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Abstract

From a set of images in a particular domain, labeled with

part locations and class, we present a method to automati-

cally learn a large and diverse set of highly discriminative

intermediate features that we call Part-based One-vs-One

Features (POOFs). Each of these features specializes in

discrimination between two particular classes based on the

appearance at a particular part. We demonstrate the partic-

ular usefulness of these features for fine-grained visual cat-

egorization with new state-of-the-art results on bird species

identification using the Caltech UCSD Birds (CUB) dataset

and parity with the best existing results in face verification

on the Labeled Faces in the Wild (LFW) dataset. Finally,

we demonstrate the particular advantage of POOFs when

training data is scarce.

1. Introduction

Fine-grained visual categorization has become a popu-

lar area over the past several years. In contrast to basic-

level recognition, in which we need to distinguish basic-

level categories such as chair and car from each other, the

fine-grained categorization problem asks us to distinguish

subordinate-level categories such as office chair and kitchen

chair from each other. One relatively well-studied exam-

ple of fine-grained visual categorization is species or breed

recognition.

Many of the most accurate approaches to fine-grained

visual categorization are based on detecting and extracting

features from particular parts of the objects. For example, in

dog breed classification one may extract features from the

nose and base of the ears [16, 23]. Face recognition is an ex-

treme case of fine-grained visual categorization in which the

“subcategories” are individual instances, and the best face

recognition methods extract features from locations deter-

mined by finding facial landmarks such as the corners of the

eyes [3, 31, 36]. Intuitively, we expect fine-grained visual

categorization to require part-based approaches because the

differences between subcategories are small and not notice-

able from global, image-level features. Fine-grained vi-

sual categorization also conveniently enables part-based ap-

proaches, because objects within the same basic-level cat-

egory will often have the “same” parts [25], allowing for

easier comparison. For example since all dogs have noses,

it is natural in dog breed recognition to attempt to detect and

extract features from the nose. In basic-level categorization

this approach is more difficult, as there is no natural cor-

responding part among instances of dogs, motorboats, and

staplers.

Computer vision has produced a wide array of stan-

dard features, including SIFT [17], SURF [1], HOG [7],

LBP [20], etc. A straightforward approach to part-based

recognition is to extract some of these features at the part

locations and build a classifier. In general, however, these

standard features are unlikely to be optimal for any partic-

ular problem; what is best will likely vary both by domain

(the best features for dogs are different from the best fea-

tures for birds) and by task (the best features for face recog-

nition are different from the best features for gender classi-

fication).

In this work, we build a framework for learning a large

set of discriminative intermediate-level features, which we

call Part-based One-vs-One Features (POOFs), specialized

for a particular domain and set of parts. The process of

learning these features is illustrated in Figure 1. We start

with a dataset of images in the domain, labeled by class

and with part locations. For any pair of classes, for any

pair of parts, we extract some low-level features in a grid

of cells that covers the two parts, and train a linear clas-

sifier to distinguish the two classes from each other. (In

our experiments we use histograms of gradient direction

or color as the low-level features.) The weights assigned

by this classifier to different cells of the grid indicate the

most discriminative region around these parts for this pair

of classes. We fix the support region for our feature based

on these weights, and then retrain the classifier to find a dis-

criminative projection. The combination of the two parts,

the low-level feature, the learned support region, and the

final projection form a POOF, which can produce a scalar
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Figure 1. Learning a Part-based One-vs-One Feature (POOF) for bird species identification. Given (a) a reference dataset of images labeled

with class (species) and part locations, a POOF is defined by specifying two classes, one part for feature extraction, another part for

alignment, and a low-level “base feature.” (b) Samples of the two chosen classes are taken from the dataset and (c) aligned to put the two

chosen parts in fixed locations. (d) The aligned images are divided into cells at multiple scales, from which the base feature is extracted.

