
Towards Efficient and Exact MAP-Inference for Large Scale Discrete Computer
Vision Problems via Combinatorial Optimization

Jörg Hendrik Kappes1 Markus Speth2 Gerhard Reinelt2 Christoph Schnörr1

1Image & Pattern Analysis Group, University of Heidelberg, Germany
2Discrete and Combinatorial Optimization Group, University of Heidelberg, Germany

Abstract

Discrete graphical models (also known as discrete Mar-
kov random fields) are a major conceptual tool to model the
structure of optimization problems in computer vision. While
in the last decade research has focused on fast approximative
methods, algorithms that provide globally optimal solutions
have come more into the research focus in the last years.
However, large scale computer vision problems seemed to
be out of reach for such methods.

In this paper we introduce a promising way to bridge
this gap based on partial optimality and structural prop-
erties of the underlying problem factorization. Combining
these preprocessing steps, we are able to solve grids of size
2048×2048 in less than 90 seconds. On the hitherto unsolv-
able Chinese character dataset of Nowozin et al. we obtain
provably optimal results in 56% of the instances and achieve
competitive runtimes on other recent benchmark problems.

While in the present work only generalized Potts models
are considered, an extension to general graphical models
seems to be feasible.

1. Introduction
We consider the problem of finding the most likely con-

figuration of a discrete graphical model, which is equivalent

to an energy minimization problem, cf. Eq. (1).
Since this problem is NP-hard, research has focused

on approximate inference for larger problem sizes. Schle-

singer [30] and Wainwright [36] proposed a linear program-

ming (LP) relaxation based on the so-called local polytope.

Several algorithms have been suggested that optimize the

dual LP [30], either as a block-coordinate descent [37, 19],

by subgradient or bundle methods [20, 15], or by smoothing

techniques [13, 12, 28, 29]. Even if these methods solve the

dual, they have to reconstruct a relaxed primal solution and

then round this to a solution of the original integer program.

In another line of research, greedy move-making methods,

including α-expansion [8], α-β -swap [8], and FastPD [21],

have been proposed which iteratively improve an integer

solution by a sequence of auxiliary max-flow problems. The

efficient computation of the maximum flow has also been

used to provide partial optimality on binary [27] and multi-

label problems [22, 17]. This partial optimality has been

employed to extend the expansion and swap methods to

arbitrary functions by so-called fusion moves [23] and to

reduce the problem size for the algorithms mentioned above

in order to reduce their runtime [3].

In the last years combinatorial methods based on cutting-

plane and branch-and-bound techniques have come more

into focus in the computer vision community [4, 16, 26,

10, 34]. The main advantage of these methods is that they

provide globally optimal integer solutions if no runtime re-

strictions are specified. The two leading methods for the

MPE-task of the Probabilistic Inference Challenge 2011 [2]

belong to this class.

However, combinatorial methods do not scale well and

– as we will show – often do not explore the full structural

and functional properties of the problems. With additional

time limitations they can no longer guarantee optimality.

Contribution. We suggest a set of preprocessing methods

that reduce the original problem size and can be calculated in

polynomial time. One method is based on partial optimality

similar to [3]. After employing partial optimality several

structural properties can be used in a novel way to further

reduce the problem size. Although these structural properties

are simple, they are currently not fully exploited by state-

of-the-art combinatorial methods. Furthermore and contrary

to [3], which only uses partial optimality to speed up approx-

imative methods, we combine reduction techniques with

exact optimization methods. As a consequence, we are able

to solve a significantly wider range of large scale problems to

optimality that were not feasible for combinatorial methods

before and demonstrate this by a comprehensive evaluation.

Organization. The paper is organized as follows: In Sec. 2

we define our problem, and in Sec. 3 we introduce several

methods to solve discrete optimization problems to optimal-

ity. In Sec. 4 we will discuss methods to reduce problem

sizes and to make the methods from Sec. 3 applicable for

large scale problems. Finally, we demonstrate in Sec. 5 the

gain of our approach for synthetic and real world problems.

