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Figure 1. Our method can extrapolate an image of limited field of view (left) to a full panoramic image (bottom right) with the guidance

of a panorama image of the same scene category (top right). The input image is roughly aligned with the guide image as shown with the

dashed red bounding box.

Abstract

We significantly extrapolate the field of view of a photo-
graph by learning from a roughly aligned, wide-angle guide
image of the same scene category. Our method can extrapo-
late typical photos into complete panoramas. The extrapo-
lation problem is formulated in the shift-map image synthe-
sis framework. We analyze the self-similarity of the guide
image to generate a set of allowable local transformations
and apply them to the input image. Our guided shift-map
method preserves to the scene layout of the guide image
when extrapolating a photograph. While conventional shift-
map methods only support translations, this is not expres-
sive enough to characterize the self-similarity of complex
scenes. Therefore we additionally allow image transforma-
tions of rotation, scaling and reflection. To handle this in-
crease in complexity, we introduce a hierarchical graph op-
timization method to choose the optimal transformation at
each output pixel. We demonstrate our approach on a vari-
ety of indoor, outdoor, natural, and man-made scenes.

1. Introduction
When presented with a narrow field of view image hu-

mans can effortlessly imagine the scene beyond the particu-

lar photographic frame. In fact, people confidently remem-

ber seeing a greater expanse of a scene than was actually

shown in a photograph, a phenomena known as “bound-

ary extension” [15]. In the computational domain, numer-

ous texture synthesis and image completion techniques can

modestly extend the apparent field of view (FOV) of an im-

age by propagating textures outward from the boundary.

However, no existing technique can significantly extrapo-

late a photo because this requires implicit or explicit knowl-

edge of scene layout. Recently, Xiao et al. [29] introduced

the first large-scale database of panoramic photographs and

demonstrated the ability to align typical photographs with

panoramic scene models. Inspired by this, we ask the ques-

tion: is it possible to dramatically extend the field of view

of a photograph with the guidance of a representative wide-

angle photo with similar scene layout?

Specifically, we seek to extrapolate the FOV of an input

image using a panoramic image of the same scene category.

An example is shown in Figure 1. The input to our system

is an image (Figure 1, left) roughly registered with a guide

image (Figure 1, top). The registration is indicated by the

red dashed line. Our algorithm extrapolates the original in-

put image to a panorama as shown in the output image on

the bottom right. The extrapolated result keeps the scene

specific structure of the guide image, e.g. the two vertical

building facades along the street, some cars parked on the

side, clouds and sky on the top, etc. At the same time, its

visual elements should all come from the original input im-

age so that it appears to be a panorama image captured at

the same viewpoint. Essentially, we need to learn the shared

scene structure from the guide panorama and apply it to the

input image to create a novel panorama.

We approach this FOV extrapolation as a constrained
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texture synthesis problem and address it under the frame-

work of shift-map image editing [25]. We assume that

panorama images can be synthesized by combining mul-

tiple shifted versions of a small image region with limited

FOV. Under this model, a panorama is fully determined by

that region and a shift-map which defines a translation vec-

tor at each pixel. We learn such a shift map from a guide

panorama and then use it to constrain the extrapolation of

a limited FOV input image. Such a guided shift-map can

capture scene structures that are not present in the small im-

age region, and ensures that the synthesized result adheres

to the layout of the guide image.

Our approach relies on understanding and reusing the

long range self-similarity of the guide image. Because a

panoramic scene typically contains surfaces, boundaries,

and objects at multiple orientations and scales, it is diffi-

cult to sufficiently characterize the self-similarity using only

patch translations. Therefore we generalize the shift-map

method to optimize a general similarity transformation, in-

cluding scale, rotation, and mirroring, at each pixel. How-

ever, direct optimization of this “similarity-map” is compu-

tationally prohibitive. We propose a hierarchical method to

solve this optimization in two steps. In the first step, we fix

the rotation, scaling and reflection, and optimize for the best

translation at each pixel. Next, we combine these interme-

diate results together with a graph optimization similar to

photomontage [1].

