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Abstract

We study the problem of interactive segmentation and
contour completion for multiple objects. The form of con-
straints our model incorporates are those coming from user
scribbles (interior or exterior constraints) as well as infor-
mation regarding the topology of the 2-D space after par-
titioning (number of closed contours desired). We discuss
how concepts from discrete calculus and a simple identity
using the Euler characteristic of a planar graph can be uti-
lized to derive a practical algorithm for this problem. We
also present specialized branch and bound methods for the
case of single contour completion under such constraints.
On an extensive dataset of ∼ 1000 images, our experi-
ments suggest that a small amount of side knowledge can
give strong improvements over fully unsupervised contour
completion methods. We show that by interpreting user in-
dications topologically, user effort is substantially reduced.

1. Introduction

This paper is focused on developing optimization

models for the problem of multiple contour comple-

tion/segmentation subject to side constraints. The type of

constraints our algorithm incorporates are (a) those relating

to inside (or outside) seed indications given via user scrib-

bles; (b) global constraints on the topology, i.e., information

which reflects the number of unique closed contours a user

is looking for. Given the output from a boundary detec-

tor (e.g., Probability of Boundary or Pb [25]), we obtain a

large set of weighted locally-based contours (or edgelets) as

shown in Fig. 1. The objective then is to find k closed “le-

gal” contour cycles with desirable properties (e.g., curvilin-

ear continuity, strong edge gradient, small curvature), where

legal solutions are those that satisfy the side constraints,

shown in Fig. 1. The basic primitives in our construction

are contour fragments, not pixels. The motivation for this

choice is similar to most works on contour detection for im-

age segmentation – by moving from predominantly region-

based terms to a function that utilizes strength of edges, we

seek to partly mitigate the dependence of the final segmen-

tation on the homogeneity of the regions alone and the num-

ber of seeds. Additionally, in at least some circumstances,

one expects benefits in terms of running time by utilizing a

few hundred edges instead of a million pixels in the image.

Our high level goal is the design of practical contour com-

pletion algorithms that take advice – which in a sense paral-

lels a powerful suite of methods that have recently demon-

strated how global knowledge can be incorporated within

popular region-based image segmentation methods [26].

Figure 1: Left to right: input images, edgelets or contours with

seed indications, and final contour. Foreground is marked in green;

background is marked in red; boundrary is marked in white. Best

viewed in color.

Related Work. The study of methods for detection of

salient edges and object boundaries from images has a long

history in computer vision [37]. The associated body of

literature is vast – methods range from performing edge de-

tection at the level of local patches [32], to taking the conti-

nuity of edge contours into account [37, 29], to incorporat-

ing high-level cues [36] such as those derived from shape

and/or appearance [25]. While the appropriateness of a spe-

cific contour detector is governed by the downstream appli-

cation, developments in recent years have given a number

of powerful methods that yield high quality boundary detec-

tion on a large variety of images and perform well on estab-

lished benchmarks [25]. Broadly, this class of methods uses

local measurements to estimate the likelihood of a boundary

at a pixel location. To do this, the conventional approach

was to identify discontinuities in the brightness channel,

where as newer methods exploit significantly more infor-

mation. For instance, [27] suggests a logistic regression on
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brightness, color, and texture, and [9, 24] learns a classifier

by operating on a large number of features derived from im-

age patches or filter responses at multiple orientations. Con-

temporary to this line of research, there are also a variety of

existing algorithms that integrate (or group) local edge in-

formation into a globally salient contour. Since one expects

the global contour to be smooth, the well known Snakes for-

mulation introduced an objective function based on first and

second derivative of the curve. Others have proposed utiliz-

ing the ratio of two line integrals [18], incorporating curva-

ture [31, 10], joining pre-extracted line segments [40, 35],

and using CRFs to ensure the continuity of contours [30].

Note that despite similarities, contour detection on its own

is not the same as image segmentation. In fact, even when

formalized under contour completion, an algorithm may not

always produce a closed contour. Nonetheless, from most

“edge-based” methods one can obtain a partition of the im-

age into object and background regions. Without getting

into the merits of edges versus regions, one can view edge-

based contours as a viable alternative to “region-based” im-

age segmentation methods in many applications.