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.229

1750

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.229

1750

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.229

1752

2. Problem Formulation
Our problem is defined by a factor graph: a bipartite

graph G= (V,F,E)which consists of regular nodesV , factor

nodes F and an edge set E ⊆ V ×F . Each node v ∈ V is

associated with a variable xv that takes values in a discrete

domain Xv. For a subset A⊆V we denote the domain of the

corresponding variables by XA :=
⊗

v∈A Xv. Each factor node

f ∈ F is associated with a function ϕ f : Xnb(f)→ R which

is defined on the domain of the neighbors nb(f) := {v ∈V |
(v, f)∈ E} of f . The cardinality of this set, |nb(f)|, is called
the order of the factor, factors of order 1 and 2 are called

unary and pairwise factors, respectively. The order of G is

the maximum order of a factor f ∈ F . A factor graph defines

a binary problem if |Xv|= 2 for all v ∈V and a multi-label
problem if |Xv|> 2 for some v ∈V .

Using a factor graph, the energy minimization problem

takes the form

min
x∈XV

∑
f∈F

ϕ f (xnb(f)). (1)

Because factor graphs make the structural properties in-

duced by the discrete Markov random field explicit, they

enable efficient access to structural properties that support

exact inference using combinatorial optimization.

In addition to the structural properties of the problem,

properties of the functions ϕ f (·) are also of major interest

from the point of view of optimization, e.g., submodular

functions can be solved in polynomial time [25]. Problems

containing unary and Potts functions only can be reformu-

lated as a multiway cut [16] and in the case of second order

binary problems as a max cut instance [11, 32]. In both

cases, additional auxiliary nodes have to be introduced.

3. Exact Optimization Methods
Solving (1) is in general NP-hard. However, several au-

thors have suggested methods that solve these problems – or

special subclasses – to optimality. Since this is in general

not possible in polynomial time, these methods typically do

not scale, but provide fast alternatives for small and medium

sized problems. We briefly introduce those that are consid-

ered in the present paper.

Integer Linear Programming (ILP) A general representa-

tion of (1) is an integer linear program. Additional to the

constraints of linear programming relaxations over the local

polytope, which are common in computer vision, it contains

integer constraints that enforce consistency with (1). This

method is implemented in [4] and imposes no further re-

strictions on G or ϕ f (·). During optimization a sequence of

linear programs is solved and integer constraints are enforced

iteratively by applying cutting-plane or branch-and-bound

techniques. The code of [4] is publicly available under the

MIT license and uses the commercial optimization library

CPLEX, which is free for academic use.

Breadth-Rotating AND/OR Branch-and-Bound (BRAO-
BB) Otten et al. suggested a depth-first search branch-and-

bound algorithm over AND/OR search spaces using mini-

bucket heuristics for bounding [26]. Contrary to naive depth-

first search, which processes one branch of the tree after an-

other, BRAOBB processes all branches “simultaneously” in

a round-robin style. This leads to a better anytime behavior.

In the Probabilistic Inference Challenge [2], BRAOBB is cur-

rently the leading method, and the source code is freely avail-

able under the GPL. As we do for the former ILP method,

we do not provide any initial guess or bound to it.

Multiway Cut (MCA) Recently, Kappes et al. [16] sug-

gested a transformation of generalized Potts models into a

multiway cut problem and introduced a cutting-plane frame-

work for optimization. While this method is restricted to

models that contain only arbitrary first order terms and sec-

ond order terms that are invariant to label permutations, it

nevertheless covers many computer vision applications and

provides a compact problem representation. The authors

kindly provided us with the original code used in [16].

Max Cut by Branch-and-Cut (MCBC) In [5], Bonato de-

veloped a method for solving max cut problems to optimality

using a branch-and-cut framework. In addition to using the

standard cycle relaxation for the cut polytope he employs

special separation and lifting techniques for deriving further

inequalities that tighten the relaxation. The algorithm is in

particular very well suited for sparse graphs and applied to

computer vision problems for the first time in the present pa-

per. The code is not publicly available, but the author kindly

provided us with the possibility to run our experiments.

Max Cut using Reweighted Perfect Matching (RPM)
Schraudolph et al. describe a method to compute a maximum

cut in a planar graph by exploiting a correspondence between

maximum cuts and minimum perfect matchings [32]. In [31],

the algorithm is extended to non-planar graphs. In order for

this to work, a so-called consistent collection of graphs that

builds a cycle basis for the input graph is needed. Finding

such a collection is difficult in general, however, for grid

graphs the author gives one that performs well. As part of the

isinf library, the code is free for non-commercial research

and education purposes.

