple

filtering technique, and gaze-enabled classification. Gaze-

enabled classifiers outperform the baseline detectors for

some animal categories (eg. bird, cat, dog, and horse), train

and television, while performance decreases for the plane,

boat, car and cow. We generally find gaze helps improve

object detection on categories that are usually fixated while

it can hurt those that are not fixated (e.g. chair). Addi-

tionally, we observe some performance decrease due to de-

tector confusion. For example, the boat detector fires on

planes. Since people often look at planes, gaze-enabled

classifiers could increase this confusion. Although overall

performance (ie. the mean of average precision across cat-

egories) is not greatly increased, we believe gaze-enabled

algorithms could potentially be useful for many categories.

4.3. Annotation Prediction

We evaluate applicability of gaze to another end-user ap-

plication, image annotation – outputing a set of object tags

for an image. Here, we consider a successful annotation to

be one that matches the set of objects a person describes

when viewing the image. To transform detection to anno-

tation we output the unique set of categories detected in an

image. Using our simple filtering and gaze-enabled classifi-

cation methods (described in Sec 4.2), we find gaze to be a

useful cue for annotation. Overall, both simple filtering and

classification improve average annotation performance (Ta-

ble 4), and are especially helpful for those categories that

tend to draw fixations and description, e.g. bird, cat, dog,

tv. For inanimate or everyday object categories, e.g. bike,

table, sofa we do see some drop in performance, but not a

significant amount.

5. Conclusion and Future work
In this paper through a series of behavioral studies and

experimental evaluations, we explored the information con-
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aero bike bird boat bottle bus car cat chair cow

baseline detection 63.6 61.7 38.2 44.1 27.9 55.0 50.8 42.9 30.3 66.6

simple filtering 63.6 62.5 39.7 38.8 15.2 55.3 41.9 44.1 24.6 67.4

gaze-enabled detection 60.4 61.1 40.9 42.2 27.8 55.5 49.4 47.1 29.6 64.8

table dog horse mbike person plant sheep sofa train tv

baseline detection 78.7 65.7 65.7 63.3 43.9 32.7 45.3 82.2 72.7 72.5

simple filtering 79.3 67.5 63.8 60.2 40.6 16.6 38.5 82.6 73.9 70.4

gaze-enabled detection 78.5 66.3 66.1 63.1 43.6 32.9 45.0 83.4 75.2 73.4

overall

(mAP)

55.2

52.3

55.3

Table 3: Average precision of detection in the PASCAL dataset

aero bike bird boat bottle bus car cat chair cow

baseline detection 67.6 75.8 42.6 57.1 49.3 74.9 71.4 44.8 49.2 84.9

simple filtering 67.6 76.8 44.8 51.9 51.8 75.1 76.1 46.1 48.6 85.4

gaze-enabled detection 66.4 72.9 47.2 55.0 49.5 75.2 72.7 49.1 50.3 85.2
table dog horse mbike person plant sheep sofa train tv

baseline detection 76.3 66.2 85.9 81.9 64.5 39.8 63.3 73.0 82.9 68.7

simple filtering 76.9 67.9 86.2 82.3 65.1 41.1 63.5 73.3 84.5 71.0

gaze-enabled detection 76.3 67.9 87.1 82.6 65.6 38.6 63.8 72.9 85.1 74.1

overall

(mAP)

66.0

66.8

66.9

Table 4: Average precision of annotation prediction in the PASCAL dataset

tained in eye movements and description and analyzed their

relationship with image content. We also examined the

complex relationships between human gaze and outputs of

current visual detection methods. In future work, we will

study the relationship between temporal order of narrative

decryption and the temporal order of fixations. Moreover,

we will build on this work in the development of more in-

telligent human-computer interactive systems for image un-

derstanding.
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