2. Related Work
Human vision. Intraub and Richardson [15] presented

observers with pictures of scenes, and found that when ob-

servers drew the scenes according to their memory, they

systematically drew more of the space than was actually

shown. Since this initial demonstration, much research has

shown that this effect of “boundary extension” appears in

many circumstances beyond image sketching. Numerous

studies have shown that people make predictions about what

may exist in the world beyond the image frame by using vi-

sual associations or context [2] and by combining the cur-

rent scene with recent experience in memory [23]. These

predictions and extrapolations are important to build a co-

herent percept of the world [14].

Environment map estimation from a single image.
Rendering techniques rely on panoramic environment maps

to realistically illuminate objects in scenes. Techniques

such as [21, 16] estimate environment maps from single

images in order to manipulate material properties and in-

sert synthetic objects in existing photographs. In both cases,

the synthesized environment maps are not very realistic, but

they do create plausible models of incident light. Our tech-

nique could be used to generate higher quality environment

maps for more demanding rendering scenarios (e.g. smooth

and reflective objects).

Figure 2. Baseline method. Left: we capture scene structure by the

motion of individual image patches according to self-similarity in

the guide image. Right: the baseline method applies these mo-

tions to the corresponding positions of the output image for view

extrapolation.

Inpainting. Methods such as [3, 22, 4] solve a diffu-

sion equation to fill in narrow image holes. Because they

do not model image texture in general, these methods can-

not convincingly synthesize large missing regions. Further,

they are often applied to fill in holes with known, closed

boundaries and are less suitable for FOV extension.

Texture synthesis. Example based texture synthesis

methods such as [9, 8] are inherently image extrapolation

methods because they iteratively copy patches from known

regions to unknown areas. More sophisticated optimization

methods [20] preserve texture structure better and reduce

seam artifacts. These techniques were applied for image

completion with structure-based priority [5], hierarchical

filtering [7] and iterative optimization [26]. Hertzmann et

al. [13] introduced a versatile “image analogies” framework

to transfer the stylization of an image pair to a new image.

Shift-map image editing [25] formulates image completion

as a rearrangement of image patches. Kopf et al. [19] ex-

trapolate image boundaries by texture synthesis to fill the

boundaries of panoramic mosaics. Poleg and Peleg [24] ex-

trapolate individual, non-overlapping photographs in order

to compose them into a panorama. These methods might

extrapolate individual images by as much as 50% of their

size, but we aim to synthesize outputs which have 500% the

field of view of input photos.

Hole-filling from image collections. Hays and

Efros [11] fill holes in images by finding similar scenes in

a large image database. Whyte et al. [27] extend this idea

by focusing on instance-level image completion with more

sophisticated geometric and photometric image alignment.

Kaneva et al. [18, 17] can produce infinitely long panoramas

by iteratively compositing matched scenes onto an initial

seed. However, these panoramas exhibit substantial seman-

tic “drift” and do not typically create the impression of a

coherent scene. Like all of these methods, our approach re-

lies on information from external images to guide the image

completion or extrapolation. However, our singular guide

scene is provided as input and we do not directly copy con-

tent from it, but rather learn and recreate its layout.
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Figure 3. Arch (the first row) and Theater example (the second row). (a) and (b) are the guide image and the input image respectively. (c)

and (d) are the results generated by the baseline method and our guided shift-map method.

3. Overview

Our goal is to expand an input image Ii to I with larger

FOV. Generally, this problem is more difficult than filling

small holes in images because it often involves more un-

known pixels. For example, when I is a full panorama,

there are many more unknown pixels than known ones. To

address this challenging problem, we assume a guide image

Ig with desirable FOV is known, and Ii is roughly regis-

tered to Iig (the “interior” region of Ig). We simply reuse Ii
as the interior region of the output image I . Our goal is to

synthesize the exterior of I according to Ii and Ig .

