1063-6919/13 $26.00 © 2013 IEEE
DOI 10.1109/CVPR.2013.232

2013 IEEE Conference on Computer Vision and Pattern Recognition

A Convex Regularizer for Reducing Color Artifact in Color Image Recovery

Shunsuke Ono

Isao Yamada

Tokyo Institute of Technology, Japan

ono/isao@sp.ce.titech.ac.jp

Abstract

We propose a new convex regularizer, named the local
color nuclear norm (LCNN), for color image recovery. The
LCNN is designed to promote a property inherent in natu-
ral color images - in which their local color distributions
often exhibit strong linearity - and is thus expected to re-
duce color artifact effectively. In addition, the very nature
of LCNN allows us to incorporate it into various types of
color image recovery formulations, with the associated con-
vex optimization problems solvable using proximal splitting
techniques. Applications of LCNN are demonstrated with
illustrative numerical examples.

1. Introduction

Color image recovery problems, such as denoising, de-
blurring, demosaicking, inpainting, and super-resolution,
are usually modeled as ill-posed or ill-conditioned inverse
problems, and thus they require the use of a priori informa-
tion for estimating an unknown original image satisfacto-
rily. In general, the a priori information is exploited by a
regularizer which is incorporated into the objective func-
tion to be minimized. Such a regularizer is desired to
be convex in order to obtain a reasonable solution using
computationally-efficient algorithms. Major convex regu-
larizers for color image recovery are a family of (isotropic)
color/vectorial total variation (CTVs) [3, 4, 14, 15, 16]
which promote smoothness of color images while preserv-
ing edges, resulting in an effective noise reduction. On the
other hand, however, they are not able to sufficiently reduce
color artifact (see Figure 1 (c)).

Interestingly, one observes that in any local region of
natural color images, its color (RGB) distribution is almost
linear, as shown in Figure 1 (a). This property, which we
shall refer to as the color line property, was first reported in
[23], and has been utilized in image matting [ 18], dehazing
[17], intrinsic imaging [29], and smoothing/denoising [30],
to name a few. On the other hand, as shown in Figure 1 (c),
the color line property is corrupted due to the existence of
color artifact, which suggests that such color artifact is ex-
pected to be reduced by promoting the color line property.

1775

With this in mind, we propose a novel convex regularizer
inspired by the color line property, named local color nu-
clear norm (LCNN), for reducing artifact in color images.
To incorporate the color line property into a convex regular-
izer, we first define a matrix, which we call local color ma-
trix, consisting of the vectorized-and-horizontally-arranged
RGB channel components of a local region of a color image
(thus its column size is three), and then propose LCNN as
the weighted sum of the singular values of each local color
matrix of all regions. Since the column vectors (i.e., the
RGB component vectors) of any local color matrix tend to
be almost linearly dependent as long as the color line prop-
erty is satisfied, the second and third singular values of the
local color matrix are expected to be small (see Section 2 for
a detailed account). This implies that, by choosing a small
weight for the first singular value, suppressing LCNN pro-
motes the color line property, yielding an efficient removal
of color artifact. Moreover, the availability of the proxim-
ity operator of LCNN allows us to use LCNN as a building
block for various color image recovery formulation, where
the associated convex optimization problems can be solved
using proximal splitting techniques. We present several use-
ful applications of LCNN with examples which illustrate
that color artifact is significantly reduced using LCNN.

2. Local Color Nuclear Norm

In what follows, N denotes the set of positive integers,
R, R4, and R,y the sets of all, nonnegative, and pos-
itive real numbers, respectively. Let & = R"™*"n x
R7w XM 5 R0 X0 (n,, np € N correspond to image size)
be a Euclidean (product) space equipped with the stan-
dard inner product (-, -}, and its induced norm || - ||z; (i.e.,
(U, (-, )u, || - lle) is a real Hilbert space). Consider a color
image U := (U, Uy, Us) € U where U; (I = 1,2, 3) are
its RGB channels, and let I,:J (k = 1,...,K) be the in-
dex set of the pixels in the k-th non-overlapped local region
(e.g., a block) of the color image U, and |ZV| the number
of indices in I,? , 1.e., the number of the pixels in the k-th
region. We then define the local color matrix of the k-th
region by

U U U 77 |x3
Crv = (e Cok €3 € RIZx 13, (D
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(a) Original

