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Abstract

We propose a method to learn a diverse collection of
discriminative parts from object bounding box annotations.
Part detectors can be trained and applied individually,
which simplifies learning and extension to new features or
categories. We apply the parts to object category detection,
pooling part detections within bottom-up proposed regions
and using a boosted classifier with proposed sigmoid weak
learners for scoring. On PASCAL VOC 2010, we evaluate
the part detectors’ ability to discriminate and localize an-
notated keypoints. Our detection system is competitive with
the best-existing systems, outperforming other HOG-based
detectors on the more deformable categories.

1. Introduction
One of the greatest challenges in object recognition is

organizing and aligning images of objects from diverse cat-
egories. Objects within a semantic category, such as “dog”
or “boat”, have a diverse set of appearances due to varia-
tions in shape, pose, viewpoint, texture, and lighting. At
its heart, the problem is one of correspondence. Given a
collection of object examples, the learner must determine
which examples or portions of examples should belong to
the same appearance model. A detailed analysis by Zhu et
al. [22] concludes that finding better methods to organize
examples and parts into visual sub-categories is the most
promising direction for future research.

In this paper, we focus on the problem of learning a col-
lection of part detectors (Fig. 1) from a set of object exam-
ples with bounding box annotations. We define a good part
collection to have the following properties:

1. Each part detector is discriminative. Relevant pieces of
the object should score higher than the large majority
of background patches.

2. Each part detector localizes a specific piece of the ob-
ject or the whole object in a particular viewpoint. Parts
should be predictive of pose.

3. The set of parts should cover the object examples. At
least one part detector should confidently localize each
object example.

Figure 1: Averaged patches of top 15 detections on held-out set for

a subset of “dog” part detectors that model different parts, poses,

and shapes. See Fig 4 for more.

In the long run, we are interested in learning a large num-
ber of object category and attribute predictors using shared
parts. Therefore, we also want to be able to add new part de-
tectors incrementally without retraining existing models. To
facilitate transfer learning, we want part detectors that can
be applied individually and avoid structured models such
as the Deformable Parts Model [10] that require joint infer-
ence. structures such as the joint inference used in the

Our main challenge is to simultaneously discover which
pieces of examples belong together and to learn their ap-
pearance model. Our strategy (illustrated in Fig. 2) is to
propose a large number of initial part models, each trained
with a single positive example (Sec. 3.2). Based on mea-
sured discriminative power on validation examples, the sys-
tem selects a subset of part models for refinement, aiming
to maximize the discrimination and coverage of the collec-
tion of parts (Sec. 3.3). Since parts trained on one example
tend to perform poorly, we improve them by searching for
patches within the training object examples that are likely to
correspond (Sec. 3.4). For example, after training an exem-
plar part model that corresponds to the right side of a partic-
ular dog’s face, we search within other “dog” examples for
the side of the face in the same pose. Finding such examples
is difficult because many examples are not applicable (e.g.,
a side view of a running dog), and, even if the part is present,
the detector may incorrectly localize. Including patches that
do not correspond decreases localization and/or discrimina-
tion of the parts model. We experiment with criteria for se-
lecting additional examples based on appearance score and
spatial consistency and find that incrementally adding new
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Figure 2: Overview of our part-based detection. Our approach is to train a large number of part detectors with a single positive exemplar

(patch or whole object), select a subset of diverse and discriminative candidates, and refine models by incorporating additional consis-

tent training examples. Parts are used to classify bottom-up region proposals into object categories using a boosting classifier, and part

predictions are used to predict the the object bounding box.

example parts consistent with each criteria greatly improves
localization accuracy.

We propose several criteria for evaluating a collection of
parts in terms of the discrimination of parts individually, the
coverage of object examples, the predictiveness of manually
labeled keypoints on objects (these keypoints are not used
in training), and the collective discrimination in terms of ob-
ject detection performance (Sec. 6). We compare to Poselet-
style part learning (using ground truth keypoint annotations)
and deformable parts models. Our evaluation methods may
be useful for other researchers attempting to develop and
validate part learning.