3.1. Baseline method

We first describe a baseline algorithm. Intuitively, we

need to learn the transformation between Iig and Ig , and

apply it to Ii to synthesize I . This transformation can be

modeled as the motions of individual image patches. Fol-

lowing this idea, as illustrated in Figure 2, for each pixel

q in the exterior region of the guide image, we first find a

pixel p in the interior region, such that the two patches cen-

tered at q and p are most similar. To facilitate matching,

we can allow translation, scaling, rotation and reflection of

these image patches. This matching suggests that the pixel

q in the guide image can be generated by transferring p with

a transformation M(q), i.e. Ig(q) = Ig(q ◦M(q)). Here,

p = q ◦M(q) is the pixel coordinate of q after transformed

by a transformation M(q). We can find such a transforma-

tion for each pixel of the guide image by brute force search.

As the two images Ii and Ig are registered, these transfor-

mations can be directly applied to Ii to generate the image

I as I(q) = Ii(q ◦M(q)).

To improve the synthesis quality, we can further adopt

the texture optimization [20] technique. Basically, we sam-

ple a set of grid points in the image I . For each grid point,

we copy a patch of pixels from Ii centered at its matched

position, as the blue and green boxes shown in Figure 2.

Patches of neighboring grid points overlap with each other.

Texture optimization iterates between two steps to synthe-

size the image I . First, it finds an optimal matching source

location for each grid point according to its current patch.

Second, it copies the matched patches over and averages the

overlapped patches to update the image.

However, as shown in Figure 3 (c), this baseline does

not generate appealing results. The results typically show

artifacts such as blurriness, incoherent seams, or semanti-

cally incorrect content. This is largely because this baseline

method is overly sensitive to the registration between the in-

put and the guide image. In most cases, we can only hope to

have a rough registration such that the alignment is seman-

tically plausible but not geometrically perfect. For exam-

ple, in the theater example shown in Figure 3, the registra-

tion provides a rough overlap between regions of chairs and

regions of screen. However, precise pixel level alignment

is impossible because of the different number and style of

chairs. Such misalignment leads to improper results when

the simple baseline method attempts to strictly recreate the

geometric relationships observed in the guide image.

3.2. Our generalized shift-map

To handle the fact that registration is necessarily inexact,

we do not directly copy transformations computed from Ig
according to the registration of Ii and Ig . Instead, we for-

mulate a graph optimization to choose an optimal transfor-

mation at each pixel of I . Specifically, this optimization is

performed by minimizing the following energy,

E(M) =
∑

q

Ed(M(q)) +
∑

(p,q)∈N

Es(M(p),M(q)). (1)
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Here, q is an index for pixels, N is the set of all neighbor-

ing pixels. Ed(·) is the data term to measure the consis-

tency of the patch centered at q and q ◦M(q) in the guide

image Ig . In other words, when the data term is small, the

pixel q in the guide image Ig can be synthesized by copy-

ing the pixel at q ◦M(q). Since we expect I to have the

same scene structure as Ig (and Ii is registered with Iig), it

is therefore reasonable to apply the same copy to synthesize

q in I . Specifically,

Ed(M(q)) = ‖R(q, Ig)−R(q ◦M(q), Ig)‖2. (2)

R(x, I) denotes the vector formed by concatenating all pix-

els in a patch centered at the pixel x of the image I .

Es(·, ·) is the smoothness term to measure the compat-

ibility of two neighboring pixels in the result image. The

smoothness cost penalizes incoherent seams in the result

image. It is defined as the following,

Es(M(p),M(q)) = ‖I(q ◦M(q))− I(q ◦M(p))‖2
+‖I(p ◦M(q))− I(p ◦M(p))‖2. (3)

If M(q) is limited to translations, this optimization has

been solved by the shift-map method [25]. He et al. [12]

further narrowed down M(q) to a small set of representa-

tive translations M obtained by analyzing the input image.

Specifically, a translation M will be present in the represen-

tative translation set only if many image patches can find a

good match by that translation. This set M captures the

dominant statistical relationships between scene structures.