(b) Noisy (salt-and-pepper)  (c) Conventional (CTV-£1) (d) Proposed (CTV-LCNN-£1)

Figure 1: Local region and its color distribution: Observe that the local RGB channel components of the original image
are linearly distributed (a), and the property (color line property) is lost by noise (b). The conventional approach cannot
reduce color artifact sufficiently, so that the color line property is still corrupted (c). In contrast, the proposed method well
recovers the color line property, resulting in an effective color artifact removal (d).
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Figure 2: Flowchart of the construction of the local color
matrix of the k-th region.

where Cz : € RIZE1 (1 = 1,2,3) are the vectorized k-th lo-
cal RGB channels of U, each of which consists of the lex-
icographically ordered channel components whose indices
belong to I,?. To shed more light into the construction of
local color matrices, we give its flowchart in Figure 2. The
singular value decomposition of CIE is given by

Cru =PsuX !
A 7 I}CJQIE;

where

v = diag(o1(Crv), 02(Crv), 03(Crp)) € R 3
is a diagonal matrix which contains the singular values in
descending order, and Pu € RIZEIIZY1 and Qv €
R3*3 are some orthogonal matrices (-* stands for the trans-
position). Using the local color matrix, our proposed regu-
larizer named local color nuclear norm (LCNN) || - ||Lcx 18
defined as follows:

W K
I B s U = [0,00) : U= 30, 300, we0s(Crp),

where w := [wy wy ws]® € R, . Itis clear that if a local
region has the color line property then the corresponding

local color vectors clUk (I = 1,2, 3) become almost linearly
dependent, and vice versa. This means that the second and
third singular values of any local color matrix CIE of nat-
ural color images are expected to be small, and this is vio-
lated by color artifact. Hence, by setting the weight w; to
a small value and suppressing LCNN, we can promote the
color line property, leading to the reduction of color artifact.

satisfies
>0
and UV, = 0 & U = Oy (ii) For any U, U’ € U,
IU + Uit < [|Ullfe. + V' IYe., (i) For any o € R
= [ U]IC.

Proposition 2.1. |- |1, is a norm of U, i.e.,

Since || - |, € T'o(U)" by Proposition 2.1, we can de-
fine the proximity operator [21]° of LCNN, which plays
a central role in minimizing objective functions involving
LCNN. By letting 22? € RIZVIX3 pe a diagonal matrix
with its diagonal elements being the singular values shrunk
respectively by w;y € (0,00) (i = 1,2, 3), i.e.,

shr

Tu = diag(max{m(cz}g) — w17, 0},

., max{ag(CI]g) —wsy,0}), (2)

! Let #H be areal Hilbert space equipped with the standard inner product
(-, ) and its induced norm || - ||. A function f : H — (—o0, o0] is called
proper lower semicontinuous convex if dom(f) = {x € H| f(x) <
oo} # 0, leve,(f) := {x € H| f(x) < a} is closed for every @ € R,
and f(Ax + (1 — N)y) < Af(x) + (1 — N f(y) for every x,y € H
and A € (0, 1), respectively. The set of all proper lower semicontinuous
convex functions on 7 is denoted by I'g (7).

2 For any v € (0, c0), the proximity operator of f € T'o(H) is given
by prox,  (x) = arg miny e {F(y) + 2= |Ix — y[2}.
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the proximity operator of LCNN is then given by

. . shr
prOX’Y”‘”E’C* . U — Z/{ . U — U 5

where U is the color image such that its local color ma-
trix CI’?sm is equal to PI}CJE%‘E Qtz}cJ fork = 1,...,K.
In other words, the computation of PIOX. . jw . is equiva-
lent to constructing the local color matrices from the input
color image, performing singular value shrinkage to each of
them as in (2), and reconstructing the output color image.
We remark that the availability of the proximity operator of
LCNN allows us to utilize computationally-efficient prox-
imal splitting algorithms for solving convex optimization
problems involving LCNN. The interested reader is referred
to, e.g., [32, 8, 2] for recent developments in convex analy-
sis and optimization that are related to this work.

