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Abstract

The objective of this work is to learn sub-categories.

Rather than casting this as a problem of unsupervised clus-

tering, we investigate a weakly supervised approach using

both positive and negative samples of the category.

We make the following contributions: (i) we introduce

a new model for discriminative sub-categorization which

determines cluster membership for positive samples whilst

simultaneously learning a max-margin classifier to sepa-

rate each cluster from the negative samples; (ii) we show

that this model does not suffer from the degenerate cluster

problem that afflicts several competing methods (e.g., La-

tent SVM and Max-Margin Clustering); (iii) we show that

the method is able to discover interpretable sub-categories

in various datasets.

The model is evaluated experimentally over various

datasets, and its performance advantages over k-means and

Latent SVM are demonstrated. We also stress test the model

and show its resilience in discovering sub-categories as the

parameters are varied.

1. Introduction

Many real-world categories are complex and require di-

vision into sub-categories for better modeling and classi-

fication. The sub-categories are often specified manually

(e.g., frontal or profile faces [22, 23]), but can be determined

automatically using unsupervised clustering [2, 6, 11, 14,

15, 17, 21, 29, 30].

Sub-categorization has been shown to improve perfor-

mance in a wide variety of applications: analyzing animal

behavior [10], understanding architecture [7], recognizing

faces [33], classifying images [19], and detecting object

categories [9]. Correspondingly a number of methods for

sub-categorization have been developed and applied. The

emphasis of the algorithm can be on grouping “similar”

(in feature space) items (e.g., k-means, pLSA [14]) or on

separating “dissimilar” items (e.g., Max-Margin Cluster-

ing (MMC) [29], DIFFRAC [2], universum clustering [32]).

One particular problem of such methods is cluster degener-

ation, where clusters have few or no elements [13, 29].
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Figure 1. Different clustering criteria for sub-category discovery.

(a): positive training examples. (b): methods such as k-means

minimizes intra-cluster distances. (c) methods such as [6, 29]

maximize separation among clusters. (d): our method maximizes

the separation between clusters and negative data; it partitions pos-

itive examples (red plus) into clusters so that each cluster can be

well separated from the negative examples (blue minus).

In this paper, we introduce a new model for determin-

ing sub-categories which also utilizes negative data, i.e.,

examples that do not belong to the category under consid-

eration, as a means of defining similarity and dissimilarity.

In essence, a sub-category is required to contains similar

items and also be well separated from the negative exam-

ples. Given a set of positive and negative examples of a

category, the model simultaneously determines the cluster

label of each positive example, whilst learning an SVM for

each cluster, discriminating it from the negative examples,

as illustrated in Fig. 1(d). The requirement for negative ex-

amples is usually not a problem since they are readily avail-

able. As will be seen, the negative data is used at various

stage of training, model selection, and parameter tuning.

Our formulation has several advantages. First, it jointly

performs clustering and classifier training, unlike many ex-

isting techniques such as [16] where these two steps are

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.218

1664

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.218

1664

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.218

1666



optimized independently leading to a suboptimal solution.

Second, since it is based on linear SVMs, the model is sim-

ple to implement and efficient to run (both training and test-

ing), and therefore suitable for high dimensional and large

datasets. Third, it does not suffer from cluster degeneration.

Experiments on datasets of varying complexity, from digits

and letters to images, show that the model often discovers

highly interpretable sub-categories.

It will be seen that our model bears some similarities

to Multiple-Instance SVMs [1], Latent SVMs [9], Latent

Structural SVMs [31], and to mixtures of linear SVMs [12].

Such methods improve classification performance using

sub-categories, whereas here the emphasis is on obtaining

the sub-categories. We discuss this further after specifying

the model in the following section.

It is important to note that our method is distinct from

the Universum approach [27] . We use negative data to sub-

categorize a single class (discovering subcategories), while

Universum [27] uses “non-examples” for learning a classi-

fier to separate between predefined classes.

2. Subcategory discovery

We pose sub-categorization as a joint clustering and clas-

sification problem. In this section, we describe the formu-

lation and contrast it with several alternatives.

