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Abstract
We present a dense reconstruction approach that overcomes

the drawbacks of traditional multiview stereo by incorporating
semantic information in the form of learned category-level
shape priors and object detection. Given training data com-
prised of 3D scans and images of objects from various view-
points, we learn a prior comprised of a mean shape and a set of
weighted anchor points. The former captures the commonality
of shapes across the category, while the latter encodes similar-
ities between instances in the form of appearance and spatial
consistency. We propose robust algorithms to match anchor
points across instances that enable learning a mean shape for
the category, even with large shape variations across instances.
We model the shape of an object instance as a warped ver-
sion of the category mean, along with instance-specific details.
Given multiple images of an unseen instance, we collate infor-
mation from 2D object detectors to align the structure from
motion point cloud with the mean shape, which is subsequently
warped and refined to approach the actual shape. Extensive
experiments demonstrate that our model is general enough
to learn semantic priors for different object categories, yet
powerful enough to reconstruct individual shapes with large
variations. Qualitative and quantitative evaluations show that
our framework can produce more accurate reconstructions
than alternative state-of-the-art multiview stereo systems.

1. Introduction
Recent years have seen rapid strides in dense 3D shape

recovery, with multiview stereo (MVS) systems capable of re-

constructing entire monuments [14, 17]. Despite this progress,

MVS has remained largely applicable only in favorable imag-

ing conditions. Lack of texture leads to extended troughs

in photoconsistency-based cost functions, while specularities

violate inherent Lambertian assumptions. Diffuse photoconsis-

tency is not a reliable metric with wide baselines in scenarios

with few images, leading to sparse, noisy MVS outputs. Under

these circumstances, MVS reconstructions often display holes

or artifacts (see Figure 1 dashed box).

On the other hand, there have been crucial developments in

two seemingly disjoint areas of computer vision. With the ad-

vent of cheap commerical scanners and depth sensors, it is now

possible to easily acquire 3D shapes. Concurrently, the perfor-

mance of modern object detection algorithms [9, 11, 22, 32]

has rapidly improved to allow inference of reliable bounding
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Figure 1. Traditional multiview stereo faces challenges due to lack of

texture, wide baselines or specularities. We propose a framework for

semantic dense reconstruction that learns a category-level shape prior,

which is used with weighted warping and refinement mechanisms to

reconstruct regularized, high-quality 3D shapes.

boxes in the presence of clutter, especially when information

is shared across multiple views. This paper presents a frame-

work for dense 3D reconstruction that overcomes the draw-

backs of traditional MVS by leveraging semantic information

in the form of object detection and shape priors learned from a

database of training images and 3D shapes.

The aforementioned drawbacks of MVS have been widely

recognized and several prior works share our philosophy of

augmenting reconstruction with prior knowledge. For instance,

Furukawa et al. [13] reconstruct indoor environments by in-

corporating Manhattan priors, Gallup et al. [16] recover urban

façades with a piecewise planar assumption and Wu et al. [31]

recover building models with a prior derived from architectural

schematic curves. All the above approaches use application-

specific information to provide the shape priors.

In contrast, our priors are far more general – they are

category-level and learned from training data. An overview

of our reconstruction framework is shown in Figure 2. We

postulate in Section 3 that while object instances within a cate-

gory might have very different shapes and appearances, they

share certain similarities at a semantic level. For example,

both sedans and sports cars have bonnets and wheels. We

model semantic similarity as a shape prior, which consists

of a set of automatically learned anchor points across several

instances, along with a learned mean shape that captures the
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Figure 2. Outline of our semantic dense reconstruction framework. Please see Section 1 for an overview.

shared commonality of the entire category. Our experiments

demonstrate that this novel representation can successfully

achieve the balance between capturing semantic similarities

and shape variation across instances.

In the learning phase (Section 4), the anchor points encode

attributes such as frequency, appearance and location similar-

ity of features across instances. The associated weights aid

in discarding spurious texture matches, while determining a

weighted regularization for both mean shape learning and re-

construction. Based on matched anchor points, the shape prior

for a category is determined by a series of weighted thin-plate

spline (TPS) warps over the scans of training objects.