3. Applications

Thanks to its simple but special property, LCNN has a
potential to serve as a fundamental and effective tool in
color image recovery and further applications. In the fol-
lowing, we provide useful applications of LCNN to sev-
eral image recovery problems. Corresponding experiments
were performed using MATLAB (R2013a), on a Windows
7 (64bit) desktop computer with an Intel Core 17 2.8 GHz
processor and 8.0 GB of RAM. All test images® (Figure 3)
are normalized with intensity range of [0,1]. We pick up
each local region of LCNN as simply a b x b square block,
where b € N is set to a suitable value for each application.
The weight of LCNN is fixed at w = [0.01 1 1].

3.1. Denoising

Denoising is a basic task in many image processing and
computer vision applications. Let us consider to estimate an
unknown original color image U € U from a given noisy
image V = D(U), where we focus on the two contami-
nation cases: D either denotes an additive white Gaussian
noise with the standard deviation o € R or an impulsive

noise with the probability p € (0,1).

3.1.1 Gaussian noise case

Much research has been devoted to image denoising under
Gaussian noise contamination, and state-of-the-art perfor-
mance can be achieved using patch-based nonlocal meth-
ods, e.g., [11, 19]. It is also true, however, that there is room

3 Some of the test images are available at http://rOk.us/graphics/kodak/
and www.mayang.com/textures.
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for improvement in terms of the reduction of color artifact.
Our method is thus formulated as follows: find

U* = arg min{A|U[fc. + 31U = UpeelZ}, - @)

where U, is a preprocessed image generated by some
denosing method. This hybrid approach realizes an ef-
fective denoising+color artifact reduction under Gaussian
noise contamination. Clearly, problem 3 is equivalent to
calculating prox/\HU”vaC*(Upre), so that it can be readily

solved by applying the singular value shrinkage only once.

The experimental results for ¢ = 0.15 are shown in
Table 1 and Figure 4, where we observe that the pro-
posed method (A = 0.35, b = 32, Up, is obtained by
the CBM3D denoising [!1]) improves the recovery per-
formance of CBM3D both in terms of objective measure
(PSNR [dB] and CIEDE2000 [28]*) and human eye percep-
tion. The average CPU times of CBM3D and the additional
LCNN color artifact reduction step are about 0.16 and 0.13
seconds, respectively.

3.1.2 Impulsive noise case

Things change in the inpulsive noise contamination case,
where standard denoising methods assuming Gaussian dis-
tribution usually fail to give a reasonable estimate. In such
a situation, convex optimization-based strategies using the
(C)TV-£' model are known as a very powerful approach,
as investigated in [12, 6, 16]. On the other hand, as in the
Gaussian case, color degradation caused by color artifact
is not completely inevitable even using the CTV-¢* model.
This leads to the proposed formulation: find

Utecarg ~ min — {A[Ullcrv + [Uliic.

€C0.1NCy .

where C‘[071} = {U € U| Ulz:,j € [Oa 1] v(l7l7j)} ('li‘j
the (i, j)-th entry of the I-th channel of -) denotes a pixel
intensity constraint, Cy, . == {U € U| |[U = V|, :=
>0 |0, — Vi ;| < e} the V-centered ¢* ball for the
data-fidelity (under impulsive noise contamination), and
|l - llcrv the CTV. In our method, the CTV proposed in
[4, 14] is employed because it achieves a better performance
compared to other CTVs [3, 15, 16] in the applications pre-
sented in this paper. The reason why we adopt the con-
strained formulation instead of the standard unconstrained
one (i.e., adding the ¢! fidelity term to the objective func-
tion) is that the fidelity level € can be adjusted in a relatively
easy manner based on some statistical information (e.g., p).

4)

4 CIEDE2000 is known as a better color quality assessment compared
with PSNR (a smaller value of CIEDE2000 indicates a higher quality).



Table 1: Comparison of PSNR and CIEDE2000 in Gaussian denoising (corresponding to the order of Figure 3)

CBM3D PSNR [dB] || 27.39 | 25.60 | 26.36 | 28.20 | 31.94 | 27.19 | 27.89 | 30.20 | 23.58 | 26.68 | 28.29 | 26.90 | 25.25 | 28.37 | 24.59
CIEDE2000 || 490 | 6.46 | 5.13 | 420 | 3.52 | 487 | 451 | 382 | 746 | 536 | 423 | 483 | 6.82 | 220 | 7.24
Proposed PSNR [dB] || 27.48 | 25.81 | 26.47 | 28.37 | 32.46 | 27.35 | 28.12 | 30.35 | 23.62 | 26.74 | 28.28 | 27.08 | 25.30 | 28.98 | 24.55
CIEDE2000 || 4.38 | 544 | 4.88 | 3.63 | 2.04 | 412 | 3.80 | 3.19 | 7.24 | 4.67 | 412 | 4.05 | 6.28 | 1.60 | 6.98