2.1. Joint clustering and classification

For a particular category of interest, consider the task of

discovering its sub-categories given a set of positive training

examples (x+

1 , · · · ,x
+
n ∈ �d) and a set of negative train-

ing examples (x−1 , · · · ,x
−
m ∈ �d). We propose to find the

sub-categories by grouping positive training examples into

several clusters such that each cluster is well separated from

the negative training examples. Let yi ∈ {1, · · · , k} be the

(latent) cluster label associated with the positive training ex-

ample x+

i , the separation between cluster j and the negative

examples can be measured using the SVM objective:

min
wj ,bj

1

2
||wj ||

2 (1)

s.t. wT
j x

+

i + bj ≥ 1 ∀i : yi = j,

wT
j x

−
i + bj ≤ −1 ∀i.

The above only involves positive examples that belong to

cluster j. To measure the total separability between sub-

categories and the negative examples, we use the weighted

sum of the above SVM objectives:
∑k

j=1

nj

n
(1
2
||wj ||

2),
where nj is the cardinality of cluster j. This is equivalent

to 1

2n

∑n

i=1
||wyi

||2. We seek the cluster labels for positive

examples and simultaneously train the SVMs that separate

the resulting clusters from the negative examples:

minimize
{wj ,bj ,yi}

1

2n

n∑

i=1

||wyi
||2 (2)

s.t. wT
yi
x+

i + byi
≥ 1 ∀i,

wT
j x

−
i + bj ≤ −1 ∀i ∀j.

As in the case of SVMs, we allow the constraints to be

violated but penalize for the total violation:

minimize
{wj ,bj ,yi,ξ

+

i
,ξ
−

i
}

1

2n

n∑

i=1

||wyi
||2 +

C

n

n∑

i=1

ξ+i +
C

m

m∑

i=1

ξ−i

(3)

s.t. wT
yi
x+

i + byi
≥ 1− ξ+i ∀i,

wT
j x

−
i + bj ≤ −1 + ξ−i ∀i ∀j,

ξ+i ≥ 0, ξ−i ≥ 0.

where, as usual, {ξ+i }, {ξ
−
i } are slack variables which al-

low for penalized constraint violation, and C is the param-
eter that controls the tradeoff between margins and con-
straint violation. Notably, in the above objective, a vec-
tor wj is weighted by the cardinality of cluster j. This is
different from the objective of Multi-class SVMs [4] or La-
tent SVMs [1, 9, 31] in which each vector wj is weighted
equally. Also in the above formulation, the cost (in the
objective function) for assigning label j to point x+

i is
1

2n
||wj ||

2 + C
n
max(0, 1 − wT

j x
+

i − bj). Thus the cluster

label yi of x+

i is:

yi = argmin
j

{
1

2
||wj ||

2 + Cmax(0, 1−w
T
j x

+

i − bj)

}
. (4)

This is different from the class/cluster assignment in Multi-

class SVMs and Latent SVMs, where yi is given by yi =
argmaxj{w

T
j x

+

i + bj}.
There is a notable connection between (4) and k-means.

Recall k-means seeks a set of centroids {w1, · · · ,wk} and

cluster labels {y1, · · · ,yn} to minimize 1

2

∑n

i=1
||x+

i −

wyi
||2. The cluster label of a point x+

i is given by

yi = argminj
1

2
||x+

i − wj ||
2, or equivalently, yi =

argminj{
1

2
||wj ||

2 − wT
j x

+

i }. Observe the similarity be-

tween this formula and (4). In our formulation, wT
j x

+

i is

filtered through the Hinge loss.

2.2. Cluster degeneration

As noted in the introduction, several alternative formu-

lations that are used for sub-category discovery suffer from

the problem of cluster degeneration, i.e., the situation where

a few clusters dominate and claim all the points, leading to

many empty clusters. This is problematic for sub-category

discovery because the number of sub-categories obtained is

then smaller than the sought after number. Cluster degen-

eration has been pointed out to be an inherent problem of
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discriminative clustering [13, 29]. Fortunately, our formu-

lation does not suffer from this problem, and this section

discusses the problem in detail.

