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Abstract

The recent availability of large amounts of geotagged im-
agery has inspired a number of data driven solutions to
the image geolocalization problem. Existing approaches
predict the location of a query image by matching it to a
database of georeferenced photographs. While there are
many geotagged images available on photo sharing and
street view sites, most are clustered around landmarks and
urban areas. The vast majority of the Earth’s land area
has no ground level reference photos available, which lim-
its the applicability of all existing image geolocalization
methods. On the other hand, there is no shortage of vi-
sual and geographic data that densely covers the Earth –
we examine overhead imagery and land cover survey data
– but the relationship between this data and ground level
query photographs is complex. In this paper, we introduce
a cross-view feature translation approach to greatly extend
the reach of image geolocalization methods. We can often
localize a query even if it has no corresponding ground-
level images in the database. A key idea is to learn the
relationship between ground level appearance and over-
head appearance and land cover attributes from sparsely
available geotagged ground-level images. We perform ex-
periments over a 1600 km2 region containing a variety of
scenes and land cover types. For each query, our algorithm
produces a probability density over the region of interest.

1. Introduction
Consider the photos in Figure 1. How can we determine

where they were taken? One might try to use a search-

by-image service (e.g., Google Images) to retrieve visu-

ally similar images. This will only solve our problem if

we can find an instance-level match with a known location.

This approach will likely succeed for famous landmarks,

but not for the unremarkable scenes in Figure 1. If instead

of instance-level matching we match based on scene-level

features, as in im2gps [9], we can sometimes get a coarse

geolocation based on the distribution of similar scenes. Is

this our best hope for geolocalizing photographs? Fortu-

Figure 1: The above ground level images were captured in

Charleston, SC within the region indicated in this satellite

image. What can we determine about their geolocations? In

this work, we tackle the case for which ground level training

imagery at the corresponding locations is not available.

nately, no – there are numerous additional levels of image

understanding that can help constrain the location of a pho-

tograph. For instance, in the popular “View from Your Win-

dow” contest1, humans discover a litany of geo-informative

visual evidence related to architecture, climate, road mark-

ings, style of dress, etc. However, recognizing these proper-

ties and then mapping them to geographic locations is at the

limit of human ability and far beyond computational meth-

ods.

In this paper, we take a small step in this direction by

exploiting two previously unused geographic data sets –

overhead appearance and land cover survey data. For each

of these data sets we must learn the relationship between

ground level views and the data. These data sets have

the benefits of being (1) densely available for nearly all of

the Earth and (2) rich enough such that the mapping from

ground level appearance is sometimes unambiguous. For

instance, a human might be able to verify that a putative

match is correct (although it is infeasible for a human to do

exhaustive searches manually).

1http://dish.andrewsullivan.com/vfyw-contest/
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The im2gps approach of [9] was the first to predict im-

age geolocation by matching visual appearance. Following

this thread, [13, 5, 27] posed the geolocalization task as an

image retrieval problem, focusing on landmark images on

the Internet. [22, 20, 4] use the images captured from street

view cars in order to handle more general query images.

[1] developed an approach to build 3D point cloud models

of famous buildings automatically from publicly available

images. [10, 15, 21, 14] leverage such 3D information for

more efficient and accurate localization. Note that all the

above mentioned approaches assume at least one training

image is taken from a similar vantage points as that of the

query. A query image in an unsampled location has no hope

of being accurately geolocated. Recently, [2] presented an

algorithm that does not require ground-level training im-

ages. They leverage a digital elevation model to synthesize

3D surfaces in mountainous terrain and match the contour

of mountains extracted from ground-level images to the 3D

model. The paper extends the solution space of existing

geolocalization methods from popular landmarks and big

cities to mountainous regions. However, most photographs

do not contain mountains. For our region of interest in this

work reasoning about terrain shape would not be informa-

tive.

Matching ground-level photos to aerial imagery and geo-

graphic survey data has remained unexplored despite these

features being easily available and densely distributed on

the surface of the earth. One major issue preventing the use

of these features is that the mapping between them is very

complex. For instance, the visual appearance of a build-

ing in ground-level vs. an aerial view is very different due

the extremely wide baseline, varying focal lengths, non pla-

narity of the scene, different lighting conditions and mis-

matched image quality.

Our approach takes inspiration from recent works in

cross-view data retrieval that tackle problems such as static

cameras localization with satellite imagery [11], cross-view

action recognition [16] and image-text retrieval [19, 23].