To evaluate parts in terms of object detection perfor-
mance, we need a method to localize and score an object
region using the part detectors. Although not the focus of
our paper, we show competitive performance on many cate-
gories using a simple method that pools part responses over
proposed object regions with a boosting classifier (Sec. 4).
We evaluate on PASCAL VOC2010 using the standard cri-
teria and a criteria that ignores localization errors.

2. Related Work

The most related effort in discovering parts is the dis-
criminative method by Singh et al. [19]. Their method is
completely unsupervised and proceeds, in brief, by sam-
pling a large number of patches, clustering them, and al-
ternately training on one subset of images and applying to
another to update the set of cluster members. Our method
is supervised by object-level bounding boxes, enabling us
to directly maximize measures of discrimination and cov-
erage for a particular category. We are also able to explic-
itly evaluate the localization accuracy of the parts and to
demonstrate competitive performance on the difficult VOC
detection challenge.

Our work is also closely related to Poselets [3] in that we
model category appearance with a large collection of part
templates. However, our method does not require keypoint
annotations to train parts. Despite reduced supervision, our
method is able to outperform Poselets in many categories.
We believe this reflects the difficulty in manually defining

effective correspondences.

Other competitive object detection methods [5, 6, 10,
15, 21] that are supervised by bounding boxes differ primar-
ily in how they automatically organize and align examples.
Strategies include training one model per exemplar [15],
discriminatively aligning and assigning whole-object exam-
ples into a moderate number of clusters [6], clustering and
aligning with subtemplates [10], or implicitly aligning sub-
templates using pyramid bag of words features [21].

Our method learns a moderate number of part templates
which may correspond to whole objects or smaller pieces
of objects, and applies them without a spatial model. Our
method produces a diverse collection of part detectors for
detection, pose prediction, and other recognition tasks that
can be trained incrementally and applied individually. By
avoiding the requirement for joint training (clustering or
joint learning of appearance and spatial parameters), our
system simplifies extension to additional parts, features, or
categories. One motivation is to produce a flexible baseline
system for studying spatial models, part sharing [17, 8], and
large-scale learning.

3. Learning a Collection of Parts
A good collection of part detectors is discriminative,

well-localized, and diverse, allowing easy distinction from
other categories while accurately predicting pose and other
attributes. Our method for part learning proposes a large
number of exemplar-based part detectors, selects a discrim-
inative subset with good coverage, then refines the detectors
by finding matching part examples in the training set.

3.1. Modeling Part Appearance

We model the appearance of each part with a HOG tem-
plate [4]. Each part’s appearance is modeled as a linear
classifier w ∈ R

n over HOG features φ(l) for a given lo-
cation l, which specifies the alignment in position, scale,
and left/right flip. For a given candidate object box R, the
goal of inference is to find the most likely location of each
part within R: maxl∈L(R) w

Tφ(l). The set L(R) encodes
the positions in the image that have sufficient overlap with
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the given candidate box subject to any transformation. The
scores are computed efficiently using convolutions over a
spatial pyramid of HOG cells. Our HOG templates range in
size from 50-100 cells with maximum dimensions of 10x10.

3.2. Fast Candidate Proposal

To guide the search for high quality parts, we provide a
strong yet simple initialization for each part. We randomly
sample a patch from within the window of a positive train-
ing example and train a template to separate it from all back-
ground patches using the LDA accelerated version [12] of
the exemplar-SVM [15]. This method precomputes a co-
variance matrix Σd and background mean μd of HOG fea-
tures with dimensions d that captures the statistics across all
positions and scales of natural images. Given exemplar fea-
tures xp for a candidate part, the template model wp is very

simply computed with wp = Σ−1
d (xp − μd). Each initial

template can then be used to find correspondences on other
training examples that have consistent appearance.