Perhaps the formulation that is most similar to ours is:

minimize
{wj ,bj,yi,ξ

+

i
,ξ
−

i
}

1

2k

k∑

j=1

||wj ||
2 +

C

n

n∑

i=1

ξ+i +
C

m

m∑

i=1

ξ−i

(5)

s.t. wT
yi
x+

i + byi
≥ 1− ξ+i ∀i,

wT
j x
−
i + bj ≤ −1 + ξ−i ∀i ∀j,

ξ+i ≥ 0, ξ−i ≥ 0.

This formulation is a particular realization of Latent

SVM [9], Multiple-Instance SVM [1], and Latent Structural

SVM [31], in which the latent variables are the cluster la-

bels. For brevity, we will refer to this formulation as LSVM

hereafter. As noted in Sec. 2.1, there are two key differences

between LSVM and our formulation. First, LSVM mini-

mizes the average of the squared L2-norms of the weight

vectors, while ours minimizes the weighted average. Sec-

ond, the criteria for cluster assignment are different. These

differences are the keys to address a major limitation of

LSVM.

Our formulation has a natural mechanism for eliminat-

ing empty clusters without increasing the cost. First we

show that if a cluster is empty, then it can be regenerated

at no additional cost, then we show that the cost can be de-

creased. Suppose cluster j is empty. Consider the follow-

ing steps: (i) pick a non-empty cluster l and split it into two

arbitrary halves of size nl

2
; (ii) reassign one half to clus-

ter j and copy the weight vector and bias term of cluster

l to cluster j, i.e., wj := wl, bj := bl. These steps do

not change the cost because 1

2n
nl||wl||

2 + 1

2n
0||wj ||

2 =
1

2n
nl

2
||wl||

2+ 1

2n
nl

2
||wl||

2. The total cost can possibly then

be lowered in the subsequent optimization step that adjusts

the weight vectors and the bias terms of the revived clus-

ters. Moreover, if the cluster l contains some points that

are not support vectors (i.e., points that are beyond the right

side of the margin—corresponding to non-tight constraints)

and these are reassigned to cluster j, then the margin cor-

responding to cluster j can be increased in subsequent op-

timization iterations. This means a reduction in the term

||wj ||
2 of the cost, because ||wj || is inversely proportional

to the margin. In short, there exists a mechanism for elim-

inating empty clusters; this mechanism never increases the

cost and it decreases the cost with high probability (unless

every point is a support vector). The existence of this mech-

anism means that the objective (3) does not favor degenerate

clusters.

Conversely, LSVM does suffer from cluster degenera-

tion. This has been observed in practice (though not for-

mally reported) and it is confirmed in our experiments

(Sec. 3). A rigorous proof does not exist, but here are two

possible reasons. First, the mechanism described above for

regenerating an empty cluster at no cost does not apply.

Eliminating an empty cluster j by reassigning some points

from a non-empty cluster l and duplicating the weight vec-

tor (wj := wl) will increase the objective function, be-

cause 1

2k
||wl||

2 + 1

2k
||wj ||

2 < 1

2k
||wl||

2 + 1

2k
||wl||

2 (re-

call cluster j is empty and ||wj || = 0). Second, LSVM

encourages the domination of big clusters. This can be seen

as follows: LSVM can be considered as a combination of

multiple SVMs, equally weighted. Each of these SVMs has

the same number of negative constraints, but the number of

positive constraints depends on the cluster size. In general,

the more positive constraints an SVM has, the the smaller

the margin will be (assuming C is fixed; C is the parame-

ter controlling the tradeoff for larger margin and less con-

straint violation). A smaller margin is equivalent to a larger

magnitude of the weight vector (because they are inversely

proportional). Thus, if cluster u is much larger than cluster

v, the magnitude of weight vector wu will be much larger

than that of wv, i.e., ||wu|| � ||wv||. Now since the clus-

tering assignment of a data point is based on the dot product

between itself and the weight vectors, cluster u will have an

advantage over cluster v. It is likely that some points from

cluster v will be reassigned to cluster u. Cluster u will grow

larger while cluster v becomes smaller, increasing the size-

gap between them.