These approaches achieve cross-view retrieval by learning

the co-occurrence of features in different views. The train-

ing data consists of corresponding features that describe the

same content in multiple views and these techniques often

involve solving a generalized eigenvalue problem to find the

projection basis that maximizes the cross-view feature cor-

relation. One example is Kernelized Canonical Correlation

Analysis [7] which requires solving the eigenvalue problem

of training kernel matrix. However, this approach is not

scalable to very large datasets.

Inspired by [8, 18, 26], we propose a data-driven frame-

work for cross-view image matching. To this end, we col-

lected a new dataset that consists of ground-level images,

aerial images, and land cover attribute images as the train-

ing data. At the test time, we leverage the scene matches
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(a) All database Images (b) Isolated images

Figure 2: The distribution of ground level images from

Panoramio within the region indicated in Figure 1. (a) Most

of the ground level images are concentrated in a few highly

populated areas for which ground-to-ground level match-

ing will suffice. (b) Each point marks an “isolated” image

for which no nearby ground level image is available in the

database. Such images must be localized using cross-view

(ground-to-aerial) image matching.

at ground-level to find possible matches to features in aerial

and attribute images. The contributions in this paper include

(1) we are able to geolocalize images without corresponding

ground-level images in the database and therefore extend

the current solution space; (2) We build a new dataset for

cross-view matching and leverage aerial imagery and land

cover attributes; (3) produce a dense prediction score over a

large scale (40km × 40km) search space.

2. Dataset

For the experiments in this paper we examine a 40km

× 40km region around Charleston, SC. This region ex-

hibits great scene variety (urban, agricultural, forest, marsh,

beach, etc.) as shown in Figure 1. We take one ground-level

image as query and match it to the map database of aerial

images and land cover attributes. Our training data con-

sists of triplets of ground-level images, aerial images, and

attribute maps; see Figure 4. To justify the need for train-

ing data from different views, Figure 2a shows the ground-

level image distribution in our training data. Because the

ground-level images are sparsely distributed over the region

of interest, ground-level retrieval methods in the vein of

im2gps will fail when no nearby training images are close

to query images as shown in Figure 2b. In our database,

98.76% of the space is not covered by any ground-level

image if we consider each image occupies 180m x 180m

field of view. In such cases, the proposed method can lever-

age co-occurrence information in training triplets to match

“isolated images” to aerial and attribute images in the map

database. Note that the proposed method can be generalized

nationwide or globally because the training data we use is

widely available.
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Figure 3: Snapshot of the USGS GAP land cover attributes

(available nationwide) for Charleston, SC.

2.1. Ground-level Imagery

We downloaded 6756 ground-level images from

Panoramio. We do not apply any filters to the resulting im-

ages, even though many are likely impossible to geolocate

(e.g., close up views of flowers). The great scene variety

of photographs “in the wild” makes the dataset extremely

challenging for geolocalization.

2.2. Aerial Imagery

The satellite imagery is downloaded from Bing Maps.

Each 256×256 image covers a 180m × 180m region.

The image resolution is 0.6 m/pixel. Training images are

cropped from the center of the labeled geolocation. The

map database images are densely sampled by a sliding win-

dow with half stride on the region of interest. We collect

a total of 182,988 images for the map database. We rotate

each aerial image to its dominant orientation for rotation

invariant matching.

2.3. Land Cover Attribute Imagery

The National Gap Analysis Program (GAP) conducted a

national wide geology survey and produced the USGS GAP

Land Cover Data Set.2 Figure 3 shows a snapshot of the

dataset at our region of interest. The dataset contains two hi-

erarchical levels of classes including 8 general classes (e.g.,

Developed & Other Human Use, Shrubland & Grassland,

etc.) and 590 land use classes as the subclasses (e.g., De-

veloped/Medium Intensity, Salt and Brackish Tidal Marsh,

etc.) Each pixel in the attribute map is assigned to one gen-

eral class and one subclass. The attribute image resolution

is 30 m/pixel. We crop 5×5 images for the training data and

the map database.

3. Geolocalization via Cross-View Matching
In this section we discuss feature representation for

ground, aerial, and attribute images and introduce several

methods for cross-view image geolocation.

2http://gapanalysis.usgs.gov/gaplandcover/

Figure 4: Example “training triplet”: ground level image, its

corresponding aerial image and land cover attribute map.