4. Model-Reduction

Partial Optimality (p) When dealing with computer vision

problems, it is an important observation that they often con-

tain large subproblems that can be solved efficiently. Conse-

quently, one can calculate an optimal solution for a subset of

the variables in order to reduce the problem size, as sketched

in Fig. 1. This can for example be achieved by the concept

of roof duality [6], as it was done for binary pairwise mod-

els [27] as well as for multi-label pairwise models [22, 17].

We found out that the MQPBO-method proposed in [17],

175117511753

which is applicable to general second order problems, does

not scale. Therefore we restrict ourselves to Potts models in

the multi-label case and use the method proposed by Kov-

tun [22].

−→

Figure 1. After applying QPBO, the nodes with known value (black

dots) can be removed after modifying the factors connected to them

appropriately (red).

Partial optimality has already been used in [3] to speed

up approximative methods. By contrast, in the present paper,

we systematically exploit partial optimality and problem

reduction to make exact combinatorial methods feasible for

large problem sizes. The Chinese character instances (see

Sec. 5) provide a striking example – we can solve 56% of

the hitherto unsolved problems.

Connected Components (c) If the factor graph G is discon-

nected, the individual connected components can obviously

be treated separately as sketched in Fig. 2. We suggest to use

a preprocessing step that detects connected components in

polynomial time, e.g., by using depth-first search [9], such

that all of them can be solved independently.

−→

Figure 2. Treating each connected component separately can lead

to huge speedups. Surprisingly, this simple observation is not taken

into account by many solvers.

In Fig. 3 we show the runtimes of ILP on a problem

consisting of three fully connected cliques with an increasing

number of variables. ILP-c detects connected components

and solves each of them independently. This leads to a huge

speedup compared to ILP.

Bridge Elimination (b) We call a factor f ∈ F a bridge
factor if the number of connected components of G increases

when f is removed. After removing a bridge factor, the

resulting components can be treated separately.

When doing so while fixing the variables in nb(f) for all
possible assignments, one side of the bridge can be shrunken

to a lower order factor representing the optimal values of

this subgraph, cf. Fig. 4. After solving the reduced problem,

the optimal configuration of the shrunken part can easily be

recovered.

15 30 45 60 75 90

0.1 s

1 s

10 s

1min

10min

1 h

number of variables

ru
n
ti
m
e

ILP

ILP-c

Figure 3. Average runtimes of ten binary instances per size. Each

instance consists of three cliques of equal size. Standard ILP solvers

are not able to capture this. Processing each connected component

independently (ILP-c) leads to a significant speedup. Note that the

time axis is logarithmic.

fv0
−→

f ′

Figure 4. The right side of the original graph, including f , can be

shrunken to a unary factor f ′ by |Xv0 | small optimization problems.

After solving the problem corresponding to the reduced graph, the

full solution can be recovered.

Tentacle Elimination (t) A special case in which bridge

elimination can be used very efficiently is when one side of

the bridge is acyclic such that dynamic programming can

be applied. Automatic detection and elimination of these

acyclic substructures is done in polynomial time. We call this

tentacle elimination, since the parts that can be eliminated

are attached to the main part of the graph like tentacles, as

depicted in Fig. 5. The effect on the runtime can be seen in

Fig. 6.

f
−→

f ′

Figure 5. In cases where an acyclic subgraph (tentacles) is attached

to the main part of the graph, one round of dynamic programming

can be used to replace this subgraph by a single unary factor f ′.

Remark. The basic idea behind bridge and tentacle elimina-

tion is also known as variable conditioning and variable elim-

ination, cf. [18] and the references therein for an overview.

The main difference to our work is that we suggest to use

such techniques only for fast solvable substructures and not

for the complete model.

175217521754

100 400 1600 6400 25600

0.1 s

0.3 s

1 s

3 s

10 s

number of variables

ru
n
ti
m
e

ILP

ILP-t

Figure 6. Average runtimes of ten binary instances per size. Each

instance consists of a clique of 20 variables, all other variables are

part of tentacles. Standard ILP solvers are not able to capture this.

Eliminating the tentacles first (ILP-t) leads to a significant speedup.

Note that both axes are logarithmic.

5. Evaluation and Experiments

In the following, we denote the algorithms introduced in

Sec. 3 by ILP, BRAOBB, MCA, MCBC, and RPM, followed

by the reduction type (p, c, t)1 from Sec. 4 if preprocess-

ing was applied. Additionally, we compare to TRWS [19],

FastPD [21], and α-expansion [8] – all provided by the orig-

inal authors of the papers. TRWS is stopped after 1000 itera-

tions. For evaluation we count how often a method provides

the best energy value among all competing methods (best)
and how often the gap between the energy value and the

lower bound was less than 10−7 (ver. opt). For the synthetic

models we use an Intel Pentium E5400, 2.7GHz, 8GB RAM,

for the other a Xeon W3550, 3.07GHz, 12GB RAM. For

MCBC we use a Xeon E5420, 2.5GHz, 16GB RAM for all

experiments.