Interestingly, cluster degeneration has been empirically

observed for other types of classifiers. [28] noted that the

boosting-tree classification-clustering framework of [25],

which bases its splitting decision on classification confi-

dence, also produces unbalanced clusters.

Cluster degeneration is also an inherent problem of

MMC [29]. MMC requires every pair of clusters to be well

separated by a margin. Thus every pair of clusters leads to a

constraint on the maximum size of the margin. As a result,

MMC favors a model with fewer number of clusters because

less effort for separation is required. In the extreme, MMC

can create a single cluster [13, 29].

2.3. Optimization

The learning formulation given in Eq. 3 is not convex,

but it can be optimized with block coordinate descent in

a similar manner to LSVM [1, 9, 31]. Block coordinate

descent alternates between the following two procedures:

(A) Fix the cluster labels {yi}, optimize the SVM parame-

ters {wj ,bj} and {ξ+i , ξ
−
i },

(B) Fix the SVM parameters {wj ,bj}, optimize the clus-

ter labels {yi}.

Procedure (A) corresponds to a convex quadratic pro-

gram, and can be optimized using stochastic gradient de-

scent [3], where the weight vectors and the bias terms are
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updated based on a single training example at each itera-

tion. This procedure has been shown to be very effective

and efficient for linear SVMs [3, 24].

Procedure (B) requires updating the cluster assignment

for each positive training example. This is equivalent to

finding the cluster label with minimum assignment cost,

given in Eq. 4. This can be optimized efficiently with a

few matrix-vector multiplications and min operators.

This block-coordinate descent algorithm is guaranteed to

converge because both procedures (A) and (B) do not in-

crease the energy of the objective function. We propose to

initialize the algorithm as follows:

(i) Train a linear SVM to separate positive and negative

classes, obtain the weight vector w.

(ii) Project the positive examples on the weight vec-

tor w, compute the residual vectors x̄+

i := x+

i −
1

||w||(w
Tx+

i )w. The residual is the component of x+

i

that is perpendicular to w.

(iii) Perform k-means on the residual vectors {x̄+

i } to get

the initial cluster labels.

3. Experiments

This section describes experiments on various datasets.

Both quantitative and qualitative evaluations are provided,

using purity measure [20, 26] and visual interpretability.

3.1. Clustering performance

We validated the clustering performance of our method

on several publicly available datasets from the UCI repos-

itory1 and the MNIST dataset [18]. The UCI repository

contains many datasets, but most of them are irrelevant

for our experiments. We exclude datasets that have fewer

than six classes or fewer than 1500 data instances. We re-

move datasets that are only suitable for time series anal-

ysis or regression. We also exclude datasets that contain

categorical or missing attributes. The final collection of

datasets are: Gas Sensor (Gas Sensor Array Drift), Land-

sat (Stalog Landsat Satellite), Segmentation (Statlog Im-

age Segmentation), Steel Plates (Steel Plates Faults), Wine

Quality, Digits (Optical Recognition of Handwritten Dig-

its), Semeion (Semeion Handwritten Digits), Letter (Let-

ter Recognition), Isolet, and Amazon Reviews (Amazon

Commerce Reviews). Additionally, we include MNIST, a

dataset which is not in the UCI repository but frequently

used for benchmarking machine learning algorithms. The

number of classes, the number of dimensions, and the num-

ber of instances for these datasets are given in Tab. 1.

The experimental setting for each dataset is as follows.

Each dataset has a predefined number of classes (ground

truth labels). We randomly split the classes into two roughly

1http://archive.ics.uci.edu/ml/

equal halves, one is regarded as positive and the other as

negative. Subsequently, each group is randomly divided

into training and validation subsets. The training subsets

(one positive and one negative) are used to learn the clus-

ter models as in Eq. 3. The validation sets are used for

parameter tuning. We set the number of clusters to the

true number of classes of the positive group. We chose

C among 102, 103, 104, 105 based on the classification per-

formance on the validation data. All datasets are L2 nor-

malized. Some datasets require an additional normalization

step to bring the attribute values to the same scale (range

[0, 1]) before applying L2 normalization. Both LSVM and

our method start from the same initialization, as explained

in Sec. 2.3. Each experiment is repeated 50 times.