A linear classifier is trained to distinguish the two classes, giving (e) a weight to each cell. We threshold the weights and find the maximal

connected component contiguous to the chosen feature part, setting this as (f) the support region for the POOF. Finally, a classifier is trained

on the base feature values from just the support region. The output of this classifier is our one-vs-one feature.

score (the decision value from the classifier) for any test

image with locations for the two parts. This score is our

intermediate-level feature. If our dataset does not have part

locations, the straightforward simplification of taking the

grid over the whole image or the object’s bounding box pro-

duces OOFs rather than POOFs, but we do not analyzed

their performance here.

This paper makes the following contributions:

• We present a fully automatic method for constructing

a library of Part-based One-vs-One Features (POOFs)

– discriminatively trained intermediate-level features –

from a set of images with class and part location labels

• We demonstrate that POOFs significantly advance the

state of the art on the Caltech-UCSD Birds dataset, ob-

taining a classification accuracy of 73.30% on the lo-

calized species categorization benchmark, quadrupling

the accuracy reported in [27].

• We demonstrate that POOFs reduce the need for large

training sets, showing that in the face domain they can

be used as extremely effective intermediate features for

tasks such as attribute labeling.

While each POOF is only known to be discriminative

for the two classes used in its definition, we find that col-

lections of POOFs are useful not only for classification into

the classes in the reference dataset, but for other tasks in

the same domain. We show examples in two domains, bird

species and faces.

2. Related Work

Fine-grained visual categorization has seen a lot of work

recently. Instance-level recognition can be seen as the

“finest-grained” categorization, and is most commonly seen

as face recognition or image search. Face recognition often

takes a part-based approach, either by explicitly extracting

features at landmark points (e.g. [6, 30, 34]) or by perform-

ing an alignment step based on parts, then extracting fea-

tures from fixed locations (e.g. [3, 14, 31]). [3] in partic-

ular takes an approach similar to ours in using binary one-

vs-one classifiers trained on a reference set as discrimina-

tive features for the domain. In all of these cases, however,

the locations and shapes of the regions from which the fea-

tures are extracted are designed and tuned by hand. In our

work, the selection of regions for feature extraction is fully

automatic, allowing the method to be applied easily to any

domain.

Moving up a step from instance-level recognition, subor-

dinate category recognition has been explored mostly in the

context of species or breed recognition. Many authors have

reported bird species identification results on the Caltech-

UCSD Birds Dataset [27], using the idea of parts in one way

or another. [8, 32, 33, 35] in different ways attempt to find

parts of the image that are discriminative without explicit

part labels, but cannot achieve the accuracy of a supervised

part-based approach. [4, 26] propose interactive approaches

which include the system requesting the location of the most

discriminative parts from the user. [9] defines a set of just
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two coarse parts (the head and body) used to align the im-

ages, but do not use fine-scale part locations to define their

features. Additional fine-grained recognition work has been

demonstrated on trees [13], flowers [19], butterflies [28, 8],

and dogs [16, 21, 23].

Although much recognition work continues to use fixed

features such as SIFT, HOG, and LBP, there is also work

which, like ours, attempts to some degree to learn the fea-

ture from a dataset. One branch of this is the work on at-

tributes. [14] and [15] train attribute classifiers based on

a set of classes with labeled attributes, then apply the at-

tribute classifiers to novel classes, in the domains of faces

and animal species respectively. In both cases, unlike our

POOFs, the attributes are chosen by hand. [8] comes closer

to our work, automatically finding discriminative attributes,

and their support regions, based on a hierarchical overseg-

mentation of the images. However, by deriving the regions

from segmentation, they seem to only find attributes that

correspond to single-color regions of the images.

Outside the realm of fine-grained categorization, there

is some work in learning discriminative features. [11] ap-

plies linear discriminant analysis to remove correlation be-

tween HOG features, improving their accuracy. Brown et

al. [5] describe a formal optimization method for learning a

parametrized descriptor based on a set of matching patches,

and a convex formulation of this method is presented in

[24]. These methods restrict the shape of the feature support

region to one of several symmetric configurations, while our

method allows any shape of descriptor, up to the resolution

of our base feature grid.