In our case, we cannot extract this set from the input image

Ii, because its FOV is limited and it does not capture all the

useful structures. So we estimate such a set from the guide

image Ig , and apply it to synthesize the result I from the

input Ii, as shown in Figure 5. In this way, it ensures I to

have the same structure as Ig . As our set of representative

translations M is computed from the guide image, we call

our approach the guided shift-map method.

However, in real images, it is often insufficient to

just shift an image region to re-synthesize another image.

Darabi et al. [6] introduced more general transformations

such as rotation, scaling and reflection for image synthesis.

So we also include rotation, scaling and reflection which

makes M(q) a general similarity transformation. This

presents a challenging optimization problem.

4. Hierarchical Optimization
Direct optimization of Equation 1 for general similar-

ity transformations is difficult. Pritch et al. [25] intro-

duced a multi-resolution method to start from a low res-

olution image and gradually move to the high resolution

result. Even with this multi-resolution scheme, the search

space for M(q) is still too large for general similarity trans-

formations. We propose a hierarchical method to solve this

Figure 5. Left: in the guide image, the green patches vote for a

common shift vector, because they all can find a good match (blue

ones) with this shift vector; Right: The red rectangle is the output

image canvas. The yellow rectangle represents the input image

shifted by a vector voted by the green patches in the guide image.

The data cost within these green patches is 0. The data cost is set

to C for the other pixels within the yellow rectangle, and set to

infinity for pixels outside of the yellow rectangle.

problem in two steps. As shown in Figure 4, we first fix

the rotation, scaling and reflection parameters and solve an

optimal translation map. In the second step, we merge these

intermediate results to obtain the final output in a way sim-

ilar to Interactive Digital Photomontage [1].

4.1. Guided shift-map at bottom level

We represent a transformation T by three parameters

r, s,m for rotation, scaling, and reflection respectively. We

uniformly sample 11 rotation angles from the interval of

[−45o, 45o], and 11 scales from [0.5, 2.0]. Vertical reflec-

tion is indicated by a binary variable. In total, we have

11∗11∗2 = 242 discrete transformations. For each transfor-

mation T , we use the guided shift-map to solve an optimal

translation at each pixel. We still use M(q) to denote the

translation vector at a pixel q. For better efficiency, we fur-

ther narrow down the transformation T to 20 ∼ 50 differ-

ent choices. Specifically, we count the number of matched

patches (by translation) for each discretized T , and only

consider those T with larger number of matches.

Building representative translations As observed in

[12], while applying shift-map image editing, it is prefer-

able to limit these shift vectors to a small set of predeter-

mined representative translations. So we use Ig to build a

set of permissible translation vectors and apply them to syn-

thesize I from Ii.
For each pixel q in the exterior of Ig , we search for its

K nearest neighbors from the interior Iig transformed by

T , and choose only those whose distance is within a fixed

threshold. Each matched point p provides a shift vector

p− q. We build a histogram of these vectors from all pixels

in Ig . After non-maximum suppression, we choose all local

maximums as candidate translations. For efficiency consid-

eration, we choose the top 50 candidate translations to form

the set of representative translations MT . In most experi-

ments, more than 80% of the exterior pixels can find a good

match according to at least one of these translations.

For the K nearest neighbor search, we measure the sim-
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Figure 4. Pipeline of hierarchical optimization. We discretize a number of rotation, scaling and reflection. For each of the discretizd

transformation Ti, we compute a best translation at each pixel by the guided shift-map method to generate ITi . These intermediate results

are combined in a way similar to the Interactive Digital Photomontage [1] to produce the final output.

ilarity between two patches according to color and gradient

layout using 32×32 color patches and 31-dimensional HOG

[10] features, respectively. We normalize the distance com-

puted by color and HOG feature respectively according to

the standard deviation of the observed distance.