We sample two types of candidate parts: (1) Whole ob-
ject templates capture the global object appearance. Includ-
ing a diverse set of whole object templates in our model
allows us to capture multiple modes of appearance. We ini-
tialize one template for each positive training example. (2)
Sub-window templates capture local appearance consisten-
cies within an object. For each category, we train 2000 tem-
plates by sampling a random positive example, scale, aspect
ratio, and location within the object bounding box.

3.3. Selecting a Diverse Set of Candidates

To avoid refining thousands of sampled parts candidates,
we introduce a procedure to select a small subset of parts
that are both discriminative and complementary. Our goal
is to choose a set of high precision parts such that every
positive example has a strong response from at least one
part detector. We quantify these criteria with the average
max precision measure. For a given collection of parts C
and positive part score matrix S, where Sip is the maximum
response of the pth part on the ith example, we define

AMP(C, S) =
1

N

N∑
i=1

max
p∈C

Precp(Sip). (1)

For part p, Precp(s) gives the precision from the PR curve of
a positive example with score s. We use forward selection
to iteratively choose the part that gives the greatest marginal
AMP gain until no more progress can be made. The selected
parts are then refined using the method in Section 3.4. For
efficiency, we compute precision with all positive examples,
but a subset of 200 negative training images. To compute
PR curves, we use the highest scoring part detection with
80% overlap with each positive example and negative parts
from images with no positive examples. For examples of
the selected parts, see Fig. 4.

3.4. Refining Part Models by Mining New Examples

Finding other positive examples that correspond to the
same part as the exemplar significantly improves the reli-
ability of the part detector. Including irrelevant examples
can cause the detector to drift from the exemplar and be-
come incoherent, hurting the localization and detection per-
formance of the final model. Given a set of detections on
the training set, we show how to automatically decide which
correspond to the same part and how to use them to improve
the appearance model. We incrementally add examples that
are consistent with two criteria based on appearance and lo-
cation. This process is closely related to self-paced learning
from [14], in that we both train on automatically selected
subsets of examples to improve appearance models. How-
ever, our objectives are quite different: while their method
aims to find better local optima for explaining all training
examples, we encourage the model to specialize to get the
best fit to a subset of the training examples.

Appearance Consistency Estimate. Given the current
model for part p and set Sp of consistent examples (initially
Sp is just the initial exemplar), we compute the probability
that an example is correctly detected given the appearance
score of its best-aligned location l∗: P

(
Correct|wT

p φ(l
∗)
)
.

We first estimate the probability of being correct by splitting
the space of scores into 20 bins and counting the number of
elements in S and the negative set. We then fit a sigmoid
to the scores to minimize the least squared error between
the sigmoid’s predicted probability and the binned estimate
of the probability. In practice this estimate is more stable
than Platt’s method [18] when there are few positive exam-
ples. Then, we update the set Sp with any examples whose
new probability of being correct is greater than a threshold
τ . This thresholding prunes out examples with low appear-
ance scores, leading to more consistent models.

Spatial Consistency Estimate. We further prune spatially
inconsistent examples with a simple spatial constraint. This
constraint selects examples that are detected in the same lo-
cation relative to the object bounding box, which acts as a
rough proxy for physical location. The location of the de-
tection within the initial examplar’s object bounding box
gives a relative offset in scale and location for the expected
position of the part. After appropriate scaling, translation,
and flipping, we transfer this expected part location to each
positive example. Part detections with insufficient overlap
with the expected position are removed from the set Sp. We
find that this additional spatial constraint is helpful for rigid
objects, but may be too selective for highly deformable ob-
jects like cats.

Learning the Appearance. Next, we use the set Sp of con-
sistent examples, the set Sn of negative examples and the
initial appearance model wp to update the appearance pa-
rameters and best location of each example. We optimize
the parameters with a latent SVM coordinate descent ap-
proach [10] that iteratively infers the most likely alignments
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and uses the corresponding patches to retrain appearance
weights, optimizing max-margin objective:

min
wp

λ

2
||wp||2 +

∑
i∈Sp∪Sn

H

(
yi, max

li∈L(Ri)
wT

p φ(li)
)
. (2)

Each training example is defined by three variables: A label
yi ∈ {−1, 1}, a region of support Ri, and a vector of la-
tent variables li encoding position, scale, and left/right ori-
entation. For positive examples (yi = 1), Ri corresponds
to the ground truth bounding box. For negative examples
(yi = −1), Ri corresponds to a candidate object region pro-
posed by a method such as [7]. H(·) is the hinge loss. The
highest scoring latent variable li is chosen from the set of
valid locations and latent configurations L(Ri).