Figure 4: Closeup of some Gaussian (¢ = 0.15) denoising results :

It appears much difficult to solve problem 4 owing to
its highly non-smooth nature. Fortunately, however, recent
significant advances in convex optimization bring out an
efficient algorithmic solution to such a problem with the
help of proximal splitting techniques. In particular, primal-
dual splitting type algorithms, e.g., [5, 9, 10], are known as
among the most flexible solvers in the sense that they are
free from operator inversion in their iteration. We utilize in
this paper the primal-dual splitting method [10], which can
solve the following nonsmooth convex optimization prob-
lem’: find

x* € arg min{g(x) + h(Lx)}, (5)
where g € T'g(H), h € T'9(G),and L : H — G is a bounded
linear operator (# and G denote real Hilbert spaces). A sim-
ple version of the primal-dual splitting method iteratively
computes the following steps:

\\ Xn+1 = proxfylg[xn - rYlL*YH] (6)
Yn+41 = Prox, p« [yn + 72L(2Xn+1 - Xn)]a

where h* is the Fenchel-Rockafellar conjugate function® of
h, L* the adjoint of L, and v;,7v2 € Ry . It is known
that, by assuming v; ' — 2 IL|[2, > 0 (|| - [|op stands for the
operator norm), the pair of sequences (x,,, y,,) generated by
algorithm 6 (weakly) converges to the solution of problem
5 and its dual.

NowletH :=U, G :=UxUxUxU, g(U) := ||U||Lc«
L(U) := (D,(U),Dy(U),U,U), and h(O1,...,0,) :=
[(©1,02)[l1,2 + tcy 1 (O3) + Loy, (O4), where Dy, Dy,
are discrete vertical and horlzontal difference operators,

5 To be more precise, the primal-dual splitting method admits an addi-
tional differentiable function of which Lipschitzian gradient is computable.

© The Fenchel-Rockafellar conjugate function of f € T'g(H) is defined
by f*(&) = sup, 9 {{x,€) — f(x)}. The proximity operator of f* can
be expressed as prox., g« (x) = X — Yprox., -1 (v 1x).

From left, Noisy; CBM3D; CBM3D+LCNN (proposed); Original.

Il = 300 Sopy /S XE, + Y2, and
the indicator function’ of the nonempty convex set -.
Note that the CTV can be expressed as |Uljctv =
[[(D,(U),D(U)||1,2- Problem 5 then becomes equivalent
to Problem 4, resulting in a solver for problem 4 via the
primal-dual splitting method as shown in Algorithm 3.1. In
the algorithm, we need to compute the proximity operator

of [|(+,-)|[1,2, which is given by
prOX,y”(,’_)Hlyz (X Y) = {]. — %,0} * (X,Y),
where d; ; := \/Zl 1 X2 + Y _,and .x stands for entry-

wise multiplication. The metrlc pI‘OJ ections onto CJg 1) and
Cv e are also required, and they are respectively obtained
by pushing pixel values out of [0, 1] into 0 or 1 (the nearest
one is chosen) and a fast #! ball projection technique [13].
Algorithm 3.1 is computationally efficient because it does
not require operator inversion and inner loop.

The experimental results are given in Table 2 and Fig-
ure 5, where the test images are contaminated by a salt-
and-pepper noise with probability p = 0.3. To verify the
effectiveness of LCNN in a fair way, we compare the per-
formance of the proposed method with that of the CTV-
¢! method which is equivalent to solving problem 4 with-
out the LCNN term. Algorithm 3.1 is utilized in both
methods (3 = 72 = 0.35 and the stopping criterion
[Ups1 — Uplly < 0.01). The fidelity level € of both
methods are set to 0.5n,np0. In contrast to the CTV-£!
method, the proposed method (A = 0.13, b = 8) restores
a color-artifact-free denoised image as shown in Figure 5.
The average CPU time and iteration number of the CTV-¢1
method are about 45 seconds and 331, and those of the pro-
posed method are about 26 seconds and 183, implying that