Synthetic Binary Grid Models We created problems where

the underlying graph is a grid graph of size 32×32, 64×64,

. . . , 2048× 2048. The problems are binary, i.e., |Xv| = 2

for all v ∈V . Unary and pairwise factors were added for all

nodes and edges of the grid; the values of ϕ f (·) and ϕ f (·, ·)
were drawn uniformly at random from the interval [0,1] for
all f ∈ F . We created ten instances per size. Problems of

this type can be transformed into pure max cut problems as

described in [32]. For MCBC and RPM, we transform the

problems into max cut instances and solve those.

As expected, the runtimes decrease by orders of mag-

nitudes when we apply QPBO to get partial optimal solu-

tions first, cf. Fig. 7. This is not possible for RPM since it

needs certain embeddings which are easy to compute for the

original grid problems but not for the reduced ones. The

optimality ratio was 97.6% on average.

However, we achieve another tremendous reduction of the

runtime by taking into account that the reduced problems are

1We do not include the general bridge elimination (b) here because we

so far only implemented its special case (t).

32 64 128 256 512 1024 2048

0.1 s

1 s

10 s

1min

10min

1 h

grid size

ru
n
ti
m
e

ILP

ILP-p

ILP-pct

BRAOBB-p

MCBC

MCBC-p

RPM

Figure 7. Average runtimes of those instances that could be solved

in less than one hour (compare Fig. 8). For all methods reduction

makes them applicable to larger instances. Overall, ILP-pct and

BRAOBB-p perform best.

grid size 32 64 128 256 512 1024 2048

ILP

ILP-p

ILP-pct

BRAOBB

BRAOBB-p

MCBC

MCBC-p

RPM

Figure 8. Fraction of the ten instances per grid size that could be

solved within one hour (), that could not be solved due to the

time limit of one hour (), and that could not be solved due to

an out-of-memory error (). Using the three proposed reduction

techniques makes methods applicable to larger instances. Overall,

ILP-pct scales best.

mostly disconnected and treating the connected components

as independent problems. For the 1024× 1024 instances,

the number of components is between 2497 and 2669 with

sizes in the range of 4 to 83.

We do not apply the connected component reduction for

BRAOBB explicitly because this is already taken into ac-

count by the method itself. Therefore, the performance of

BRAOBB-p is similar to ILP-pct. For MCBC, we only apply

the partial optimality reduction due to limited access.

As can also be seen in Fig. 8, the reduction methods show

their full potential when applied to large scale problems. We

are able to solve instances of size 2048×2048 in less than

90 seconds. Overall, BRAOBB-p and ILP-pct perform best.

Decision Tree Fields (Chinese Character Models) Deci-

sion tree fields (DTF) [24] are discriminatively learned con-

ditional random fields (CRF). We consider the Chinese char-

acter models provided along with [24]2. The dataset consists

of 100 binary problems with first and second order terms.

2http://www.nowozin.net/sebastian/papers/DTF_CIP_instances.zip

175317531755

Figure 9. Examples from the Chinese character dataset. From left

to right: Original image, occluded image, TRWS solution, MCBC

solution.

Variables are connected to more than 30 other variables by

pairwise factors. Common approximations using local poly-

tope relaxations do not perform well on these problems, and

standard ILP solvers are not able to guarantee optimality

in one hour, even if partial optimality is used to reduce the

problem size. For the Chinese character dataset, partial op-

timality has reduced the problem size from 4992–17856 to

502–1093 variables.

We set a time limit of one hour per instance. Using

MCBC [5] with the partial optimality reduction, we were

able to verify optimality for 56 instances. Overall, we obtain

superior results to all other methods, followed by ILP-pct.

This is a significant progress – see Tab. 1. BRAOBB-p,

which performed very good on the synthetic grid data, does

not perform well on this dataset. We believe that this is

caused by the larger size of the subproblems as well as the

high connectivity which results in a higher treewidth.