3. Part-Based One-vs-One Features

Our method requires as input a reference dataset of im-

ages belonging to the domain under study, annotated with

class labels and part locations. It is not necessary that all

parts be labeled in all images. The output of our method

is a set of discriminative features we call Part-based One-

vs-One Features, suitable for many tasks in this domain. If

the task at hand is supervised classification, the reference

dataset may simply be the training set, but it need not be. It

can also be a separate dataset labeled with classes different

from those in the classification task. We show examples of

this in Sections 4.2 and 4.3.

Given the reference set, the process of POOF learning is

fully automatic. The method is illustrated in Figure 1, and

is motivated overall by the goal of building a discriminative

and diverse set of features. Let the reference set consist of

images in N classes {1, ..., N}, each image labeled with P

parts. Each POOF we will learn is defined by

• the selection of two distinct reference classes,

i, j ∈ {1, ..., N} with i �= j,

• one part for feature extraction, f ∈ {1, ...P},

• one other part for alignment, a ∈ {1, ..., P}, with

a �= f , and

• a low-level base feature, b, which can be extracted

from windows in the image. In the current implemen-

tation we use two base features: gradient direction his-

tograms and color histograms.

We write T
i,j
f,a,b for the POOF built based on these param-

eters; it is a function that extracts a single, scalar score from

any image in the domain, and in combination the T
i,j
f,a,b

form a powerful feature space. We learn how to extract

T
i,j
f,a,b by the following procedure.

1. The POOF will be learned based on the reference im-

ages of classes i and j. We first take all these images,

exclude those in which either part f or part a is miss-

ing, and perform a similarity transform to bring points

f and a to fixed positions. The transformed image is

then cropped to a rectangular region enclosing points f

and a. Depending on whether points f and a are close

to or far from each other on images in this domain,

T
i,j
f,a,b will learn a fine-scale or coarse-scale feature.

2. We tile the cropped images with a grid of feature cells,

and extract the base feature from each cell. We do mul-

tiple tilings, each using grid cells of a different size,

and so extracting features at a different scale.

3. For the tiling at each scale, we train a linear support

vector machine to distinguish class i from class j,

based on the concatenation of the base feature values

over the grid.

4. The trained SVM weight vector gives weights to every

dimension of the base feature in every grid cell. We

assign to each grid cell in each tiling the maximum ab-

solute SVM weight over the dimensions in the feature

vector that correspond to that cell. By thresholding

these weights, we obtain a mask on the aligned images

that defines the grid cells that are most discriminative

between class i and j.

5. Starting with the grid cell containing part f as a seed,

we find the maximum connected component of grid

cells above the threshold in each tiling. This will act

as a mask on the aligned image, defining at each scale

a discriminative region around part f . By restricting

the region to a connected component of f , we force

POOFs with different feature parts to use different re-

gions, encouraging diversity across the set of POOFs.

6. The low-level feature associated with T
i,j
f,a,b is the con-

catenation of the base feature at the masked cells in all

the tilings. Using this feature and all aligned images

of classes i and j, we train another linear SVM. This

SVM learns a projection of the masked, multiscale, lo-

cal feature to a single dimension. This projection is

T
i,j
f,a,b.
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Figure 2. Bird species classification accuracy on the full 200-

species CUBS benchmark.

To extract feature T
i,j
f,a,b from a new image with part lo-

cations, we proceed through the steps above again. The new

image is aligned by similarity to put parts f and a in stan-

dard locations, then the base-level feature is extracted from

just the masked cells of the tilings at each scale. The result-

ing vector is evaluated by the SVM to get a scalar projection

value, which is the POOF score.

Note that switching i and j simply reverses the sign of

the feature (i is taken as the “positive” class when training

the SVMs). To avoid redundancy, we restrict ourselves to

i < j. In contrast, parts f and a play different roles in

constructing the POOF, so it may be useful to have both

T
i,j
1,2,b and T

i,j
2,1,b.

3.1. Implementation details

In our current implementation, we use the following set-

tings.

• In the alignment, the two parts are placed in a hori-

zontal line with 64 pixels between them. The crop is

centered at the midpoint of the two parts, and is 64

pixels tall and 128 pixels wide.