4. Object Detection Using Parts
Once the collection of part detectors are trained, we pool

the responses into a final object hypothesis. We use a “bag
of parts” model scored over proposed regions. To score a
region, we propose a sigmoid weak learner for boosting part
detections that outperforms the more common stubs.

Pooling with Candidate Object Regions. We use the cat-
egory independent object proposals of [7] to generate 500
candidate object windows for each image. This method
generates the candidates using a set of binary segmentations
from different seed locations, then ranks them based on a
their likelihood of containing an object. For each object
candidate, we infer the highest scoring alignment for each
part, providing a feature vector of part responses. These
responses are used to train a boosted model for each cate-
gory to classify regions as explained in the next section. To
avoid over-fitting, we compute leave-one-out (LOO) scores
for each positive training example by retraining the classi-
fier on all but the current image.

Scoring Object Regions Based on Part Scores. Once
the intermediate part detectors are learned, boosting is used
to learn a comprehensive classifier over their collective re-
sponses for each region. Boosting fits our problem char-
acteristics. Although part detectors are individually effec-
tive, a linear classifier is not suitable because, while a high-
scoring response is strong evidence for an object, a low-
scoring response is only weak evidence for a non-object.
Further, boosting selects a sparse set of parts, improving
detection speed.

We construct the final classifier by boosting over binary
decision stubs using a logistic loss [11] as seen in Algor-
thim 1. Training data X is an N by D matrix for N exam-
ples and D part features plus any auxiliary features. Each
weak learner added by the boosting selects one feature and
maps its values to an object score.

Our weak learners are sigmoid-smoothed stub (1-level
decision tree) functions. In each round of boosting, we gen-
erate a set of candidate weak learners by setting thresholds

Algorithm 1 Boosted Decision Sigmoids

Input: Training data X , Training Labels Y ∈ {−1, 1}, Max Iter-

ations M , Set of weak learnersH
Output: Region classifier C(x)

1: Initialize, balance, and normalize weights ωi for each example

such that:∑
i+|y

i+
=1

ωi+ =
∑

i−|y
i−=−1

ωi− = 1
2

2: for m = 1, 2, ...M do
3: for all weak learners cj(x)← fj(x, y;ω) ∈ H do
4: compute the weighted logistic loss:

L(cj) =
∑

i ωi log (1 + e−yicj(xi))
5: end for
6: Select cm(x) = argmin

cj

L(cj) based on (3)

7: Update weights: ωi =
1

(1+eyic
m(xi))

, ∀i = 1, 2, ..., N

8: Normalize weights to sum to 1

9: end for
10: return Final classifier C(x) =

∑
m cm(x)

−4 −2 0 2 4

0

1

b−

b+

T

xd

C
at

eg
o
ry

sc
o
re

Sigmoid weak learner
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stub bounds

Figure 3: Illustration of our sigmoid learner

T for each feature to be evenly spaced between the least
positive example and the greatest negative example. The
sigmoid function is specified as:

c(x) = S(x, d, T, s) = b− +
b+ − b−

1 + e−s(xd−T )
(3)

b+ =
1

2
log

∑
i ωi�[yi = 1 ∧ xd

i ≥ T ]∑
i ωi�[yi = −1 ∧ xd

i ≥ T ]
(4)

b− =
1

2
log

∑
i ωi�[yi = 1 ∧ xd

i < T ]∑
i ωi�[yi = −1 ∧ xd

i < T ]
, (5)