Table 1. Results on the Chinese character dataset [24]

algorithm avg. runtime avg. energy avg. bound best ver. opt

ILP-pct 3581.42 −49542.87 −50071.87 30% 0%

BRAOBB-p 3600.00 −49415.55 −∞ 0% 0%

MCBC-p 2053.89 −49550.10 −49612.38 92% 56%
TRWS 100.13 −49496.84 −50119.41 2% 0%

QPBO 0.16 −49501.95 −50119.38 0% 0%

SA [24] n/a −49533.02 −∞ 13% 0%

Multi-Label Potts Models We also evaluate our approach

on multi-label instances. To obtain partial optimality, we use

the method of Kovtun [22] and therefore restrict ourselves to

second order Potts functions. While more general methods

exist [17, 33, 14] these do not scale as well and will be

subject to further work.

First, we consider the three color segmentation instances

used in [3]. While the standard multiway cut method [16]

takes on average more than two minutes, we obtain runtimes

comparable to state-of-the-art methods by using partial opti-

mality for problem reduction and contrary to those verified

globally optimal solutions, cf. Tab. 2. The reduction obtained

by partial optimality was between 95% and 99.9%.

Table 2. Results on the three color segmentation instances from [3]

algorithm avg. runtime avg. energy avg. bound best ver. opt

MCA 149.43 308472274.3 308472274.3 3/3 3/3
MCA-pct 1.86 308472274.3 308472274.3 3/3 3/3
TRWS 150.47 308472310.6 308472270.4 2/3 1/3
TRWS-pct 3.90 308472274.3 308472274.3 2/3 2/3
FastPD 0.45 308472275.0 −∞ 2/3 0/3
FastPD-pct 1.62 308472274.7 −∞ 2/3 0/3
α-exp 6.42 308472275.6 −∞ 2/3 0/3
α-exp-pct 1.72 308472274.3 −∞ 3/3 0/3

Figure 10. Color segmentation example from [3]. Left: Original

image. Middle: Optimal segmentation. Right: Pixels labeled

differently by TRWS (256 out of 414720 pixels).

The differences between the energy values of the methods

are quite small. Fig. 10 shows the calculated optimal label-

ing by MCA (middle) and the differently labeled pixels by

TRWS. Differences exist in boundary regions that might be

not that important for applications. However, on this dataset

MCA-pct is comparable to approximative state-of-the-art

methods in terms of runtime and provides optimality. Fur-

thermore, we would like to point out that most of the runtime

of MCA-pct is spent for the calculation of partial optimality.

We also apply model reduction for approximative meth-

ods as in [3]. This improves the runtimes and energies of

TRWS and α-exp as can also be seen in Tab. 2. For FastPD

we oberve an increase in runtime.

Second, we investigate large scale 3D MRI brain seg-
mentation. We use simulated 3D MRI brain data [1] and

calculate the five color modes in the histogram. Our model

contains five labels corresponding to the five intensity modes.

The local data-term penalizes the L1-distance between the

voxel intensities and the mode intensities. We use a pair-

wise Potts term to penalize the boundary length using the

6-neighborhood in the 3D grid [7]. We choose a T1 pulse se-

quence with 3% noise relative to the brightest tissue and 20%

intensity non-uniformity, cf. [1] for details. The simulated

slice thickness was set to 3, 5, 7, and 9mm, which results in

181×217×60, 36, 26, and 20 voxel volumes, respectively.

Figure 11. Left: Input data of the 3D MRI brain instance. It con-

tains more than one million variables with five states. Right: Seg-
mentation using the L1-distance to the five intensity modes as data

term together with a boundary length regularization.

175417541756

For the instance with a thickness of 7mm, MCA requires

20 minutes for optimization. We can reduce the runtime to

less than half a minute by using partial optimality, connected

components, and tentacle elimination, cf. Tab. 3. FastPD

(both with and without reduction) and α-exp-pct provide

results that are a bit faster than that of MCA-pct but worse

in terms of energy. Notably, TRWS found the optimal bound

but was not able to find the optimal integer solution during

1000 iterations. For MCA-pct, 951982 variables are elimi-

nated by partial optimality and 7391 by tentacle elimination.

Of the remaining 2467 subproblems, the largest one contains

45023 variables.