Our reconstruction phase (Section 5) starts with a point

cloud obtained by applying a structure-from-motion (SFM) or

MVS system to images of an unseen instance (with a shape

different from training objects). Bounding boxes from object

detection in individual images are collated using the SFM

camera poses and used to localize and orient the object in the

point cloud. This guides the process of matching anchor points

– shown by green stars in right panel in Figure 2 – between the

learned prior and the test object’s SFM point cloud, followed

by a warping of the prior shape in order to closely resemble the

true shape. Finer details not captured by the shape prior may

be recovered by a refinement step, using guidance from SFM

or MVS output. The refinement combines confidence scores

from anchor points and photoconsistency in order to produce

a regularized, high quality output shape. Not only are our

reconstructions visually pleasant, they are also quantitatively

closer to the ground truth than other baselines (Section 6).

2. Relation to Prior Work
Our comprehensive reconstruction pipeline relates to several

areas of computer vision, as briefly explored in this section.

Multiview Stereo. This paper provides a framework to aug-

ment traditional multiview stereo (MVS) reconstruction meth-

ods with semantic information. Broadly, MVS approaches in

computer vision may be categorized as patch-growing, depth-

map based and volumetric methods. The former uses a locally

planar patch model to perform a succession of expansion steps

to maximize photoconsistency and filtering steps to remove

inaccurate patches [15]. Depth map-based methods seek a la-

beling from the space of pixels to a set of discrete depth labels

[21]. Volumetric methods, on the other hand, seek a binary

partitioning of 3D space into object and non-object [18, 30].

We choose the patch-based system [15] for demonstration, but

our framework can be generalized to other approaches too.

Example-Based Reconstruction. A set of example shapes

is used by active shape models (ASM) to encode patterns of

variability, thereby ensuring a fitted shape consistent with de-

formations observed in training [8]. However, it requires heavy

manual annotation and only models linear variations. While

reasonable in 2D, it is arguably not well-suited for the far

higher shape and appearance variations in general 3D scenes.

Subsequent works on statistical shape analysis [10] allow non-

rigid TPS warps between shapes [5], but often require landmark

identification and initial rigid alignment based on point dis-

tributions, which is not feasible for general scenes [24]. We

use semantic information, namely object detection for localiza-

tion and anchor point matching, to overcome those drawbacks.

Learned anchor points yield confidence scores, which guide

our deformation process through a weighted TPS [26].

Morphable models in 3D demonstrate realistic shape re-

covery, but are limited to categories like faces with low shape

variation that can be accurately modeled with a linear PCA

basis [4]. Pauly et al. propose a framework for example-based

3D scan completion, but require dense 3D scans [25]. By ex-

ploiting semantics in the form of object detection and anchor

point matching, we handle both greater shape variation and

noisy, incomplete, image-based MVS inputs.

Shape Matching. Determining correspondence across in-

stances with varying shape is a key step in shape matching.

Belongie et al. pose correspondence search as a bipartite match-

ing problem with shape context descriptors [2], Berg at al. find

points with similar geometric blur descriptors by solving an

integer quadratic program[3], while Chui and Rangarajan’s

TPS-RPM determines matches with a soft assign [6]. A 3D

CAD model is aligned to images in [23], but the model and fea-

tures are manually defined. The demands on correspondences

for 3D reconstruction are far higher than 2D shape matching

– competing factors like high localization accuracy, stringent

outlier rejection and good density are all crucial to obtaining

a high quality dense reconstruction. Algorithms 1 and 2 are

designed to robustly meet these challenges.

Object Detection and 3D Information. The mutual benefit

of combining object detection and SFM is demonstrated in [1].

The flexibility of implicit shape-based detection frameworks
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[22] is used to transfer depth annotations from training images

to test objects in [29, 28]. TPS-RPM is combined with Hough

voting to localize object boundaries in [12]. Object recognition

is improved in [19] by computing deformation priors directly in

transformation space. However, the complexity of 3D shapes

and the accuracy demands of 3D reconstruction necessitate far

greater control over the deformation process, so we consider it

advantageous to compute priors in the mesh space.

3. Our Model
We assume that for each object category, there exists a

prior that consists of a 3D mean shape S∗ that captures the

commonality of shapes across all instances and a set of anchor
points A that captures similarities between subsets of instances.

The shape of any particular object Si is a transformation of S∗,

plus specific details Δi not shared by other instances:

Si = T ({S∗,A}, θi) + Δi, (1)

where T is a warping (transformation) function and θi is the

warping parameter that is unique to each object instance. In the

following, we briefly explain the various aspects of our model.