The success of the above developments notwithstanding,

the applicability of these methods has been somewhat lim-

ited by their inability to successfully discriminate between

contours of different classes of objects. To address this lim-

itation, there has been a noticeable shift recently towards

the incorporation of additional information within the con-

tour completion process. In particular, several groups have

presented frameworks that leverage category specific (or se-

mantic) information into the process of obtaining closed ob-

ject boundaries. Specific examples of this line of work in-

clude semantic contours [16], the hierarchical ultrametric

contour map [2], and particle filtering based object detec-

tion via edges [23]. The basic idea here is to achieve a

balance between bottom up edge/boundary detection and

top-down supervision, for simultaneous image segmenta-

tion and recognition. While semantic knowledge based con-

tour completion is quite powerful, its performance invari-

ably depends on the richness of the underlying training cor-

pus. Indeed, if the shape epitomes do not reflect the object

of interest accurately enough (significant pose variations),

if there is clutter/occlusion, or when a novel class is not

well represented in the training data, the results may be

unsatisfactory. In these circumstances, it seems natural to

endow the contour completion models with the capability

to leverage some form of user supervision (foreground and

background seeds) [15]. Further, knowledge provided in the

form of the number of closed contours a user requires, can

be a powerful form of user guidance as well. Notice that

the adoption of Grabcut type methods suggests that a nom-

inal amount of “interactive scribbles” is readily available in

many applications, and may significantly improve the qual-

ity of solutions. While there are many mechanisms which

incorporate such constraints in region based segmentation,

only a few methods take such information explicitly into

account for edge-based contour completion. In this work,

we leverage a discrete calculus based toolset to incorpo-

rate such topological and seed indications type supervision

within a practical contour completion algorithm.

The primary contributions of the this paper are: (i) We

present a unified optimization model for multiple con-

tour completion/segmentation which incorporates topologi-

cal constraints as well as inclusion/exclusion of foreground

and background seeds. The topological knowledge is in-

cluded by using the Euler characteristic of the edgelet

graph where as inclusion/exclusion constraints utilize con-

cepts from discrete calculus. (ii) For an extensive dataset,

we provide strong evidence that with a small amount of

user interaction, one can obtain high quality segmentations

based on edge contours information alone. We give an

easy to use implementation, as well as user scribble data

corresponding to varying levels of interaction on this large

(∼ 1000) set of images.

2. Preliminaries
The tools of discrete calculus provide a powerful formal-

ism to represent the topological information in an image

[14, 20, 7]. We use conventions of discrete calculus to de-

scribe our problem of finding multiple contour closures. In

this section, we introduce the idea of cell complices which

are the fundamental building blocks of our construction.

The following text also introduces the necessary notations,

which will be used thoughout the rest of the text.

2.1. Discrete Calculus

The domain of an image is decomposed into a set of

cells. If the decomposition is such that (i) the interiors of

the cells are disjoint and (ii) the boundary between any two

p-dimensional cells is a (p − 1)-dimensional cell then we

have a cell complex. As an example, consider a planar graph

G = 〈V,E, F 〉with vertices V , edges E, and faces F . Such

a graph has incidence relationship between each face and

its bounding edges, and between each edge and its endpoint

vertices. Similarly, each vertex is incident on two or more

edges and each edge is incident on two faces. Notice that

the interior of a pair of faces is disjoint, and the boundary

between any two faces gives an edge, where the dimension

is reduced by one. As a consequence, we get a 2D cell

complex for a planar graph, and also a set of incidence rela-

tionships among simplices of different dimensions.

A cell complex may be oriented such that we can de-

scribe directions on each cell relative to its orientation, see

Fig. 2(a). Each type of cell has a corresponding pair of

possible orientations: a vertex (0-cell) is either a source or

a sink while an edge (1-cell) may be directed toward either

endpoint. Further, each cell induces a corresponding ori-
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Vertex Edge Face Coherent Anti-coherent

(a) (b)
Figure 2: Visualization of the orientations on cells of different dimen-

sionalities (a). In (b) we show in the left column p-cells with all of their

boundary (p − 1)-cells coherently oriented, and all boundary cells anti-

coherently oriented in the right column.

Node Edge Face

Primal

Dual

Figure 3: Duality relationships between 2D cell complices.

entation on incident cells; for example, a directed edge has

a source endpoint vertex at one end and sink at the other.

The orientations of a cell and a member of its boundary are

coherent if the induced orientations agree, an example is

shown in Fig. 2(b).

We may represent the two-dimensional image as an ori-

ented complex. All faces are given the same orientation,

while edges and vertices are given arbitrary orientations.

After enumerating its constituent vertices, edges and faces,

a selection of some subset of faces is specified with an in-

dicator vector x ∈ {0, 1}|F |. xi = 1 denotes the candidate

face Fi ∈ F is in the foreground, and xi = 0 otherwise.