7 For a given nonempty convex set C' C H, the indicator function
Lo € To(H) is defined by to(x) := 0 if x € C, oo otherwise. The
proximity operator of ¢ coincides with the metric projection onto C'.
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Table 2: Comparison of PSNR and CIEDE2000 in salt-and-pepper denoising (corresponding to the order of Figure 3)

T/ PSNR [dB] || 22.21 | 25.51 | 26.20 | 29.19 | 37.41 | 25.62 | 24.23 | 32.36 | 22.95 | 26.02 | 25.12 | 26.86 | 23.64 | 23.54 | 24.05
CIEDE2000 || 7.05 | 594 | 3.89 | 2.74 1.75 | 5.11 492 | 217 | 7.59 | 350 | 3.07 | 418 | 6.75 | 2.11 6.36

Proposed PSNR [dB] || 24.99 | 28.16 | 27.03 | 30.81 | 41.31 | 28.17 | 27.54 | 34.42 | 24.30 | 26.36 | 27.22 | 29.71 | 25.71 | 26.69 | 25.35
CIEDE2000 || 4.01 356 | 3.73 | 2.07 | 038 | 2.71 280 | 1.58 | 5.80 | 3.09 | 2.58 | 2.72 | 499 | 091 5.24

Figure 5: Closeup of some salt-and-pepper (p = 0.3) denoising results: From left, Noisy; CTV-¢'; CTV-LCNN-£' (proposed); Original.

Algorithm 3.1 Solver for problem 4

1: Setn = 0. Choose U(®) € 1/, and €,71,72 € Ry.

2 (0)",....0{”) = (D,(U®), D, (U®), U, U)

3: while a stop criterion is not satisfied do

4 U=U0 -5 (DiO")+ D (O5") + )" +Of")
st UMD = prox)jw, (U)

6: A =0 +4,D,20M —u)
7. Al =0l 4 1D, (20 —um)
8 ASY =0fY 420 —uM)
9. A =0 +42(20M —UM)

. ~(n) ~(n) - n - n
10: (Aln ,A2n )= prox/\b_l”(',')HLZ(W2 1A5 )»’Yz 1Aé ))
~(n) _
1 Ay =Py, (0 ' ASY)
12: Afln) =Pey, E(’YEIAELH))
13: form = 1to4 do
14 @PtY Z AW — AT
15: end for

16: n=n+1
17: end while
18: Output U™

the use of LCNN leads to a faster convergence.

3.2. Simultaneous Deblurring and Inpainting

We proceed to consider a more involved case: estimat-
ing an original image U from a noisy blurred image with
missing pixels that can be modeled as V = D(MB(U)),
where B : &/ — U is a blur operator, and M : &/ — U a
binary masking operator representing missing pixels. Here
we simply consider additive white Gaussian noise contami-
nation as D. This general model covers various degradation
scenarios, and, indeed, such a simultaneous restoration us-
ing TV (grayscale) has been studied, for example, in [7, 22].
We thus propose a simultaneous color image deblurring and

inpainting method: find

U* carg min {AMUllerv + 1UFe. s (D

UGC[O’l], MB(U)GC%,E

where C%, . = {X € U| | X = Vi < ¢} is the V-
centered Euclidean ball for the data-fidelity (under Gaus-
sian noise contamination) onto which projection is given by
PC‘QLE(X) =Xif|X=V]y <e, V+ M(X -V)
otherwise. Problem 7 can also be solved via the primal-dual
splitting method. The resulting algorithm is obtained by re-
placing steps 2, 4, 9, and 12 of Algorithm 3.1 respectively
with

(©1".....0") = (D,(U),D,(U), U, MBU®)),

U =U" - (D(©)") + D} (5") + O + B'M"(8(")),

AV =0 +,MB@RU™ —UM),

Ay = Pez (7 'ASY).

We show the experimental results in Table 3 and Fig-
ure 6. The degraded images were generated in such a way
that the test images are blurred by a 3 x 3 Gaussian ker-
nel, randomly missing about 40% pixels, and contaminated
by an additive white Gaussian noise (¢ = 0.05). The pro-
posed method is compared with the CTV-£2 method which
solves problem 7 without the LCNN term. Algorithm 3.1
with the above-mentioned replacement is used in both meth-
ods, where v; = o = 0.35 and the stopping criterion is
U411 —Uyllze < 0.001. The fidelity level € of both meth-
ods are set to 0.951/0.4n,npo. We observe in Figure 6 that
the restored images by the proposed method (A = 0.07,
b = 8) have less color artifact compared with those of the
CTV-£2 method. The average CPU time and iteration num-
ber of the CTV-£2 method are about 15 seconds and 1730,
and those of the proposed method are about 12 seconds and
318. Compared with the salt-and-pepper denoising case,
the computational cost of both methods are low because the
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Table 3: Comparison of PSNR and CIEDE2000 in deblurring+inpainting (corresponding to the order of Figure 3)