where b− and b+ are the bounds on the classifier confidence
computed on the weighted distribution, xd is the dth dimen-
sion of a single example in X , and smoothness weight s is
set to the inverse standard deviation of the features values
in column d (s = σ−1

d ). Fig. 3 provides an illustration of
our sigmoid weak learner. By smoothing the stub’s sharp
transition boundary with the sigmoid, we aim to avoid over-
fitting.
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A part detector may not have a valid response on an ob-
ject candidate that is too small or has an incompatible aspect
ratio. To handle these cases, feature values corresponding
to these failed cases are assigned a do not care value DNC.
If xd = DNC in training, the corresponding example is
ignored any weak learner assigned to column d. In testing,
the weak learners will return a confidence score of zero for
the example.

Latent Learning. When learning, our method must select
the best region for each positive example from the set of
500 pre-computed candidate proposals. We initialize learn-
ing with the highest overlapping positive region for each
positive example and 30,000 random negative regions. We
alternate between retraining the boosted classifier and a re-
sampling phase where we use the current model to mine
hard negatives and to reselect the highest scoring positives.

5. Improving Localization

Our part detections are inferred without a spatial model,
so nested or overlapping candidate object regions that con-
tain the same strong part detections are likely to receive the
same object score. We add a weak learner based on HOG
features over the region silhouette to improve region selec-
tion and then repredict the bounding box based on part lo-
cations for better localization.

Capturing Object Shape. To capture the rough shape of
the contents of each region, we compute HOG features on
an 8x8 cell grid over the region mask. We then collect the
features for each of the positive examples (greater than 50%
overlap with ground truth) and a random sampling of nega-
tive regions (less than 35% overlap) and train a linear SVM
classifier. Including this classifier’s prediction in boosting
successfully corrects localization errors without resorting
to deformation models, allowing us to avoid more complex
training and additional optimization during inference.

Repredicting Object Boxes. We use the predicted part lo-
cations to vote for a refined object bounding box. Each part
votes independently, and we combine with a weighted av-
erage based on the probability of the detection being cor-
rect and a learned weighting. This weighting is based on
how well each part can predict each of the four sides of the
bounding box.

First, for each part type p, we learn to predict the ob-
ject box. We use the calibration procedure outlined in sec-
tion 3.4 to learn to predict the probability of being correctly
localized given score sp: P (Cor.|sp). Then we select the
highest scoring location bp for each positive ground truth
box gi. We encode the offset op,i between the ground truth
and its detection by subtracting part’s center location cp,i
from the four sides of the box and normalize by the length
in pixels of the part diagonal, indicated by ||bp,i||. We then
collect the offsets for all of the examples and compute a

weighted average using their probabilities of being correct:

Example Offset : op,i =
gi − cp,i
||bp,i|| (6)

Average Offset : op =

∑
i P (Cor.|sp,i)op,i∑

i P (Cor.|sp,i) (7)

Predicted Box : ep,i = op · ||bp,i||+ cp,i. (8)

To account for the predicted left/right orientation, we flip
the left and right sides of the box accordingly. During in-
ference, we reverse this procedure and predict the expected
object box for each part by accounting for the flip, then scal-
ing the box offset and adding it to the predicted box center.

Next, we find a relative weighting over all of the parts’
predicted boxes that encodes how well each part tends to
predict the box. We learn four weights Ap,d (d = 1..4) for
each part corresponding to the four sides of the bounding
box. Given the part weights Ap,d for each part p and side of

the box d, we compute the final predicted box b̂:

b̂i,d(A) =

∑
p Ap,d · P (Cor.|sp,i) · ep,d∑

p Ap,d · P (Cor.|sp,i) . (9)

To learn the weights, we want to minimize the squared er-
ror between the predicted box and the the ground truth box
gi for each example. We normalize the prediction error by
the length of the ground truth box’s diagonal to account for
different object sizes:

min
A

∑
i

∑
d∈[1,4]

(
b̂i,d(A)− gi,d

||gi||

)2

. (10)

6. Experiments
In this section we validate each of our design decisions

and compare our final Boosted Collection of Parts model to
two successful part-based models.