Graph optimization We choose a translation vector

at each pixel from the candidate set MT by minimizing

the graph energy Equation 1 with the guidance condition

M(q) ∈ MT for any pixel q. We further redefine the data

term in Equation 2 as illustrated in Figure 5. For any trans-

lation M ∈ MT , the input image Ii is first transformed

by T (which is not shown in Figure 5 for clarity), and then

shifted according to M . For all the pixels (marked in red

in Figure 5) that cannot be covered by the transformed Ii
(yellow border), we set their data cost to infinity. We fur-

ther identify those pixels (marked in green in Figure 5) that

have voted for M when constructing the shift vector his-

togram, and set their data cost to zero. For the other pixels

that can be covered by the transformed Ii but do not vote

for M , we set their data cost to a constant C. C = 2 in our

experiments. The smoothness term in Equation 3 is kept un-

changed. We then minimize Equation 1 by alpha-expansion

to find the optimal shift-map under the transformation T .

This intermediate synthesis result is denoted by IT .

4.2. Photomontage at top level

Once we have an optimal shift-map resolved for each

transformation T , we seek to combine these results with an-

other graph optimization. At each pixel, we need to choose

an optimal transformation T (and its associated shift vector

computed by the guided shift-map). This is solved by the

following graph optimization

E(T ) =
∑

q

Ed(T (q)) +
∑

(p,q)∈N

Es(T (p), T (q)). (4)

Here, T (q) = (r, s,m) is the selected transformation at a

pixel q. The data term at a pixel q evaluates its synthe-

sis quality under the transformation T (q). We take all data

costs and smoothness costs involving that pixel from Equa-

tion 1 as the data term Ed(T (q)). Specifically,

Ed(T (q)) = ET
d (M

T (q)) +
∑

p∈N(q)

ET
s (M

T (p),MT (q)).

Here, MT (q) is the optimal translation vector selected for

the pixel q under the transformation T . ET
d (·) and ET

s (·, ·)
are the data term and smoothness terms of the guide shift-

map method under the transformation T . N(q) is the set of

pixels which neighbor q.

The smoothness term is defined similar to Equation 3,

Es(T (p), T (q)) = ‖IT (p)(q)− IT (q)(q)‖2
+‖IT (p)(p)− IT (q)(p)‖2.

We then minimize the objective function Equation 4 by

alpha-expansion to determine a transform T at each pixel.

The final output at a pixel q is generated by transforming

Ii with T (q) and MT (q) and copying the pixel value at the

overlapped position.

5. Experiments
We evaluate our method with a variety of real pho-

tographs. Given an input image Ii, we find a suitable

Ig from the SUN360 panorama database [28] of the same

scene category as Ii or we use an image search engine. We

then provide a rough manual registration to align Ii and Ig
and run our algorithm to generate the results.

5.1. Comparison with the baseline method

Figure 3 shows two examples comparing our method

with the baseline method. Our method clearly outperforms

the baseline method. In the theater example, although rough

registration aligns semantically similar regions to the guide

image Ig , directly applying the offset vectors computed

in Ig to the I generates poor results. In comparison, our

method synthesizes correct regions of chair and wall by ac-

commodating the perspective-based scaling between exte-

rior and interior in the MT . In the Arch example, some
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Figure 6. We evaluate our method with different registration between Ii and Ig . (a) and (b) are the guide and input images. (c) shows

five different registrations. The red dashed line shows the manual registration. The others are generated by randomly shifting the manual

registration for 5%, 10%, 15% and 20% of the image width. (d)–(h) are the five corresponding results. These results are framed in the

same color as their corresponding dashed line rectangles.

parts of the tree in the exterior region of the guide image

match to patches in the sky in the interior region due to the

similarity of patch feature (both HOG and color). As a re-

sult, part of the tree region is synthesized with the color of

sky in the baseline method. Our method can avoid this prob-

lem by choosing the most representative motion vectors in

the guide image and thus avoid such outliers. Both exam-

ples show that our method is more robust than the baseline

method and does not require precise pixel level alignment.