3.1. Image Features and Kernels

Ground and Aerial Image: We represent each ground

image and aerial tile using four features: HoG [6], self-

similarity [24], gist [17], and color histograms. The use

of these features to represent ground level photographs is

motivated by their good performance in scene classifica-

tion tasks [25]. Even though these features were not de-

signed to represent overhead imagery, we use them for that

purpose because (1) it permits a simple “direct matching”

baseline for cross-view matching described below and (2)

aerial image representations have not been well explored in

the literature, so there is no “standard” set of features to use

for this domain. HoG and self-similarity local features are

densely sampled, quantized, and represented with a spatial

pyramid [12]. When computing image similarity we use a

histogram intersection kernel for HoG pyramids, χ2 kernel

for self-similarity pyramids and color histograms, and RBF

kernel for gist descriptors. We combine these four feature

kernels with equal weights to form the aerial feature kernel

we use for learning and prediction in the following sections.

All features and kernels are computed by code from [25].

Land Cover Attribute Image: Each ground and aerial

image has a corresponding 5x5 attribute image. From this

attribute image we build histograms for the general classes

and subclasses and then concatenate them to form a multi-

nomial attribute feature. We compare attribute features with

a χ2 kernel.

Our geolocation approach relies on translating from

ground level features to aerial and/or land cover features.

The aerial and attribute features have distinct feature dimen-

sion, sparsity, and discriminative power. In the Experiments

section, we compare geolocation predictions based on aerial

features, attribute features, and combinations of both.

3.2. Matching

In this section, We introduce two noval data-driven ap-

proaches, Data-driven Feature Averaging and Discrimina-

tive Translation, for cross-view geolocalization. We intro-

duce three baseline algorithms for comparison. We first in-

troduce im2gps [9] which can only match images within

the ground-level view. We then introduce Direct Match and

Kernelized Canonical Correlation Analysis as the baseline

891891891893893



algorithms for cross-view geolocalization. In the follow-

ing section, x denotes the query image. The bold-faced x
denotes ground-level images and y denotes aerial/attribute

images of corresponding training triplets. ymap denotes the

aerial/attributes images in the map database. k(., .) denotes

the kernel function.

im2gps: im2gps geolocalizes a query image by guess-

ing the locations of the top k scene matches. im2gps or any

image retrieval based method makes no use of aerial and at-

tribute information and can only geolocate query images in

locations with ground-level training imagery. We compute

k(x,x) to measure the similarity of the query image and the

training images.

Direct Match (DM): In order to geolocate spatially iso-

lated photographs, we need to match across views from

ground level to overhead. The simplest method to match

ground level images to aerial images is just to match the

same features with no translation, i.e., to assume that

ground level appearance and overhead appearance are cor-

related. This is not universally true, but a beach from

ground level and overhead do share some rough texture sim-

ilarities, as do other scene types, so this baseline performs

slightly better than chance. We compute similarity with:

simdm = k(x,ymap) (1)

The direct match baseline cannot be used for ground to at-

tribute matching, because those features sets are distinct.

Kernelized Canonical Correlation Analysis (KCCA):
KCCA is a tool to learn the basis along the direction where

features in different views are maximally correlated:

max
wx �=0,wy �=0

w�
x Σxywy√

w�
x Σxxwx

√
w�

y Σyywy

(2)

where Σxx and Σyy represent the covariance matrices for

ground-level feature and aerial/attribute feature in train-

ing triplets. Σxy represent the cross-covariance matrix be-

tween them. The optimization can be posed as a general-

ized eigenvalue problem and solved as a regular eigenvalue

problem. In KCCA, we use the “kernel trick” to repre-

sent a basis as a linear combination of training examples

by wxi = α�
i φ(x) and wyi = β�

i φ(y). We compute the

cross-view correlation score of query and training images

by summing over the correlation scores on the top d bases:

simkcca =
d∑

i=1

α�
i k(x,x)β

�
i k(y,ymap) (3)

We use the cross-view correlation as the matching score.

KCCA has several disadvantages for large scale cross-view

matching. First, we need to compute the singular value

decomposition for a non-sparse kernel matrix to solve the

eigenvalue problem. The dimension of kernel matrix grows

Scanning window 
search over ROI 
to produce heat 

map 

Average 
Feature 

feature 
vector 

Input 

Matched Scenes 
with their Overhead 

Features 

(a) Feature Averaging.

Matched and unmatched 
Scenes with their 

Overhead Features 

 
Support  
Vectors 

SVM classifier 

Scanning window 
search over ROI 
to produce heat 

map 

Input 

(b) Discriminative translation.