Dataset. We use the standard PASCAL 2010 VOC detec-
tion dataset [9] to evaluate our method. To validate the in-
dividual components our method, we use a diverse subset
of categories from the train/val split: “aeroplane”, “bicy-
cle”, “boat”, “cat”, “dog”, and “sofa”. We evaluate the spa-
tial consistency of our parts on the poselet keypoint annota-
tions [1]. We compare our overall detection performance to
other part-based methods on all 20 categories of the test set.

6.1. Part Validation
We validate our refined parts’ detection performance and

spatial consistency for the first 40 parts chosen by our part
selection procedure. Fig. 4 visualizes a subset of the refined
parts for each of the validation categories. We selectively
refine parts with (1) appearance criteria only and (2) the in-
tersection of appearance and spatial criteria.

Baselines. We compare our part refinement procedure to
three baselines: (1) exemplar models trained on the initial
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Aeroplane Bicycle Boat Cat Dog Sofa

mAP 3KP xKP mAP 3KP xKP mAP 3KP xKP mAP 3KP xKP mAP 3KP xKP mAP 3KP xKP

Initial Exemplar 15.2 10.1 14.1 17.4 23.5 34.6 3.5 6.0 12.4 23.6 14.1 12.8 18.1 6.2 8.9 6.6 4.0 9.1

Refined: All-In 36.5 17.8 21.3 39.7 32.6 41.3 4.0 5.2 9.6 42.3 33.2 22.0 25.8 11.8 12.9 8.0 3.6 7.2

Refined: App 38.1 22.2 23.9 39.9 33.4 41.6 5.7 8.1 13.9 46.5 39.5 22.5 29.5 16.5 14.7 8.3 4.4 11.1
Refined: App+Spat. 37.3 31.4 27.3 37.2 38.3 42.4 4.6 7.6 14.8 39.5 33.7 22.2 24.4 13.0 13.3 8.7 5.6 10.8

Refined: Keypt. 28.0 24.2 28.3 37.6 45.4 44.2 4.0 6.8 15.6 40.9 39.7 23.6 23.5 18.0 17.4 7.0 5.2 12.9

DPM – – 27.8 – – 43.7 – – 13.5 – – 14.3 – – 11.9 – – 13.3

Table 1: Evaluation of part detection and spatial consistency for each refinement method using three criteria: Mean AP over all parts of a

category (mAP), the mean AP for detecting the top three keypoints for each part type (3KP), and the maximum AP for each keypoint over

all parts (xKP). App and Spatial indicate selective refinement with appearance and spatial constraints. Underlines indicate cases where

the DPM or models trained on keypoint annotations outperform selective refinement.

Figure 4: Averages of patches from the top 15 detections on the

held-out validation set for a sampling of parts trained for each cat-

egory on the PASCAL training set. Note the diversity and spatial

consistency of most parts. For dogs, different parts on similar por-

tions of the face seem to account for differences across breeds.

Some parts correspond to the face (left), others to the whole object

(next to left), and others to a small detail, such as the eye or nose.

sampled patches. For fair comparison we retrain with the
full exemplar-SVM method rather than LDA-SVM; (2) an
“all-in” latent-SVM where every example is used to train a
part; (3) parts trained using the poselet annotations where
each example is aligned by minimizing the mean squared
distance to the annotated keypoints of the initial exem-
plar, using our implementation of the part learning outlined
in [2]. For localization, we also compare to DPM [10].

Detection Performance. To evaluate the discriminative
performance of our parts while ignoring localization, de-
tections that are 80% within a positive bounding box are
true positives and any detections in images without positive
objects are false positives.