Table 3. Results on the brain dataset with 7mm slices [1]

algorithm runtime energy bound best ver. opt

MCA 1370.80 12661506 12661506 yes yes
MCA-pct 21.64 12661506 12661506 yes yes
TRWS 589.67 12661590 12661506 no no

TRWS-pct 335.27 12661572 12661506 no no

FastPD 1.80 12663105 −∞ no no

FastPD-pct 8.60 12662871 −∞ no no

α-exp 53.25 12662909 −∞ no no

α-exp-pct 9.91 12662793 −∞ no no

The runtimes for the different problem sizes are shown

in Fig. 12. As already seen for the 7mm instance, MCA-pct

is quite fast and at the same time provides verified optima

for all problems. MCA fails on the largest instance due to

the lack of enough memory. For the approximate methods

we show the gap to the optimal energy in Fig. 13. TRWS

performs good but has worse runtimes than MCA-pct.

1 ·106 2 ·106

10 s

1min

10min

1 h

number of variables

ru
n
ti
m
e

MCA

MCA-pct

TRWS

TRWS-pct

FastPD

FastPD-pct
α-exp

α-exp-pct

Figure 12. Runtimes for the brain dataset for different slice thick-

nesses which result in different numbers of variables. While for

MCA, the speedup caused by model-reduction is large, it is moder-

ate or not present for approximative methods.

6. Conclusions
We compared for the first time several combinatorial opti-

mization methods, some not considered for computer vision

problems so far, in connection with polynomial time prepro-

cessing steps that make those methods applicable to large

scale computer vision problems.

1 ·106 2 ·106
0

1000

2000

3000

number of variables

en
er
g
y
g
ap

TRWS

TRWS-pct

FastPD

FastPD-pct
α-exp

α-exp-pct

Figure 13. Energy gaps to the optimal energy for the brain dataset

for different slice thicknesses which result in different numbers of

variables. TRWS gives remarkably good but non-optimal solutions.

We showed that such solvers are often “blind” for simple

structural properties of the problems. Using the proposed

preprocessing, we were able to solve significantly larger

problem instances to global optimality that have not been

solved before and to reduce the runtime for exact methods

substantially so as to make them applicable to real world

computer vision applications.

Bridge elimination, which has not been used to far, can

also be extended to bridges consisting of several factors.

This might be a powerful tool for some type of models where

small separators exist.

Finally, our approach requires the presence of partial

optimality, and so far we only considered two methods to

provide this. Recently, Swoboda et al. [35] published a new

algorithm to obtain partial optimality in Potts models which

increases the number of known variables significantly. In

future work we will employ this method, consider methods

for higher order factors, methods that provide stronger partial

optimality criteria, as well as methods for general pairwise

terms. A corresponding extension of our framework seems

feasible.

Acknowledgment. We thank Thorsten Bonato, Lars Otten,

and Nicol Schraudolph for discussions and their support with

their respective codes. This work has been supported by the

German Research Foundation (DFG) within the program

“Spatio-/Temporal Graphical Models and Applications in

Image Analysis”, grant GRK 1653.

References
[1] BrainWeb: Simulated brain database. http://brainweb.

bic.mni.mcgill.ca/brainweb/.

[2] The probabilistic inference challenge (PIC 2011).

http://www.cs.huji.ac.il/project/PASCAL/.

[3] K. Alahari, P. Kohli, and P. H. S. Torr. Dynamic hy-

brid algorithms for MAP inference in discrete MRFs.

TPAMI, 32(10):1846–1857, 2010.

[4] B. Andres, T. Beier, and J. H. Kappes. OpenGM:

A C++ library for discrete graphical models, 2012.

http://arxiv.org/abs/1206.0111.

175517551757

[5] T. Bonato. Contraction-based Separation and Lifting
for Solving the Max-Cut Problem. Optimus Verlag,

2011.

[6] E. Boros and P. L. Hammer. Pseudo-Boolean optimiza-

tion. Discrete Applied Mathematics, 123(1–3):155–
225, 2002.

[7] Y. Boykov and V. Kolmogorov. An experimental com-

parison of min-cut/max-flow algorithms for energy

minimization in vision. TPAMI, 26(9):1124–1137,
2004.

[8] Y. Boykov, O. Veksler, and R. Zabih. Fast approx-

imate energy minimization via graph cuts. TPAMI,
23(11):1222–1239, 2001.

[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Intro-
duction to Algorithms. MIT Press, 1990.

[10] V. Franc, S. Sonnenburg, and T. Werner. Cutting plane

methods in machine learning. In Optimization for Ma-
chine Learning. MIT Press, 2011.