Figure 5: Our proposed data-driven pipelines for cross view

matching. (a) The input ground-level image is matched to

available ground-level images in the database, the features

of the corresponding aerial imagery are averaged, and this

averaged representation is used to find potential matches in

the region of interest (ROI). (b) We train an SVM using

batches of highly similar and dissimilar aerial imagery and

apply it to sliding windows over the ROI.

with the number of training samples. This makes the solu-

tion infeasible as training data increases. Second, KCCA

assumes one-to-one correspondence between two views.

But in our problem, it is common to have multiple ground-

level images taken at the same geolocation. In this case,

we need to throw away some training data to enforce the

one-to-one correspondence.

Data-driven Feature Averaging (AVG): When images

match well in the ground-level view they also tend to have

similar overhead views and land cover attributes. Based on

this observation, we propose a simple method to translate

ground-level to aerial and attribute features by averaging

the features of good scene matches. Figure 5a shows the

pipeline of AVG. We first find the k most similar training

scenes as we do for im2gps and then average their corre-

sponding aerial or land cover features to form our predic-

tions of the unknown features. Finally, we use the averaged

features to match features in the map database:

simavg = k(
∑
i

yi,ymap), i ∈ knn(x,x) (4)

892892892894894



Discriminative Translation (DT): In the AVG ap-

proach, we only utilize the best scene matches to predict

the ground truth aerial or land cover feature. But the dis-
similar ground level training scenes can also be informative

– scenes with very different ground level appearance tend

to have distinct overhead appearance and ground cover at-

tributes. Note that this can be violated when two photos at

the same location (and thus with the same overhead appear-

ance and attributes) have very different appearance (e.g.,

a macro flower photograph vs. a landscape shot). In or-

der to capitalize on the benefits of negative scene matches,

we propose a discriminative cross-view translation method.

The pipeline of “DT” is shown in Figure 5b. The positive

set of DT is the same as AVG and we add to that a rela-

tively large set of negative training samples from the bot-

tom 50% ranked scene matches. We train a support vector

machine (SVM) on the fly with the aerial/attribute features

of the positive and negative examples. Finally, we apply the

trained classifier on the map database:

simdt =
∑
i

αik(yi,ymap) (5)

where the αi is the weight of support vectors. Note that

unlike KCCA, DT allows many-to-one correspondence for

training triplet and results in a more compact representation

(the support vectors) for prediction. As a result, DT is more

applicable to large training databases and more efficient for

testing.

4. Experiments

4.1. Test Sets and Parameter Settings

To evaluate the performance, we construct two hold-out

test sets Random and Isolated from the ground-level image

database.

Random: we randomly draw 1000 images from the

ground-level image database. Some images in this set come

from frequently photographed locations and thus the train-

ing images could contain instance-level matches.

Isolated: We use 737 isolated images with no training

images in the same 180m x 180m block. We are most inter-

ested in geolocalizing these isolated images because exist-

ing methods (e.g., im2gps) fail for all images in this set.

For discriminative translation (DT), for each query we

select the top 30 scene matches and 1500 random bad

matches for training. We train the kernel SVM classifier

by libsvm package [3]. For KCCA, we enforce one-to-one

correspondence by only choosing one ground-level image

from multiple images at the same location in the training

data. We project the data onto first 500 learned bases to

compute the cross-view correlation.

(a) Training data on map (b) Hybrid method

(c) DM (d) KCCA (Aerial)

(e) AVG (Aerial) (f) AVG (Attribute)

(g) DT (Aerial) (h) DT (Attribute)

Figure 6: (a) shows the geolocation of query image (yel-

low), the best 30 scene matches (green) and 1500 bad scene

matches (red). (b) The “hybrid” approach has the best per-

formance in the experiment. (c-d) Direct matching (DM)

and KCCA as baseline algorithm. (e-h) Feature averaging

(AVG) and discriminative translation (DT) on aerial and at-

tribute feature. AVG is more reliable with attribute features

while DT is more accurate with aerial features.
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(l)

Figure 7: Each row shows the accuracy of localization as a function of the fraction of retrieved candidate locations for random

locations and isolated locations, respectively, followed by a bar plot slice through the curves at the 1% mark (rank 1830). (a-

d) Image based matching only, (e-h) land cover attribute based matching only, (i-l) combined image and land cover attribute

based matching. Note in particular that the accuracy of im2gps is exactly zero for the isolated cases across all three bar plots,

since in such cases ground-level reference imagery is not available. In contrast, im2gps enjoys strong performance in the

random case, for which ground level reference imagery is often available. We also note that the SVM performance is poor in

row 2 (land cover attributes only) since many regions with similar and dissimilar visual appearance share the same attribute

distribution. (l) With our hybrid approach, we can determine the correct geolocation for 17.37% of our query images when

we consider the top 1% best matching candidates.