Spatial Consistency. To evaluate spatial consistency, we
measure each part’s ability to predict the keypoint annota-
tions of [1]. Since these keypoints were not used to train our

detectors, we compute the offset of each keypoint relative to
a part as the median x, y offset values of the 15 highest scor-
ing detections on the training set. Then for each part, we
collect the highest scoring detection that overlaps with the
positive ground truth example, predict the keypoints using
the offsets, and measure the error as the euclidean distance
to the ground truth annotation. We count a ground truth key-
point as recalled if the error is less than 10% of the object
diagonal. Finally, we compute the average precision of cor-
rectly detecting each keypoint. We repeat this process for
each part, and summarize the results in two ways: (1) We
take the mean average precision of the top three keypoint
types for each part and then average over all parts (called
3KP). This gives a measure of the average spatially con-
sistency of the parts. (2) For each keypoint type, we se-
lect the maximum AP over all of the parts and average over
keypoints (maxKP). This gives a summary of how well a
collection of parts can correctly localize all keypoints.

Discussion of Results. The results are summarized in Ta-
ble 1. First, we confirm that models trained with a single
exemplar are unable to generalize to many examples, lead-
ing to poor detection performance and consistency. Sec-
ond, we find that the baseline “all-in” refinement procedure
has lower spatial consistency, often by a significant margin.
Forcing the “all-in” model to simultaneously capture multi-
ple modes of appearance leads to a less coherent model. In
contrast, our selective refinement procedure is more finely
tuned because it is allowed to choose examples from a sin-
gle mode of appearance.

Next, we compare the strengths of our two consistency
criteria. The spatial consistency measure takes advantage
of the physical regularity of rigid objects like aeroplanes
and bicycles, leading to significant gains in keypoint pre-
diction accuracy. However for the more deformable ob-
jects, or cases where part performance is less reliable, these
constraints become too restrictive and hurt performance. In
these cases, selecting examples based on appearance alone
works extremely well.

Comparing to the parts trained directly on the keypoint
annotations, we find that our spatial consistency is as good
or better in many cases. However, it is clear that some cat-
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egories such as bicycles and dogs could benefit from key-
point annotation. Note that in every case, our parts are
more discriminative than the poselets-style parts. Finally,
we compare to the DPM. Since our individual parts are not
directly comparable, we only compare the coverage of the
keypoints. Again, we have extremely competitive perfor-
mance even though our parts are localized independently
whereas the DPM jointly localizes with a spatial model.

6.2. Detection Validation

We summarize the detection performance of our Boosted
Collections of Parts in Tables 2, 3. Parts are trained using
both appearance and spatial selection criteria.

Classifier Comparison. We compare our boosted sigmoid
classifier to several baseline classifiers using average preci-
sion at 50% overlap. Each classifier is trained on the full
set of parts with shape features and box relocalization. We
train two versions of our boosted sigmoids: (1) trained di-
rectly on the outputs of our part models and (2) on the leave-
one-out (LOO) predictions. We find that these LOO predic-
tions help reduce overfitting to the training set, which is a
common problem for classifiers trained on the outputs of
other classifiers. When compared to the other baselines, we
see that both sigmoid-based classifiers outperform the SVM
and boosted stub classifiers. We found that the linear SVM’s
decision boundary is too simple, causing it to underperform
on the training and test sets. In contrast, the boosted stub’s
sharp threshold transitions hurt generalization. By smooth-
ing the transition boundary with the sigmoid, we find a good
balance between expressiveness and generalization.

Localization Comparison. To highlight localization er-
rors, we evaluate with the standard 50% bounding box over-
lap as well as 10% overlap (as in [13]) which ignores local-
ization errors. We see that the parts alone do well with the
10% criteria, but localize poorly at 50% overlap. Adding
the shape features to specifically target localization errors
boosts accuracy. Further adding the repredicted bounding
boxes gives even greater gains, with comparable perfor-
mance with the DPM on many categories.

Analysis of Overall Performance. We compare our BCP
model to two state of the art part-based methods on PAS-
CAL VOC’s test set: the DPM [10] and Poselets [3] (Ta-
ble 3). Our BCP model achieves competitive performance
to both methods for many categories and performs espe-
cially well for deformable objects like cat and dog. This
highlights its ability to handle rich variation in spatial lay-
out. Our method falls short for some of the more rigid
categories (bike, bottle, etc.), where the other methods are
known to excel. It should be noted that the inital region
proposals have low recall for many of the categories that
underperform, such as bottle, car, and sheep.