• We use two scales of grid for the base feature extrac-

tion, with 8 x 8 and 16 x 16-pixel cells.

• We use two base features. The first is a gradient direc-

tion histogram. This feature comes in two variants. For

the “gradhist” variant, we extract an 8-bin gradient di-

rection histogram from each grid cell, then concatenate

the histograms over all cells (or in the final T
i,j
f,a,b, over

just the masked cells). For the “HOG” variant, we use

Dalal and Triggs’ histogram of oriented gradients [7]

feature, as modified by Felzenszwalb et al. [10] to in-

clude a dimensionality reduction step and the concate-

nation of histograms of signed and unsigned gradient.
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Figure 3. Bird species classification accuracy on the “birdlets” sub-

set of 14 woodpeckers and vireos defined in [9].

This gives us a nine-bin unsigned gradient direction

histogram, an 18-bin signed gradient orientation his-

togram, and 4 normalization constants, for, in total, a

31-dimensional feature for each grid cell. These are

concatenated as in the gradhist variant.

The second base feature is a color histogram. We use

the same grids as for the gradient direction histograms,

assigning each pixel to one of 32 color centers to form

a histogram of length 32. The color histograms are

then concatenated as with the gradient orientation his-

tograms. The color centers are obtained by running

k-means in RGB space on the pixels in the aligned and

cropped region for all the images in the reference set,

so the color centers are a function of f and a.

• For the SVM weight threshold we use the median ab-

solute weight. This has the effect of masking out half

of the region in Step 4 (which is further reduced when

we restrict the region to a connected component con-

tiguous with part f ).

4. Experiments

To demonstrate the value and applicability of POOFs, we

apply them to three problems. In Section 4.1, we consider

bird species identification, building a set of POOFs from

the training set, and applying them to recognition. In Sec-

tion 4.2 we apply our method to face verification on unseen

face pairs, building POOFs on a set of faces of different

people than the test faces, demonstrating that our features

learn to discriminate over the domain of images in general

and not just over the particular classes from which they are

built. In Section 4.3, we apply the POOFs built in Sec-

tion 4.2 to attribute classification, and find that they are use-

ful even when the classification task is on a different type
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of classes (attributes) than the classes on which they were

learned (subject identities).

4.1. Bird Species Identification

The Caltech-UCSD Birds 200-2011 dataset [27] con-

tains 11,788 photographs of birds spanning 200 species.

Each image is labeled with its species, a bounding box for

the bird, and the image coordinates of fifteen parts: the

back, beak, belly, breast, crown, forehead, left eye, left leg,

left wing, nape, right eye, right leg, right wing, tail, and

throat. The images are split into training and test sets, with

about 30 images per species in the training set, and the re-

mainder in the test set. The authors propose several bench-

marks for species recognition and part detection. Here, we

evaluate on the “localized species categorization” bench-

mark, in which the part locations for all images are pro-

vided to the algorithm, and the task is, given the species

labels on the training images, to determine the species of

the test images. We also include results using an automatic

parts detector in place of the ground truth positions.

There are very few images in the dataset with all fifteen

parts visible. In particular, most birds have only one eye and

one wing visible. When a part is not visible, it is labeled as

such, with no position given. To better be able to make

correspondences between parts, we preprocess the images,

performing a left-right reflection on any image in which the

right eye is visible but the left is not. This gives us a dataset

in which almost all of the images have the left eye labeled (a

few images have neither eye visible). We then disregard the

(usually missing) right eye, right wing, and right leg parts.

To apply POOFs to this problem, we take the training set

as our reference set. There are 200 classes, twelve parts, and

two base features, yielding
(
200

2

)
· 12 · 11 · 2 = 5, 253, 600

possibilities if we exhaustively learn features for all

(i, j, f, a, b). Instead, we randomly choose 5000 sets of pa-

rameters and learn just those features. We then extract the

POOF scores from the training and test images, obtaining

a feature vector of length 5000 for each image. Using this

feature, we train a set of 200 one-vs-all linear SVMs to clas-

sify species. For each image, we rank the 200 species from

highest to lowest classifier response. Taking the top ranked

species for each image, we achieve a classification accuracy

of 68.73% using the gradhist variant of the gradient feature,

or 73.30% using the HOG variant.