Anchor points. The key to reconstructing an object instance

is to estimate the warping parameters θi. We leverage on

certain reliable features associated with the shape prior, which

we call anchor points. Anchor points form the backbone of our

framework, since they are representative of object shape and

the relative importance of different object structures. Anchor

points with high weights, ω, are considered stable in terms

of location and appearance, and thus, more representative of

object shape across instances. They guide the learning of the

mean shape for a category, as well as the deformation processes

during actual 3D reconstruction. In Section 4.1, we detail the

mechanism of learning anchor points from training data.

Warping function. We assume that the functional form of T
is known. In particular, prior work on shape matching [2, 19]

has demonstrated inspiring results using regularized thin-plate

spline (TPS) transformations [5] to capture deformations. Let

{xi} and {x′
i}, i = 1, · · · , n, be two sets of anchor points for

object instances O and O′. The TPS mapping T is given by

T (x, {α,β}) =
3∑

j=0

αjφj(x) +

n∑

i=1

βiU(x,xi) (2)

where φ0(x) = 1, φj(x) = xj and U(x,xi) = ‖x − xi‖.

Note that our TPS representation is in 3D, instead of the more

common 2D representation in traditional shape matching. The

solution for the parameters θ = {α,β} in a regularized frame-

work is given by the system of equations:

(K+ nλI)β +Φα = x′, Φ�β = 0, (3)

where Kij = U(xi,xj), Φij = φj(xi) and λ is a regular-

ization parameter. Regularized TPS yields a solution that in-

terpolates between two point sets and is sufficiently smooth.

However, greater control is required for 3D reconstruction

applications, since the extent of deformations must be deter-

mined by the local level of detail. Semantic information of

this nature is determined automatically in our framework by

the anchor point learning mechanism. To incorporate semantic

information from anchor points, in the form of a weight matrix

W = diag(ω1, · · · , ωn), we use an extension of TPS [26]:

(K+ nλW−1)β +Φα = x′, Φ�β = 0, (4)

which is again solvable analytically like regularized TPS.

Unique Details. Details specific to each object that are not

captured in the shape prior are recovered by a refinement step.

This refinement is used in both mean shape learning and during

reconstruction of a particular test object.

To refine a shape Si (a mesh) towards shape Sj , we com-

pute displacements for vertices in Si. For a vertex pi
k in Si, we

estimate the surface normal ni
k by a local tangent space compu-

tation. The vertex pi
k is matched to pj

k in Sj if ‖pj
k−pi

k‖ < τ1
and |(pj

k − pi
k)

�ni
k| < 1 − τ2, where τ1, τ2 are predefined

thresholds. Let Pi be the set of vertices in Si that can be

matched as above to the set Pj in Sj and N i
k be the set of 1-

nearest neighbors of pi
k in Pi. Then, the set of displacements,

Δi = {di
k}, for 1 ≤ k ≤ |Pi|, are computed by minimizing:

∑

pi
k∈Pi

εik(d
i
k− (pj

k−pi
k))

2+μ
∑

pi
k∈Si

∑

pi
l∈N i

k

(di
k−di

l)
2, (5)

where εik is a weight factor. The above cost function encourages

the refined shape to lie closer to Sj , while minimizing the local

distortion induced by such displacement. The parameter μ
is empirically determined for the training set. Note that (5)

represents an extremely sparse linear system that can be solved

efficiently. The vertices of the refined shape are obtained as

pi
k + di

k and it inherits the connectivity of Si.

In the above, we are purposefully vague on the representa-

tion for the shape Sj . This is because the above mechanism

can be used, with minor changes, for both mean shape learning

with the shape Sj being a mesh and for reconstruction with Sj

being the oriented point cloud output of MVS, as elaborated in

Sections 4.2 and 5.2, respectively.

4. Learning Reconstruction Priors
For each object category, we use a set of object instances

{On} to learn a mean shape S∗ and a set of anchor points A.

For each object instance Oi in this training set, we capture

a set of images Ii and use a 3D scanner to obtain a detailed

3D shape Si
scan. Given Ii, we use a standard SFM pipeline

to reconstruct a point cloud Si
sfm = {pi

j}, where pi
j is a 3D

point. We manually label a small number of SFM points,

Mi = {pi
1,p

i
2, · · · ,pi

m} (see the stars in Figure 3 and 4). The

labelled points M are used to align the scanned shapes {Si
scan}

and their reconstructed point clouds {Si
sfm} in our training

dataset. They also serve as the initialization for the anchor

point learning, as described in the following.