e o B =

V2 PSNR [dB] 21.31 | 24.86 | 25.76 | 28.52 | 32.56 | 24.77 | 25.02 | 30.72 | 22.37 | 26.84 | 25.19 | 26.87 | 23.38 | 23.86 | 23.81
CIEDE2000 6.97 6.43 4.53 3.69 3.38 5.36 4.86 3.33 7.82 4.24 3.84 4.39 6.91 2.88 6.85
Proposed PSNR [dB] 22.03 | 25.67 | 26.28 | 28.95 | 33.76 | 25.51 | 25.87 | 31.44 | 22.70 | 27.09 | 25.89 | 27.49 | 23.94 | 24.98 | 24.27
P CIEDE2000 5.95 5.14 4.46 3.26 2.05 4.48 4.09 2.83 7.44 3.98 3.88 3.81 6.25 2.22 6.65
. B ok B
l - i o
P B

Figure 6: Closeup of some deblurring-+inpainting (¢ = 0.05) results: From left, Degraded; CTV-¢?; CTV-LCNN-£? (proposed); Original.

computation of Pp2 is much easier than that of Poy

and, as in the case, the proposed method results in a faster
convergence.

4. Discussion
4.1. Parameter Setting

There are two parameters regarding LCNN, i.e, the lo-
cal region size b (the square block case) and A that deter-
mines the relative importance between LCNN and the other
functions to be minimized. On the setting of b, we can say
that, basically, it should be a small value since the color
line property is well satisfied in a small region. Moreover,
a small b is better in terms of the computational cost of
the singular value decomposition required in the computa-
tion of proxWH,Hr,C*. However, in the case that color artifact

spreads as in the preprocessed images in Figure 4, the region
size b has to be chosen as a relatively large value to remove
such color artifact. On the other hand, a suitable value of A
varies according to the application as has been seen in the
previous section, and it is actually different depending on
each image. However, even if the most suitable value is not
chosen for individual images, the advantage of using LCNN
is confirmed, as exhibited in the comparison of PSNR and
CIEDE2000 of all the test images (Tables 4-6), where we
adopted a single value for A in each application.

4.2. Limitation

Evidently, LCNN cannot reduce noise only in the lumi-
nance component, so that it should be used together with
another regularizer such as CTVs. It is also clear that, if an
image to be estimated does not originally enjoy the color
line property, then LCNN is useless and rather inconsistent.
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5. Concluding Remarks

We have proposed a novel convex regularizer, named the
local color nuclear norm (LCNN), for reducing color arti-
fact in color image recovery. The LCNN is designed to pro-
mote what we call the color line property, which refers to
the strong linearity often exhibited by the local color distri-
bution of natural color images. Since the color line property
is violated by color degradation, the LCNN serves to reduce
the presence of color artifact. With the proximity operator
of LCNN being computable, there is a variety of its possible
applications via proximal splitting techniques which are not
limited to the ones provided in this paper but also include,
for example, those of using Moreau envelope in image re-
covery [26]. Experimental results illustrated the effective-
ness, and, at the same time, suggest further potential of
LCNN, both in terms of collaboration with other regulariz-
ers, such as the £ norm of frame coefficients (e.g., wavelet),
the convexified vectorial Mumford-Shah functional [31],
the anisotropic vectorial L., total variation [20], and the
block nuclear norm [25], and applications, such as super
resolution, demosaicking, and compressed sensing. It is
also interesting to incorporate LCNN into image decompo-
sition models (e.g., [1, 14, 24, 27, 22]*), which may help
to restore well-textured images. Future work includes an
automatic parameter selection and an efficient parallel im-
plementation based on the block-wise nature of LCNN.
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8 Schaeffer and Osher [27] proposed to use the nuclear norm of a matrix
consisting of vectorized patches of (grayscale) images for characterizing
texture. The construction procedure of the matrix appears similar to ours
but it is actually completely different.
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