While the localized species categorization protocol de-

fined in [27] uses the ground truth part locations, this does

not give automatic classification performance. To evaluate

automatic classification, we rerun the experiment using au-

tomatically detected part locations on the test data in place

of the ground truth locations. We use part locations from

the part detector of [2] on images cropped to the bounding

boxes of the birds, allowing us to compare with previous

work that uses the bounding boxes but not the part labels.

Figure 4. Face parts from the detector of [2].

Using these detected part locations, we obtain a classifica-

tion accuracy of 54.42% with the gradhist variant or 56.78%

with HOG. The rate at which the correct species is in the top

k ranked species is shown in Figure 2. For comparison with

existing work, we also show our results when restricted to

the 14-species “birdlets” subset of the dataset defined in [9]

in Figure 3. Our rank-1 classification accuracy on this sub-

set using the gradhist variant is 80.15% using the ground

truth parts and 65.08% using the detected parts, or 85.68%

and 70.10% using HOG.

To show the benefit of the POOFs, we contrast our one-

vs-all species classifiers with classifiers trained in a similar

way, but without the POOFs. The POOFs are built using

histograms of gradient direction and color over spatial grids

covering the parts as the base features. For comparison, we

build species classifiers that operate directly on the concate-

nation of these base features over all twelve parts. As with

the POOF-based species classifiers, these classifiers are lin-

ear SVMs. These classifiers achieve a rank-1 accuracy of

39.99%.

Baseline accuracy on the localized species categoriza-

tion benchmark reported in [27] is 17.31%, barely a quarter

of our accuracy. To our knowledge, ours is the first subse-

quent work strictly following this protocol. However there

are several pieces of work on this dataset reporting results

of different experiments with which we can make compar-

isons.

Our result of 56.78% based on automatically detected

parts uses only the ground truth bounding boxes, as does all

the previous work cited here, and is far higher than any ex-

isting results on the full 200-species dataset, although there

are differences in the experiments that make some of the

comparisons imperfect. [4] and [33] report rank-1 accura-

cies, of 19% and 19.2% using multiple kernel learning and

random forests respectively. However they use an earlier

version of the dataset [29] with less training data. [32] re-

ports 44.73% mean average precision on the birdlets sub-

set using the earlier version of the dataset (our mAP with

HOG on the birdlets subset is 85.57% using ground truth

parts or 70.16% using detected parts). Only [8] and [35]
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report on the later version of the dataset. The former does

not include results on the full 200-species set or the known

birdlets subset, however the highest accuracy they report is

55%, on a five-species subset, very close to our automatic

result on the much more difficult 200-species set. The latter

is the most directly comparable to our work, reporting mean

average precision of 28.18% on the 200-species benchmark

and 57.44% on the birdlets subset. Our comparable mean

average precisions with HOG are 56.89% and 70.16% re-

spectively.

4.2. Face Verification

In face verification, we are given two face images, of

people not encountered at any training stage, and must de-

termine whether they are two images of the same person or

images of two different people. Because we must deal with

previously unseen faces, there is no training set of images

belonging to the classes we will be faced with at test time,

as there was in the previous example, where we could learn

our features based on the training set. Here, we learn the

features from a set of face images entirely separate from the

evaluation dataset, in the belief that the features we discover

are generally applicable to the face domain.

The Labeled Faces in the Wild (LFW) [12] is the stan-

dard face verification dataset and benchmark, containing

6,000 face pairs and a ten-fold cross-validation protocol

for algorithm evaluation. The best existing result on the

“image-restricted” benchmark is 93.30% [3], using a sep-

arate reference dataset of images labeled with identity to

train a set of “Tom-vs-Pete” classifiers, which are then used

as feature extractors feeding a higher level classifier. We use

this same reference dataset to learn POOFs, and also trans-

form the images with the “identity-preserving alignment”

from that work as a preprocessing step, based on part detec-

tions from the detector of [2].