4.1. Learning Anchor Points
An anchor point, A = {Γ,χ, ω}, consists of a feature vec-

tor Γ that describes appearance, the 3D location χ with respect

to the mean shape and a scalar weight ω. Γ is the aggregation

of HOG features [9] in all images where A is visible and of
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(a) Car (b) Fruit

Figure 3. Learned mean shape and anchor points density. Darker

red indicates greater density of anchor points. For cars, most anchor

points are located around wheels and body corners since those parts

are shared across instances. For fruits, anchor points are distributed

around the stem and bottom. Blue stars show initially labelled points

and the rest are learned by the proposed method. We also show image

patches associated with the features of a few example anchor points.

every object whereA exists. For an anchor pointA, if V are the

indices of objects across which the corresponding SFM points

are matched and Ωi are the indices of images of Oi where A is

visible, the corresponding feature vector is:

Γ = {{f iki}ki∈Ωi}i∈V . (6)

where f iki is the HOG feature of the image point associated with

A in image Iiki . Let pi
j be the locations of the corresponding

3D points, normalized with respect to object centroid and scale.

Then, the location for the anchor point is

χj =
1

|V|
∑

i∈V
pi
j . (7)

The weight ω reflects “importance” of an anchor point. We

consider an anchor point important if it appears across many

instances, with low position and appearance variance. That is,
ω = wx wa wf (8)

where wx = exp(−
∑

i �=k‖pi−pk‖
σxN2

), wa = exp(−
∑

i �=k di,k

σaN2
)

and wf = log|V| encode location stability, appearance simi-

larity and instance frequency, respectively. N2 is the number

of combinations. The coefficients σa and σx are determined

empirically from training data for each category. In the above,

di,k = min
li∈Ωi,lk∈Ωk

(|f ili − fklk |) , for i �= k, (9)

where Ωi is the set of images of Oi where the point is visible.

In contrast to applications like shape matching, the quality

of dense reconstruction is greatly affected by the order and

extent of deformations. Thus, the learned anchor point weights

ω are crucial to the success of dense reconstruction. Note that

while ASM frameworks also associate a weight with landmark

points, they are computed solely based on location uncertainty.

By encoding appearance similarity and instance frequency, we

impart greater semantic knowledge to our reconstruction stage.

The key precursor to learning anchor points is matching

3D points across instances, which is far from trivial. Besides

within-class variation, another challenge is the fact that most

SFM points correspond to texture. Such points usually domi-

nate an SFM point cloud, but do not generalize across instances

Algorithm 1 Learning anchor points

Set Parameters δf , δp.

For objects Oi, i ∈ [1, N ], label m points to get Mi.

Use Mi to align Si
sfm with Si

scan.

∀pi
j ⊂ Mi, find Aj = {Γj ,χj , ωj} using (6), (7), (8).

Initialize A = {Aj}, j = 1, · · · ,m.
while anchor point set A is updated do

for i = 1 : N do
Solve θ = argmin

∑
k ‖T (pi

k, θ)− χk‖.

Warp SFM point cloud Si
sfm ← T (Si

sfm, θ).
end for
for all pi

k ∈ Si
sfm do

for all pj
l ∈ Sj

sfm, where j �= i do
if d(f ik, f

j
l ) < δf and ‖pi

k − pj
l ‖ < δp then

Match pi
k to pj

l .
end if

end for
end for
Filter conflicting matches.
Identify sets of matched SFM points Bh, h ∈ [1, H].
for h = 1 : H do

Find Ah = {Γh,χh, ωh} using (6), (7), (8).
end for
Update A = A ∪ {Ah}, for h = 1, · · · , H .

end while
Output: denser anchor point set A.

(a) Density (b) Weights

Figure 4. Learned shape prior and anchor points for keyboard category.

(a) Density of anchor point distribution. Blue stars show the initially

labelled anchor points. (b) Learned weights of anchor points. Deeper

color means higher weight.

since they do not correspond to the object shape, thus, may not

be anchor point candidates. Moreover, the density of anchor

points cannot be too low, since they guide the deformation

process that computes the mean shape and fits it to the 3D

point cloud. To ensure the robustness of anchor point matching

and good density, we propose an iterative algorithm, detailed

in Algorithm 1. The distribution and weights of the learned

anchor points are visualized in Figure 3 and 4.