False Positive Analysis. In Fig. 5 we compare the sources
of the highest scoring false positives to the DPM using the
analysis code from [13]. Both systems have a compara-
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Figure 5: Fraction of top false positives due to localization error

(blue), similar categories (red), dissimilar categories (green), and

background (orange) using analysis code from [13]. For each cat-

egory, the first row is our method; the second row, DPM [10]. The

most confused categories among similar objects are separated out

with white lines and labeled (bd=bird, shp=sheep). Our method

consistently has less confusion with background and more confu-

sion with similar objects.

ble number of false positives, but we find that our system
makes more sensible mistakes. While the DPM makes ran-
dom confusions with background, our model instead com-
monly confuses cats and dogs. Similarly, our model more
frequently confuses boats more with other vehicles.

7. Conclusions and Future Work

We present a framework to learn a diverse collection of
discriminative parts that have high spatial consistency. To
detect objects, we pool part detections within a small set
of candidate object regions with loose spatial constraints
and training a novel boosted-sigmoid classifier. Our method
outperforms DPM on 5 of 20 categories and 8 of 18 for
Poselets. The complementary nature of our approach can
be seen in the significantly different error patterns from
DPM with less confusion with background and more con-
fusion with similar categories. Our method is an important
step in building more general object recognition systems.
Our boosted collections of parts can extend naturally to the
multi-class feature-sharing methods of [20, 16], allowing us
to revisit these large-scale learning problems with stronger
HOG-based appearance models. Further, an existing collec-
tion of parts could be used to guide the search for the struc-
ture and layout of novel categories, allowing quick boot-
strapping of new category models. Our limited supervision
requirements allow scaling to many categories, and our la-
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Classifier Comparison Localization Comparison
Baselines Sigmoids BCP DPM

SVM Stubs Direct LOO Part Only Part+Reloc. Part+Shape Part+Reloc.+Shape [10]

Aeroplane 41.6 47.3 46.9 48.4 50.2/13.3 54.7/33.7 57.5/40.3 61.8/48.4 58.3/45.0

Bicycle 37.7 36.8 40.8 43.0 45.2/14.8 47.9/36.9 47.7/34.9 50.6/43.0 56.9/52.7

Boat 1.7 4.2 5.7 5.0 14.0/3.1 17.7/4.7 14.8/5.2 16.0/5.0 17.5/6.4

Cat 30.7 34.4 34.2 36.9 55.3/28.5 56.4/34.5 54.0/34.1 59.1/36.9 41.8/24.4

Dog 19.3 18.8 22.1 20.9 35.7/16.6 39.1/17. 6 38.2/21.2 42.0/20.9 21.0/8.5

Sofa 7.1 6.6 9.5 14.1 26.6/6.1 27.1/11.3 24.6/9.4 28.6/14.1 25.5/17.6

Table 2: Detection validation with different classifiers and localization methods. Single numbers indicate AP evaluation. For comparing

localization performance, the first number reports AP without localization errors by using 10% bounding box overlap, and the second with

50% overlap. Underlined numbers indicate cases where DPM outperforms.
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DPM 48.7 52.0 8.9 12.9 32.9 51.5 47.1 29.0 13.8 23.0 11.1 17.6 42.1 49.3 45.2 7.4 30.8 17.1 40.6 35.1

Poselet 33.2 51.9 8.5 8.2 34.8 39.0 48.8 22.2 - 20.6 - 18.5 48.2 44.1 48.5 9.1 28.0 13.0 22.5 33.0

BCP 44.3 35.2 9.7 10.1 15.1 44.6 32.0 35.3 4.4 17.5 15.0 27.6 36.2 42.1 30.0 5.0 13.7 18.8 34.4 28.6

Table 3: Detection comparison on PASCAL VOC 2010 test set.

tent search could allow hybrid methods that use a mixture
of detailed supervision and bounding box annotations.
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