4.2. Performance Metric

Each cross-view matching algorithm returns a score for

every map location (we visualize these as heat maps). For

each query, we sort the scores and the evaluate the perfor-

mance by the rank at the ground truth location. The second

and fourth column of Figure 7 shows the fraction of query

images where the ground truth location is ranked in the top

1% of map locations. For im2gps, we look at the top 30

scene matches for evaluation. Note that we use the same 30

matched images as our positive training examples for AVG

and DT. That means the accuracy of im2gps indicates the

fraction of query images that have the training data at the

ground truth location for AVG and DT.

4.3. Matching Performance

In this section, we evaluate matching ground-level fea-

tures to aerial and/or attribute features. First we show the

heat map of DM and KCCA as our baseline algorithms.

Figure 6c shows DM does not correctly indicate the ground

truth location. Figure 6d shows KCCA can produce higher

probability density around the ground truth region but its

probability density also spreads over to some regions that

are impossible for the ground truth location.

The top row of Figure 7 shows the performance of

894894894896896



matching ground to aerial features. The performance of

DT is better than AVG especially at the low rank region.

Figure 6e shows that the heat map of AVG is too uniform

while Figure 6g shows that the heat map of DT concen-

trates around the ground truth location. This suggests that

the predicted features from AVG fail to learn a discrimina-

tive representation for each query. This is unsurprising, as

discriminative methods have been successful across many

visual domains. For instance, in object detection, averag-

ing descriptors from objects in the same class may produce

a new feature that is also similar to many different classes.

On the other hand, DT can leverage the negative training

data to predict the aerial feature that is only similar to the

given positive examples in a discriminative way.

The middle row of Figure 7 shows the performance of

matching ground to attribute features. This approach is

less accurate than matching to overhead appearance because

attribute features are not discriminative enough by them-

selves. For instance, an attribute feature may correspond

to many locations. Perhaps because the attribute represen-

tation is low dimensional and there are many duplicate in-

stances in the database, DT does not perform as well as the

simple AVG approach.

The bottom row of Figure 7 shows the performance of

matching based on predicting both aerial and attribute fea-

tures. This approach performs better than each individual

feature which suggests that the aerial and attribute features

complement each other. In particular, we find that the best

performance comes by combining the attribute-based rank-

ings from the AVG method and the overhead appearance

based rankings from the DT method. This “hybrid” method

achieves 39.5% accuracy for Random and 17.37% for Iso-
lated.

Figure 8 shows a random sample of successfully and un-

successfully geolocated query images. Our system handles

outdoor scenes better because they are more correlated to

the aerial and attribute images. Photos focused on objects

may fail because the correlation between objects and over-

head appearance and/or attributes is weak. Figure 9 visual-

izes query images, corresponding scene matches, and heat

maps. We demontrate that our proposed algorithm can han-

dle the wide range of scene variety by showing query exam-

ples from three very different scenes.

5. Conclusion
In this paper we propose a cross-domain matching

framework that greatly extends the domain of image geolo-

cation. Most of the Earth’s surface has no ground level geo-

tagged photos publicly (98% of the area of our experimental

region, even though it is part of the densely populated East-

ern coast of the US) and traditional image geolocation meth-

ods based on ground level image to image matching will

fail for queries in such locations. Using our new dataset of

(a)

(b)

Figure 8: Gallery of (a) successfully and (b) unsuccessfully

matched isolated query images in our experiments. Pho-

tos that prominently feature objects tend to fail because the

aerial and land cover features are not well constrained by

the scene features.

ground-level, aerial, and attribute images we quantified the

performance of several baseline and novel approaches for

“cross-view” geolocation. In particular, our “discriminitive

translation” approach in which an aerial image classifier is

trained based on ground level scene matches can roughly

geolocate 17% of isolated query images, compared to 0%

for existing methods. While the experiments in this paper

are at a modest scale (1600km2 region of interest), the ap-

proach scales up easily both in terms of data availability

and computational complexity. Our approach is the first to

use overhead imagery and land cover survey data to geolo-

cate photographs, and it is complementary with the impres-

sive mountain-based geolocation method of [2] which also

uses a widely available geographic feature (digital elevation

maps).
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