We also tested PatchMatch with the baseline method de-

scribed in Section 3.1. While PatchMatch allows an almost

perfect reconstruction of the guide image from its interior

region, the resulting self-similarity field does not produce

plausible extrapolations of the input image. In general,

as more transformations are allowed, reconstruction of the

guide image itself strictly improves (Equation 1), but the

likelihood that these best transformations generalize to an-

other scene decreases. In choosing which transformations

to allow, there is a trade-off between expressiveness and ro-

bustness, and the similarity transforms we use seem to per-

form the best empirically.

Typically, our method takes about 10 minutes to synthe-

size a 640 by 480 image. Most of the time is spent on K

nearest neighbor search, for which numerous acceleration

techniques are available.

5.2. Robustness to registration errors

Our method requires the input image to be registered to

a subregion of the guide image. Here, we evaluate the ro-

bustness of our method with respect to registration errors.

Figure 6 shows an example with deliberately added regis-

tration error. We randomly shift the manually registered in-

put image for 5–20% of the image width (600 pixels). The

results from these different registrations are provided in the

Figure 6 (d)–(h). All results are still plausible, with more

artifacts when the registration error becomes larger. Gen-

erally, our method still works well for a registration error

below 5% of image width. In fact, for this dining car ex-

ample and most scenes, the “best” registration is still quite

poor because the tables, windows, and lights on the wall

cannot be aligned precisely. Our method is robust to mod-

erate registration errors, as we optimize the transformations

with the graph optimization.

5.3. Matching with HOG features

Unlike most texture transfer methods, our approach com-

pares image content with HOG features in addition to raw

color patches. Figure 7 shows an example of how the

recognition-inspired HOG can help our image extrapola-

tion. Some patches in the foliage are matched to patches

in the water in the guide image when the HOG feature is

not used. This causes some visual artifacts in the result as

shown in Figure 7 (c). The result with HOG feature is free

from such problems as shown in Figure 7 (d). Please refer

to the zoomed view in (b) for a clearer comparison.

5.4. Panorama Synthesis

When Ig is a panoramic image, our method can syn-

thesize Ii to a panorama. However, synthesizing a whole

panorama at once requires a large offset vector space for

voting to find representative translations. Also the size of

MT has to be much larger in order to cover the whole

panorama image domain. Both of these problems require

huge memory and computation.

To solve this problem, we first divide the panoramic

guide image Ig into several sub-images with smaller
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Figure 7. Synthesis with different patch feature. The result ob-

tained with HOG feature is often better than that from color fea-

tures alone.
but overlapping FOV. We denote these sub-images as

Ig1, Ig2, ..., Ign. The input image is register to ONE of

these sub-images, say Igr. We then synthesize the output

for each of these sub-image one by one. For example, for

the sub-image Ig1, we find representative translations by

matching patches in Ig1 to Igr. We then solve the hierar-

chical graph optimization to generate I1 from the input im-

age. Finally, we combine all these intermediate results to

a full panorama by photomontage, which involves another

graph cut optimization. This “divide and conquer” strategy

generates good results in our experiments. One such ex-

ample is provided in Figure 1. The success of this divide

and conquer approach also demonstrates the robustness of

our method, because it requires that all the sub-images be

synthesized correctly and consistently with each other.

Figure 8 shows more panorama results for outdoor, in-

door, and street scenes. The first column is the input image.

On the right hand side of each input image are the guide

image (upper image) and the synthesized result (lower im-

age). In all the panorama synthesis experiments, the 360◦

of panorama is divided into 12 sub-images with uniformly

sampled viewing direction from 0◦ ∼ 360◦. The FOV of

each sub-image is set to 65.5◦. This ensures sufficient over-

lapping between two nearby sub-images. The FOV of the

input images are around 40◦ ∼ 65.5◦ degrees.

6. Conclusion
We present the first study of the problem of extrapolat-

ing the field-of-view of a given image with a wide-angle

guide image of the same scene category. We design a novel

guided shift-map image synthesis method. The guide image

generates a set of allowable transformations. The graph op-

timization chooses an optimal transformation for each pixel

to synthesize the result. We generalize the conventional

shift-map to accommodate general similarity transforma-

tions. Our method can extrapolate an image to a panorama

and is successfully demonstrated on various scenes.
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