Similarly, we represent the edge and vertex configuration of

G by indicator vectors y ∈ {0, 1}|E| and z ∈ {0, 1}|V | re-

spectively. We require that the indicator vectors x,y, z on

each level of cell consistently describe a segmentation. The

key relationship is consistency between the labels on the

incident cells. These relationships can be expressed alge-

braically using the notion of a dimension-appropriate inci-
dence matrix. The edge-face incidence matrix (also called

the boundary operator) C1 ∈ {−1, 0, 1}|E|×|F | is defined

by

C1;ij =

⎧⎪⎨
⎪⎩
1 if edge i is incident to face j and coherently oriented;

−1 if edge i is incident to face j and anti-coherently oriented;

0 otherwise.
(1)

Here, C1;ij refers to entry (i, j) in C1. Similarly,

by discarding orientation information, we can define the

edge-face corresponding matrix C2 ∈ {0, 1}|E|×|F | which

labels which edges are incident to which face. It can

be calculated as the element-wise absolute value of C1,

such that C2;ij = |C1;ij |. The node-edge incident ma-

trix A1 ∈ {−1, 0, 1}|V |×|E| is defined analogously to (1),

where A1;ij = 1 iff node i is incident to edge j. As

with C2, we define the node-edge corresponding matrix

A2 = |A1| ∈ {0, 1}|V |×|E|. We further use a node-edge de-
gree matrix A3 ∈ R

|V |×|E|, where A3;ij = A2;ij/di where

di denotes the degree of node i.
Discrete calculus describes the notion of duality between

cell complices. In a p-complex, each q-cell will have a cor-

responding dual (p−q)-cell (say, q ≤ p). For any given cell

complex, we can construct its dual in a way that preserves

incidence relationships between cells, see Fig. 3. Using

these concepts, in the following sections, we will formalize

the required constraints within a contour completion objec-

tive function.

3. Problem Formulation
As described in Section 2.1, our model works with se-

lections of the cells constituting the foreground. Since the

notion of foreground for a face is self-evident, we will de-

scribe the labeling of vertices and edges, starting from a face

labeling x. We enforce the following condition:

Condition 1. A p-cell is in the foreground if and only if it
is incident to a (p+ 1)-cell in the foreground.

This condition ensures that each connected component

of the foreground is itself a cell complex, a property we will

use shortly.
First, we introduce an auxiliary indicator variable w ∈

{0, 1}|E| which selects the boundary edges. These edges
are those which are incident to both a foreground and a
background face. W.l.o.g., consider edge 1 incident to faces
1 and 2 respectively, then w1 = |x1 − x2| = I(x1 �= x2).
Taken together, the full set of boundary edges precisely rep-
resent the contour of the selected foreground. We can now
use the boundary operator from Section 2.1 to derive the
identity

w = |C1x| (2)

Observe that each edge is incident to exactly two faces,
and we specified that all faces have identical orientation. It
follows that an edge must be coherent with one face and
anti-coherent with the other. Therefore, for all internal
edges (non-boundary edges in the foreground) the C1 oper-
ator when multiplied with x, cancels the contribution from
these two faces, leaving non-zero values only for the bound-
ary edges. The internal edges (which are incident to fore-
ground faces on both sides) can still be computed in a dif-
ferent manner. The vector C2x will count the inside edges
twice and the boundary edges once, as we discard orienta-
tion (and thus sign information). In the preceding, w.l.o.g.
(C2x)1 = x1 + x2. Thus, Condition 1 will be satisfied if
the following identity holds:

2y = w + C2x (3)

We use the matrices A2, A3 for a pair of linear inequali-
ties which are equivalent to Condition 1 for vertices. Ob-
serve that the vector A2y will be the number of foreground
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Figure 4: A superpixel-based segmentation with the foreground subgraph

consistent under condition 1. Selected faces are shaded, foreground edges

are bold and foreground vertices highlighted in yellow. Internal edges

yi �= wi = 0 are bold/black, boundary edges yi = wi = 1 are red.

edges incident to each foreground vertex (or node), where
(A2y)i is the number of foreground edges incident to ver-
tex (or node) i. Similarily, when scaled by the degree di
of vertex i, (A3y)i ∈ [0, 1] will be the proportion of edges
incident to i which are in foreground. Enforcing condition
1 is equivalent to:

A3y ≤ z ≤ A2y (4)

Since zi ∈ {0, 1}, the condition, zi ≥ (A3y)i, will be true

only for zi = 1 if any edge incident to i is in foreground.

Conversely, if no edge incident to i is selected in the solu-

tion, then (A2y)i = (A3y)i = 0 and (4) is satisfied only

for zi = 0.