[11] P. Hammer. Some network flow problems solved with

pseudo-Boolean programming. Operations Research,
13(3):388–399, 1965.

[12] T. Hazan and A. Shashua. Convergent message-passing

algorithms for inference over general graphs with con-

vex free energies. In UAI, 2008.

[13] J. K. Johnson, D. M. Malioutov, and A. S. Willsky.

Lagrangian relaxation for MAP estimation in graphical

models. In Proceedings of the Annual Allerton Con-
ference on Communication, Control, and Computing,
2007.

[14] F. Kahl and P. Strandmark. Generalized roof duality

for pseudo-Boolean optimization. In ICCV, 2011.

[15] J. H. Kappes, B. Savchynskyy, and C. Schnörr. A bun-

dle approach to efficient MAP-inference by Lagrangian

relaxation. In CVPR, 2012.

[16] J. H. Kappes, M. Speth, B. Andres, G. Reinelt, and

C. Schnörr. Globally optimal image partitioning by

multicuts. In EMMCVPR, 2011.

[17] P. Kohli, A. Shekhovtsov, C. Rother, V. Kolmogorov,

and P. H. S. Torr. On partial optimality in multi-label

MRFs. In ICML, 2008.

[18] D. Koller and N. Friedman. Probabilistic Graphical
Models: Principles and Techniques. MIT Press, 2009.

[19] V. Kolmogorov. Convergent tree-reweighted message

passing for energy minimization. TPAMI, 28(10):1568–
1583, 2006.

[20] N. Komodakis, N. Paragios, and G. Tziritas. MRF en-

ergy minimization and beyond via dual decomposition.

TPAMI, 33(3):531–552, 2011.

[21] N. Komodakis and G. Tziritas. Approximate labeling

via graph cuts based on linear programming. TPAMI,
29(8):1436–1453, 2007.

[22] I. Kovtun. Partial optimal labeling search for a NP-hard

subclass of (max, +) problems. In Proceedings of the
DAGM Symposium, 2003.

[23] V. Lempitsky, C. Rother, S. Roth, and A. Blake. Fusion

moves for Markov random field optimization. TPAMI,
32(8):1392–1405, 2010.

[24] S. Nowozin, C. Rother, S. Bagon, T. Sharp, B. Yao,

and P. Kohli. Decision tree fields. In ICCV, 2011.
[25] J. B. Orlin. A faster strongly polynomial time algorithm

for submodular function minimization. In IPCO, 2007.

[26] L. Otten and R. Dechter. Anytime AND/OR depth-first

search for combinatorial optimization. In SOCS, 2011.
[27] C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szum-

mer. Optimizing binary MRFs via extended roof dual-

ity. In CVPR, 2007.
[28] B. Savchynskyy, S. Schmidt, J. H. Kappes, and

C. Schnörr. A study of Nesterov’s scheme for La-

grangian decomposition and MAP labeling. In CVPR,
2011.

[29] B. Savchynskyy, S. Schmidt, J. H. Kappes, and

C. Schnörr. Efficient MRF energy minimization via

adaptive diminishing smoothing. In UAI, 2012.
[30] M. I. Schlesinger. Syntactic analysis of two-dimen-

sional visual signals in noisy conditions. Kibernetika,
4:113–130, 1976.

[31] N. N. Schraudolph. Polynomial-time exact inference in

NP-hard binary MRFs via reweighted perfect matching.

In AISTATS, 2010.
[32] N. N. Schraudolph and D. Kamenetsky. Efficient exact

inference in planar Ising models. In NIPS, 2009.
[33] A. Shekhovtsov and V. Hlaváč. On partial optimality

by auxiliary submodular problems. In Control Systems
and Computers, 2011.

[34] M. Sun, M. Telaprolu, H. Lee, and S. Savarese. Effi-

cient and exact MAP-MRF inference using branch and

bound. In AISTATS, 2012.
[35] P. Swoboda, B. Savchynskyy, J. H. Kappes, and

C. Schnörr. Partial optimality via iterative pruning

for the Potts model. In SSVM, 2013.

[36] M. J. Wainwright and M. I. Jordan. Graphical models,

exponential families, and variational inference. Founda-
tions and Trends in Machine Learning, 1(1–2):1–305,
2008.

[37] T. Werner. Revisiting the linear programming re-

laxation approach to Gibbs energy minimization and

weighted constraint satisfaction. TPAMI, 32(8):1474–
1488, 2010.

175617561758