4.2. Mean Shape Construction
The learned anchor points are used to compute a mean shape

for an object category. Recall that we have a mapping from

the set of anchor points to each instance in the training set.

Thus, we can warp successive shapes closer to a mean shape

using the anchor points. The mean shape is constructed by

combining these aligned and warped shapes of different in-

stances. Since there are multiple shape instances, the order of

combining them is a critical design issue, because improperly

combining dissimilar shapes may introduce severe artifacts. To

determine the order for combining shapes, we first measure the

pairwise similarity between all pairs of training instances. In

our experiments, we use the weighted number of commonly

matched anchor points as the similarity cue. Given the pair-

wise similarities, we use hierarchical clustering to group the

shapes. The similarity relationships can be represented as a
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Figure 5. The mean shape computation proceeds by systematic com-

bination of training instances, based on a binary tree traversal. The

leaf nodes of the tree are the individual training instances, with as-

signments based on a pairwise shape similarity computation followed

by hierarchical clustering. Note that unique details are lost, while

features representative of the entire class are preserved.

binary tree where each leaf node is an object. We combine

the warped shapes T (Si
scan) following the order of merging

successive branches, to eventually obtain a single shape S∗,

which represents the commonality of all training instances. We

use S∗ as the mean shape. The mean shape learning procedure

is shown for a subset of the car dataset in Fig. 5. Note that S∗

is computed by using the warped training examples, where the

warping maps the 3D locations of learned anchor points. Thus,

the prior shape is always aligned with the anchor points.

In the above, the warp T (Si
scan)→ Sj

scan, with i < j accord-

ing to the above defined ordering, is computed as the weighted

thin plate spline transformation given by (4). Two shapes

aligned by anchor points are eventually combined into a single

one using displacement vectors computed by minimizing (5).

The learned mean models for car, fruit and keyboard categories

are shown in Figs. 3 and 4.

5. Semantic Reconstruction with Shape Priors
Given a number of images of an object O, we can recon-

struct its 3D shape by warping the learned prior shape S∗ based

on the estimated θ and by recovering Δ in (1) subsequently.

The reconstruction consists of three steps: matching anchor

points, warping by anchor points, and refinement. Accurately

recovering warp parameters θ requires accurate matches be-

tween anchor points in S∗ and SFM points in Ssfm. This is

facilitated by an initial coarse alignment between S∗ and Ssfm.

5.1. Initial Alignment
It is conventional in shape modeling literature to compute

shape alignments using Procrustes analysis or ICP [8]. How-

ever, reconstructed SFM point clouds are typically sparse, con-

tain several outliers and the point set of the object of interest

might be dominated by background clutter. The second seman-

tic component of our framework, object detection, is used to

alleviate these issues for initial alignment.

State-of-the-art object detectors like [11] can detect objects

in an image with cluttered background, with reasonably ac-

curate estimates of object pose. Further, as demonstrated by

[1], multiple images can significantly improve detection accu-

(a) Side view. Car 1 2 3

(b) Top view. Car 1 2 3

Figure 6. Initial alignment using object detection. Blue shows ground

truth position of the object to be reconstructed. Red shows object po-

sition and orientation estimated from detection [11] across 15 views.

(a) Car 1 (b) Car 2

Figure 7. Matching anchor points from leaned model (left) to new

object (right). We show the high confidence matches visible under the

displayed viewpoint. The green/red lines show the good/bad matches.

racy in both image and 3D space. In image Ij , the detector

returns the confidence value pi(u, s, π) of a detection hypothe-

sis which appears in image location u, with scale (height and

width) s and pose π. Given the estimated camera poses, a

hypothesized 3D object O can be projected to each image Ij
at location uj , scale sj and pose πj . Thereby, the object O in

3D space may be estimated as

O = argmax
O

∑
pj(uj , sj , πj). (10)

Please refer to [1] for details. This allows approximate esti-

mation of the centroid, 3D pose and scale of an object. Since

we also know those for the shape prior, we can use a rigid

transformation to coarsely align the prior shape and its anchor

points to fit the SFM point cloud of the object. The initial

alignment for a car reconstruction is shown in Figure 6.

Note that unlike Procrustes alignment, this detection-based

alignment does not rely on any SFM points (only camera

poses), thus, it is robust to the sparsity and noise that pervade

SFM point clouds obtained from few images.