We compared the performance of our method against k-

means and LSVM. To measure clustering performance, we

followed the strategy used by [13, 29], where we first took a

set of labeled data, removed the labels and ran the clustering

algorithms. We then found the best one-to-one association

between the resulting clusters and the ground truth classes

(Hungarian algorithm). Finally, we calculated the percent-

age of correct assignment. This is referred to as purity in

information theoretic measures [20, 26]. Notably, a purity

measure requires no separate test set.

Tab. 1 displays the experimental results. Init-label per-

formed similar to k-means on most of the datasets, despite

the use of negative data. LSVM is initialized with Init-label,

but the benefit of this approach is unclear: the clustering

performance increases for three datasets, decreases for three

others, and remains similar for the rest. On the other hand,

also initialized with Init-label, our method improves the per-

formance on seven out of eleven datasets. For the remain-

ing four datasets, the performance of our method is similar

to that of Init-label. This is perhaps due to the problem of

local minima in optimization. For example, the Amazon

Reviews dataset contains high dimensional sparse vectors.

It is very likely that any subset of the positive class can be

linearly separated from the negative class. Therefore, data

points have little or no tendency to switch between clusters,

and the optimization procedure terminates at a configura-

tion that is similar to the one it starts with. Indeed, the

performance of LSVM and our method are similar to the

performance of their initialization on this dataset. Overall,

comparing all approaches, our method performs the best or

not significantly worse than the best on all datasets.

3.2. Discovering Head Orientations

This section describes experiments on discovering head

orientations—the looking direction. Data for these experi-

ments is extracted from the TV Human Interaction (TVHI)

dataset [22]. This dataset contains 300 video clips compiled

from 23 different TV shows. Every frame of these videos

comes with the following annotation: the bounding boxes

166716671669



Table 1. Clustering purity measures (%) of k-means, LSVM, and our method on UCI datasets and MNIST. This table shows the mean

and standard error of 50 runs on each dataset, and the datasets are ordered based on the number of classes they contain. For each dataset,

results within one standard error of the maximum value are printed in bold. The second, third, and fourth columns list the numbers of

classes, dimensions, and data points respectively. Init-label refers to the initial labels obtained by running k-means on the residual vectors

as explained in Sec. 2.3. Init-label is the starting point of LSVM and our method. Our method performs the best or not significantly worse

than the best on all datasets.