The reference dataset, from [3], consists of 20,639 face

images, downloaded from the internet, spanning 120 sub-

ject identities. The images are annotated with the location

of 95 parts, a fairly dense representation that is useful for

alignment, but unnecessary for learning the our features; we

use only the sixteen-part subset shown in Figure 4. We learn

a random selection of 10,000 POOFs from this dataset, fol-

lowing the steps in Section 3 without modification.

To apply POOFs to the verification problem, we follow

the method of [3]. For each verification pair (I, J), we get

10,000-dimensional POOF score vectors f(I), f(J). We

then represent the pair by the concatenation of |f(I)−f(J)|
and f(I)·f(J) (where the subtraction and multiplication are

performed elementwise) to get a 20,000-dimensional pair

feature vector. This image pair feature is extracted from

the training folds to train a same-vs-different classifier that

makes the verification decision.

We obtain an accuracy of 93.13%, with a standard devi-
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Figure 5. Results on the LFW benchmark. Our result, and the top

four previous results.
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Figure 6. Comparison of POOFs with low-level features on the

LFW benchmark.

ation of 0.40%across the ten folds using the gradhist vari-

ant, or 92.80%±0.47% using HOG. Our method shares a

great deal with the state-of-the-art method of [3], and ob-

tains very similar results. The most important difference

is that our method is general, where they carefully choose

the support regions for the Tom-vs-Pete classifiers based on

knowledge of face recognition. Our method is also more

efficient at test time, using a linear rather than an RBF ker-

nel. Our ROC curve is shown in Figure 5, with the four best

published results on this benchmark. Figure 6 compares the

result from the POOFs with a result using the base features

alone, showing, as in Figure 2 for bird species recognition,

a substantial boost due to the POOFs.
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Attribute Method
Number of training samples Kumar
6 20 60 200 600 et al.

Gender
low-level feat. 50.7 61.0 66.9 81.4 87.8

90.5POOFs 86.2 89.9 89.7 91.3 91.7

Asian
low-level feat. 53.9 53.9 68.4 78.2 83.2

86.5POOFs 75.2 75.8 84.3 87.6 89.8

White
low-level feat. 57.0 57.4 68.3 76.7 77.7

85.5POOFs 66.3 74.9 82.6 81.7 80.5

Black
low-level feat. 60.9 68.3 76.7 84.1 87.3

75.4POOFs 74.0 84.2 87.4 88.9 90.4

Youth
low-level feat. 53.6 56.0 59.8 62.5 66.2

66.1POOFs 71.0 62.0 67.6 67.7 70.8

Middle low-level feat. 49.5 51.0 49.6 53.2 56.0
54.2Aged POOFs 47.1 50.9 51.4 57.5 59.6

Senior
low-level feat. 54.6 60.6 63.7 72.1 74.3

69.5POOFs 70.7 75.9 73.6 80.0 79.5

Black low-level feat. 50.3 53.6 62.3 67.9 68.9
66.0Hair POOFs 54.6 59.3 62.9 67.9 66.7

Blond Hair
low-level feat. 53.7 60.7 69.0 72.3 74.6

67.6POOFs 70.5 68.8 72.6 71.4 75.2

Bald
low-level feat. 54.4 57.3 65.4 68.7 70.9

71.8POOFs 55.4 62.2 64.9 66.3 66.9

No low-level feat. 51.2 56.6 58.8 75.6 79.5
83.9Eyewear POOFs 65.9 76.9 75.9 85.6 87.0

Eyeglasses
low-level feat. 51.7 53.9 61.5 71.4 79.4

86.4POOFs 74.5 79.3 77.2 85.6 89.5

Mustache
low-level feat. 53.3 61.1 69.0 75.2 81.9

83.1POOFs 70.0 82.0 73.7 81.7 85.8

Receding low-level feat. 55.0 56.3 67.0 70.0 73.6
75.7Hairline POOFs 63.7 66.4 69.3 70.5 71.8

Bushy low-level feat. 49.9 55.8 63.5 67.4 72.1
71.7Eyebrows POOFs 60.0 61.8 66.0 67.7 73.5