5.2. Reconstruction
Given a set of images I of an object with unknown shape

S, we use standard SFM to recover the 3D point cloud Ssfm.

Our goal is to use the mean shape S∗ to produce a dense

reconstruction that closely resembles S.

Matching Anchor Points. Since the initial alignment uses

the object’s location, pose and scale, anchor points are likely to

be aligned to 3D locations in the vicinity of their true matches.

Thus, the burden of identifying the point in Ssfm that corre-

sponds to an anchor point in S∗ is reduced to a local search.

We use HOG features to match anchor points to SFM points.

To further improve the robustness, Algorithm 2 proposes an

iterative matching scheme. Examples of robust anchor point

matches from our algorithm are shown in Figure 7.
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Algorithm 2 Matching anchor points

Set parameters δ1 δ2 η.
for k = 1 : K (total number of iterations) do

Initialize match set Bk = {}.
for all Ai = {Γi,χi, ωi} ∈ {A} do

Define P = {pk ∈ Ssfm : ‖pk − χi‖ < δ1}.

Find pj ∈ Ssfm s.t. pj = argminP di,j (Eq. 9)
If d(fj , fi) < δ2, match (Ai,pj), Bk = Bk ∪ {pj}.
Record 3D distance ri = ‖χi − pj‖.

end for
Solve θ′k = argmin‖T (A, θ)−Bk‖.
for all Ai ∈ A do

if ‖T (χi, θ
′
k)− bi‖ > ri then

Discard match (Ai,bi), Bk = Bk\{bi}.
end if

end for
Solve θk = argmin‖T (A, θ)−Bk‖.
∀Ai ∈ A, χi ← T (χi).
δ1 ← ηδ1.

end for
Output: the set of matches BK .
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Figure 8. Warping of the shape prior with the learned anchor points

matched to SFM points using Algorithm 2. Note that while the shape

prior represents the commonality of all instances, anchor point-based

warping recovers coarse aspects of instance-specific shape, such as

the back geometry of Car 2.

Warping Based on Anchor Points. Assume S∗ is the shape

prior after the initial alignment of Section 5.1. We use the

above matches between anchor points in S∗ and SFM points

in Ssfm to estimate parameters θ for the weighted TPS warping

(4) and obtain S′ = T (S∗, θ) that further approaches the actual

shape. Notice that, this warping not only reduces the alignment

error from the initial detection-based alignment, it also deforms

the prior to fit the actual shape of the object. See Figure 8.

Refinement. The final step in the reconstruction process is

to recover the unique details of the object. These unique details

cannot be learned a priori, so they may not be captured by the

warped shape S′. We use the output of an MVS algorithm [15],

Smvs, to supply these details. While MVS may have several

missing regions and outliers for the object we consider, it may

reconstruct accurate oriented patches in textured or Lamber-

tian regions where diffuse photoconsistency is a reliable metric.

Using the refinement process governed by (5), we move the ver-

tices of S′ closer to Smvs. The weights εk now incorporate the

confidence in the corresponding matched MVS point, which is

encoded by the normalized cross-correlation photoconsistency.

The effect of refinement is shown in Figure 9. Note that not

only are the holes and outliers of traditional MVS eliminated

in our reconstruction, but fine details that are missing in the

warped prior shape are also recovered by refinement – see the

front bonnet and rear spoiler of Car 1, or the inset rear window

edges and the protruding trunk of Car 2. This refined shape is

the final output of our dense reconstruction framework.

Figure 9. Refinement recovers unique details of an instance that are

lost during mean shape learning. Examples such as the rear spoiler of

Car 1 and the inset rear window of Car 2 are highlighted.

6. Experiments
We evaluate our method on three categories: car, fruit and

keyboard. We use a structured light 3D scanner to acquire

ground truth shapes for learning and evaluation. Our testing

is leave-one-out, that is, to reconstruct one instance, we train

our model on all the rest. The model parameters are obtained

by cross-validation in the training set. We compare against

state-of-the-art MVS methods, show reconstruction results in

Figure 11 and report quantitative evaluation results for the car

dataset in Tables 1 and 2. Example results from individual

stages of our framework are also depicted in Figures 3–9.