Dataset #classes #features #points k-means Init-label LSVM ours

Gas Sensor 6 128 13910 46.38 ± 0.69 47.16 ± 0.65 56.74 ± 1.88 60.82 ± 1.64

Landsat 6 36 4435 78.72 ± 2.08 77.45 ± 2.16 69.37 ± 2.32 76.73 ± 2.38

Segmentation 7 19 2310 71.96 ± 1.75 71.47 ± 1.73 65.89 ± 2.36 74.41 ± 1.85

Steel Plates 7 27 1941 53.29 ± 1.51 53.39 ± 1.89 52.64 ± 2.02 54.60 ± 1.98

Wine quality 7 12 4898 43.43 ± 1.58 41.13 ± 1.14 55.00 ± 2.35 54.21 ± 1.65

Digits 10 64 5620 76.38 ± 1.72 80.40 ± 1.23 77.83 ± 1.57 80.15 ± 1.18

Semeion 10 256 1593 64.64 ± 1.20 65.05 ± 1.30 64.32 ± 1.58 66.74 ± 1.43

MNIST 10 784 60000 65.38 ± 1.43 63.84 ± 1.40 63.99 ± 1.36 66.18 ± 1.34

Letter 26 16 20000 33.35 ± 0.48 32.89 ± 0.52 40.27 ± 0.88 44.38 ± 0.74

Isolet 26 617 6238 62.15 ± 1.22 61.55 ± 1.20 61.95 ± 1.22 64.08 ± 1.18

Amazon Reviews 50 10000 1500 24.93 ± 0.32 24.90 ± 0.36 24.89 ± 0.41 25.08 ± 0.38

framing the upper bodies of the people present and their dis-

crete head orientations. The label set for head orientations

are Profile-Left, Frontal-Left, Frontal-Right, Profile-Right,

and Backward. To obtain the head bounding box, regres-

sion is applied to the supplied bounding box of each upper

body, as illustrated in Fig. 2. The head area is then normal-

ized to a 64 × 64 pixel patch, and represented by a HOG

descriptor [5]. The dimension of the descriptor is 1984 (the

size of HOG cells is 8 × 8). Because the head areas of the

same person in consecutive frames are often similar, it is un-

necessary to consider all frames so we subsample them to

obtain positive examples for this experiment. Data for train-

ing and validation are sampled from separate video subsets,

based on the train/test split specified by the authors of the

TVHI dataset [22]. This process yields 4040 and 4760 pos-

itive examples for training and validation, respectively. The

negative examples are obtained from the negative images

of the INRIA Person dataset2 by applying the upper-body

detector [8] on each image and retaining the top five detec-

tions. We also added five random patches per image. The

numbers of negative examples for training and validation

are 4872 and 4530 respectively. Finally, all feature vectors

are normalized to have L2 norms of approximately 1 (divid-

ing them by the median of the L2 norms of positive training

examples). The training data is used to learn the cluster

models as in Eq. 3, while the binary classification accuracy

(positive versus negative) on the validation data is used for

parameter tuning. The performance measure is cluster pu-

rity [20, 26], which requires no separate test set.

To test the ability to discover sub-categories, we set the

number of clusters to five, the predefined number of head

orientations. To circumvent the problem of local minima,

all methods (k-means, Init-label, LSVM, and ours) are run

2http://pascal.inrialpes.fr/data/human/

Figure 2. Extracting head regions from annotated upper bodies.

The solid yellow squares are annotated upper bodies. The dash

cyan squares are head regions used in our experiments.

50 times, and the run that yields minimum energy is se-

lected. As in Sec. 3.1, we used purity measure to bench-

mark the clustering performance. The performance of k-

means, Init-label, LSVM, and our method are 46.86, 46.14,

44.95, 58.07 respectively. These results were obtained with

C = 30000, tuned based on the classification accuracy on

validation data. We performed an additional experiment

where the value of C was increased from 300 to 3000 to

30000, and the output of the previous step was used as

the initialization for the next step. This multi-stage opti-

mization procedure boosts the performance of our method

to 62.23%, which is significantly better than the results of

all other methods. Notably, this result is close to 69.05%,

which is the state-of-the-art accuracy of five-way head clas-

sification using linear SVMs with HOG descriptors [22]

(this is a comparison between the purity measure of an un-

supervised method with the classification accuracy of a su-

pervised method). We applied the same multi-stage op-

timization procedure to LSVM, but the performance de-

graded due to cluster degeneration at the early stage. Fig. 3

analyzes this problem.
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(c) Purity measure

Figure 3. Several measures as a function of C. (a): classification accuracy on validation data; (b): imbalance index—the standard deviation

of cluster sizes; (c): purity measure—the agreement between clusters and ground truth classes. Due to the problem of cluster degeneration,

the clusters produced by LSVM can be highly unbalanced, even for the values of C that yield relatively high classification accuracy. Our

method does not suffer from this problem, yielding low imbalance index and high purity measure on all values of C. For high values

of C, LSVM does not suffer from the cluster degeneration problem, but the clustering performance is similar to the performance of the

initialization. For a reference, the imbalance index of ground truth labels is 0.28. The upper limit of C is set to 106 because there are no

practical benefits for going higher: (i) the classification performance decreases for C > 105; and (ii) the SVM optimization takes much

longer to converge for large C.

We also study the classification accuracy (on validation

data) and the clustering purity as the amount of negative

data varies. Figs. 4(a) and 4(b) plot and discuss the results.

Notably, for small amount of negative data, it is necessary to

reduce the value of C to retain high classification accuracy.