Arched low-level feat. 53.2 51.1 54.6 63.3 65.9
66.4Eyebrows POOFs 64.5 66.9 63.5 69.1 70.9

Big low-level feat. 52.5 52.5 59.0 63.3 66.6
65.4Nose POOFs 55.2 63.6 61.5 64.9 68.3

No low-level feat. 57.1 51.2 62.8 71.2 75.9
80.6Beard POOFs 71.1 68.0 68.8 68.7 76.7

Round low-level feat. 50.8 49.5 50.0 53.2 55.7
50.5Jaw POOFs 51.5 53.7 54.4 55.6 54.8

Average improvement 12.3 13.4 8.0 4.3 2.7 2.8

Table 1. Attribute classification accuracy. For each attribute, the

first row gives the baseline accuracy obtained by training directly

on the low-level base features (color and gradient direction his-

tograms), and the second row gives accuracies using our POOFs.

The more accurate of the two is in bold. The last column gives

accuracies of the classifiers of Kumar et al. [14] on the same test

images, in bold when better than the POOFs classifier with 600

training samples. The last row shows the average improvement of

the POOFs over the low-level features or [14]. As these are binary

attributes, chance gives 50% accuracy.

4.3. Attribute Classification

Our third experiment is attribute classification on human

faces. For their work on attributes, Kumar et al. [14] down-

loaded face images from the Internet, labeled them with at-

tributes such as gender, race, age, and hair color, and used

these labels to train attribute classifiers based on low-level

features such as raw pixel color and gradients. We use this

same dataset to train a set of attribute classifiers based on

POOFs. Kumar et al. have made available both human la-

bels and the results of their attribute classifiers for 19 binary

attributes on the 7701 images in View 2 of LFW. Restricting

ourselves to these 19 attributes, we use these images as our

test set.

Although the classes in this task (attributes) are of a dif-

ferent type from those in the previous experiment (iden-

tities), we remain in the face domain, and so expect the

POOFs we learned there to be useful here. We use the

POOFs learned in Section 4.2 without modification. (This

means they are trained using our reference set, not the

attributes-labeled images.) To build attribute classifiers, we

simply extract our 10,000 POOF scores from the attribute

training images, and use these feature vectors to train a lin-

ear SVM for each attribute. One of the benefits of POOFs

is that by incorporating knowledge of the domain learned

from the reference set, which is not labeled with attributes,

they reduce the need for a large attribute-labeled training

set. To demonstrate this, we restrict the number of images

we use from the training set.

The results on the test set are shown in Table 1, using

the gradhist variant of the gradient orientation base feature.

As before, we also show the performance of classifiers built

directly on the low-level base features. In almost every case

our POOFs outperform the classifier operating directly on

the low-level features. The difference is especially large

when the amount of training data is small. At six training

samples, many of the direct classifiers are at chance accu-

racy (e.g. gender) or even worse; it is easy for the classifier

to attach significance to a random peculiarity of the six im-

ages it sees. Our POOFs, based on what they have learned

is discriminative in a different set of classes (identities) in

the same type of image (faces), avoid this noise. The ta-

ble also shows the results of the classifiers of [14] on this

dataset. These classifiers are trained on between 1500 and

5600 samples each. To account for biases in the dataset, the

accuracies we report are the means of the accuracies on pos-

itive and negative test images. (For example, the test set is

6% Asian, so a direct calculation of accuracy would give a

“never-Asian” classifier 94% accuracy, but our calculation

would give it 50%.)

5. Conclusions

We have described a method for building a large set of

Part-based One-vs-One Features based on a dataset of im-

ages labeled by class and with part locations, and shown

them to have excellent performance in a series of exper-

iments with different tasks on different datasets, outper-

forming existing work on the CUBS-200 2011 dataset and

equaling the best results on the extensively studied LFW

dataset. The strength of the POOFs lies in their ability to

bring knowledge from an external, labeled dataset to bear

on the problem at hand, even when the labels on the exter-
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nal set are of different classes from the dataset under study,

and the discriminative power and diversity brought about by

training each POOF on a single pair of classes and a single

part.
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