The car dataset comprises ten instances with lengths be-

tween 65 – 73mm. Using the detection-based initial alignment

(Section 5.1), the estimated centroids of test objects are local-

ized within 20% of object length and the orientation estimation

error is within 10◦, as shown in Figure 6. The fruit dataset

consists of life-size models for twelve fruits of varying shapes

and sizes. The keyboard dataset consists of seven keyboards.

Centroid localization error (relative to object length) and orien-

tation estimation error are within 5% and 40◦ for the fruits and

within 10% and 30◦ for the keyboards.

To quantitatively demonstrate the efficacy of our frame-

work, we perform a rigorous evaluation against ground truth.

Reconstruction error (relative to ground truth scan) is com-

puted using the metric in [7] (other metrics such as [27] are

equally applicable). For each test instance of the car category,

we perform reconstructions using 48, 15 and 5 images. The

baseline method is MVS [15], with the reconstructed patches

meshed using Poisson Surface Reconstruction (PSR) [20]. We

also evaluate errors for intermediate results of our pipepine.

See Table 1. It is clear that each stage of our framework leads

to significant improvement, with an over 40% improvement in

final quality over traditional MVS. Also note that our recon-

struction error in the challenging situation of 5 images is even

lower than the baseline method with 15 images.

The efficacy of using anchor points and their learned

weights can be demonstrated by Table 2. Using anchor points

can greatly reduce the reconstruction error compared to only

using object detection for alignment. Learning anchor point

weights further enhances the reconstruction accuracy.

We also use our reconstruction method for scenes with

multiple objects in a cluttered environment (Figure 10). The

method of [1] is used to detect multiple objects in the 3D

scene and our framework is individually applied to each object.

Note that our reconstructed objects are aligned in the same
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# img Base % RGD % WP % Full %

48 1.22 1.00 0.88 0.71

15 2.72 2.39 2.29 1.88

5 4.66 2.91 2.86 2.47

Table 1. Reconstruction error in car dataset. Base: [15]+[20]. RGD:

Rigidly align mean shape to test object using matched anchor points.

WP: Align and warp mean shape using matched anchor points (with-

out refinement). Full: Our complete algorithm. Errors are reported in

the metric of [7]. Note a 40% improvement between Base and Full.

Base IA+RF RGD+RF WP (No ω)+RF WP+RF

1.22% 1.94% 0.85% 0.75% 0.71%

Table 2. Reconstruction error of alternative designs of our pipeline.

Base: [15]+[20]. IA: Initial alignment using object detection (Section

5.1). RF: Refinement (Section 5.2). RGD: Rigidly align the mean

shape to a test object by using matched anchor points. WP: Align and

warp the mean shape by using matched anchor points (Section 5.2).

No ω: Using anchor points with equal weights. Errors are computed

by using the car dataset with 48 images available for each car.

coordinate system as the SFM point cloud of the scene. This

allows us to automatically overlay the 3D objects reconstructed

using our method with the point cloud of the background.

In Figure 11, we show several comparisons of our recon-

structions against state-of-the-art MVS [15, 20]. Note the lack

of texture and specularities in the sample images shown in

(a). Diffuse photo-consistency is not a metric well-suited to

these situations, so the MVS output in (b) is visibly noisy and

contains a large number of artifacts in the form of holes and

outliers. Consequently, the resulting PSR mesh in (c) is dis-

torted. In contrast, we successfully learn meaningful semantic

priors across shape variations and use them in our reconstruc-

tion, to produce the much higher quality reconstructions in (d),

that closely resemble the ground truth (e).

7. Discussion and Future Work
We have presented a comprehensive framework for dense

object reconstruction that uses data-driven semantic priors to

recover shape in situations unfavorable to traditional MVS. Our

learned priors, combined with robust anchor point matching

and refinement mechanisms, are shown to produce visually

high quality and quantitatively accurate results.

The success of this framework also opens up directions for

future research. While semantic information for objects such

as cars is easily correlated to shape, many categories such as

chairs show shape variation at finer granularities. Thus, ongo-

ing research efforts in fine-grained recognition and detection

of object parts may also benefit our semantic reconstruction

framework. In our future work, we seek to demonstrate our

system in an MRF-based MVS framework like [18], since it

provides the flexibility to combine our shape prior with silhou-

ette information from object detectors like [12].
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Figure 10. Reconstruction of multi-object scenes. (Left) 1 out of 10

input images. (Middle) MVS [14]. (Right) Our reconstruction.
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