This is observed empirically. Theoretically, C controls the

tradeoff between a large margin and low training loss. For

small amount of training data, it is necessary to decrease

the emphasis on training loss to avoid overfitting, and this is

equivalent to using a smaller C. But for small values of C,

the clusters of LSVM degenerate (as shown in Fig. 3). This

explains why the clustering performance of LSVM is very

poor in this experiment. In contrast, our method achieves

good result with as few as 300 negative training examples.

Qualitative results are given in Figs. 5–8. Figs. 5 and 6

depict of the weight vectors obtained by our method and

several representative images of highest and lowest ranks in

each cluster. The learned weight vectors and the highest-

rank images somewhat correspond to the five discrete

ground truth head orientations. Here, the number of desired

sub-categories is set to five, the number of discrete human

labels. In practice, the number of sub-categories might be

unknown, and furthermore, human annotation might not be

optimal. We therefore performed experiments with differ-

ent desired numbers of sub-categories. Figs. 7 and 8 visual-

ize the models learned by our method and LSVM when the

desired numbers of sub-categories are three and six, respec-

tively. The models produced by our method have higher

interpretability.

Regarding the classification performance, all methods

perform similarly well. The classification accuracy of

LSVM and our method are 94.13% and 94.39% respec-
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(b) Cluster purity

Figure 4. Classification accuracy and clustering purity as a func-

tion of m, the number of negative training examples. Though

LSVM performs relatively well on the classification task, its clus-

tering performance is much worse than ours. Our method obtains

excellent clustering results, with as few as 300 negative examples.

tively. The accuracy of five linear SVMs trained with

ground truth head orientations is 94.78%. The accuracies

of a single linear SVM and a single RBF-kernel SVM are

94.06% and 95.51% respectively. RBF-kernel SVM per-
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Figure 5. The positive components of the weight vectors that were

learned by our method. Each subfigure shows 8 × 8 HOG cells,

and each cell has 9 orientations. Dark values represent low weights

and bright values represent high weights; a high weight for a par-

ticular direction at a particular cell means the model prefers to

have a strong image edge of that direction at that cell. The learned

weights somewhat correspond to the edge structures of the heads

at different orientations.
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Figure 6. High/low rank images – images with highest and lowest

confidence scores in each cluster. High-rank images correspond to

five discrete head orientations. Low-rank images are due to: i) the

regression procedure fails to localize the head region; ii) subject

exhibits a rare head pose; iii) the head is occluded; or iv) the image

patch has low resolution, low contrast, or motion blur.

(a) 3-cluster model learned by our method

(b) 3-cluster model learned by LSVM

Figure 7. The learned clusters when the desired numbers of sub-

categories are three. Our method produces models with higher in-

terpretability. All clusters produced by our method are meaningful

while the last cluster of LSVM is uninterpretable.

(a) 6-cluster model learned by our method

(b) 6-cluster model learned by LSVM

Figure 8. Clustering models produced by our method and LSVM

when the desired numbers of sub-categories are six. Our method

produces models with higher interpretability. All clusters pro-

duced by our method are meaningful while two clusters of LSVM

are uninterpretable.
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forms the best, but it does not produce sub-categories.

Our method is relatively efficient. It usually takes from

20 to 40 iterations of coordinate descent to converge. On

this dataset (8912 training and 9290 testing examples of

1984 dimensions), our method (naive implementation with-

out any speed optimization) took 260s for training and 0.7s

for testing. For a comparison, LibSVM (both linear and

RBF kernels) took around 210s for training and 200s for

testing. This timing was performed on a Linux machine

with Intel Xeon 4-core 2.5GHz.

4. Summary

We have introduced a new objective for learning sub-

categories. The key novelty is incorporating negative sam-

ples into the learning framework. Furthermore, we show

that assigning to clusters by a combination of Hinge loss

and SVM margin avoids the degenerate configurations suf-

fered by several popular methods that assign according to

classifier score alone. The advantages of the method were

empirically demonstrated on datasets of varying complex-

ity, from MNIST and UCI to TVHI. In this paper, we de-

veloped the formulation for linear SVMs, but its extension

to non-linear SVMs is straight forward. Armed with this

model, methods such as [9] where sub-categories determine

the initial templates, can now start from a stronger, and less

fragile, basis.
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