The expressions introduced above allow the identifica-

tion of whether a user provided seed falls “inside” or “out-

side” the contour completion given by w, and will serve

as constraints for our multiple contour completion model.

Fig. 4 shows an illustrative example for an image, where

the input to the contour completion are edgelets (or edgels)

obtained from boundaries of a globalPb derived superpixels.

Euler Characteristic. Our final requirement is to be

able to specify the number of closed contours desired. The

existing literature on region based image segmentation pro-

vides some ideas on how this can be accomplished for ran-

dom field based models – in the form of so-called connect-

edness constraints. TopologyCuts is an extension of graph-

cuts and utilizes certain levelset ideas to preserve topology

[41]. The DijkstraGC [38] finds a segmentation where two

manually indicated seed points are connected via the fore-

ground where as Nowozin [28] makes use of a LP relax-

ation. Very recently, [8] proposed selectively perturbing

the energy function to ensure topological properties. Here,

we show how a much simpler form can capture the desired

topological properties, as described next.
For any graph we can define the Euler characteristic as

χ = |V | − |E|+ |F |, (5)

where χ = 2 for any planar embedding of a graph. If
we explicitly constrain that the Euler characteristic of an in-
duced subgraph created by selecting any given foreground
is exactly two, this will give a foreground region that is
connected and simple in a geometric sense. For multiple

connected regions, we can use the generalized form of this
formula for arbitrary planar graphs:

|F |+ |V | − |E| = n+ 1 (6)

where n is the number of connected components.)

Lemma 3.1. Let x,y, z denote indicator vectors for the se-
lection of faces, edges, and vertices for planar graph G.
The selected subgraph will satisfy (6) if∑

i

xi +
∑
k

zk −
∑
j

yj = n (7)

Proof. (Sketch) The left-hand side of this formula counts

each relevant quantity for the Euler characteristic of the se-

lected subgraph, but it neglects to count the “outside” face.

Subtract one from the RHS and derive the equality.

This will not count the extra outside faces corresponding

to any “holes”. This was not a problem in our experiments,

but can be explicitly avoided by requiring the background

be connected using the spanning tree constraints of [33].

Using (7) as a constraint in our model will guarantee that

we recover n simply connected foregrounds.

3.1. Optimization Model

Before we introduce the contour completion model, we

briefly describe the procedure for deriving the components

of the graph from an image. This process follows exist-

ing algorithms for contour and boundary detection. First,

we run the globalPb detector on an image which provides

the probability of boundary for each image pixel. Next, we

generate a set of superpixels from the image using the glob-

alPb output in conjunction with TurboPixels (which uses

local information and compactness). Each superpixel cor-

responds to a face, and the boundary of the superpixel cor-

responds to edges in the graph (these are the basic primi-

tives of the closed contours we will derive). If two edges

are connected, we introduce a node in the graph. With this

construction, the problem of finding multiple contour clo-

sures reduces to finding multiple cycles in the graph. To se-

lect the cycles for the strongest contours, we want to weight

the edges appropriately. For this purpose, we calculate two

types of weight measures following [21]. The first, denoted

by N, measures the “goodness” of edges. The better edge i
is, the smaller Ni will be. The second, denoted by D, is the

count of all the pixels on the superpixel boundary. We use

an objective function which is the ratio of these quantities,
N(w)
D(w) . This ends up being the portion of contour w.r.t arc-

length which does not lie on a true image edge. Minimizing

this quantity has been shown to provide a contour that has

strong edge support in the image.

Finally, the user indictations are represented in terms of

indicator vectors x0,x1, where x0;i = 1 if face i contains
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a background seed. With the basic components (or con-

straints) in hand, we now have the main optimization model.

min
w,x,y,z

NTw

DTw
,

s.t. w = |C1x|, 2y = w + C2x, (8a,b)

A3y ≤ z ≤ A2y, 1Tx+ 1T z− 1Ty = n, (8c,d)

x1 ≤ x ≤ 1− x0, w,x,y, z ∈ {0, 1}. (8e,f)

3.2. Optimizing Ratio Objective

Since the objective in (8) of the main paper is in ratio

form, we transform it into a linear function with a free vari-

able, t. Our linear ratio cost objective function is solved

by minimizing f(t,u) = (N − tD)Tu, over admissible u
for a sequence of chosen values of t. Here, u denotes the

concatenated vector of all indicator variables in the model.

Assume D ≥ 0 and DTu �= 0. For an initial finite

bounding interval [tl, tu], let t0 be the initial value. Let

ū = argminu f(t0,u), the procedure proceeds as follows:

• f(t0, ū) = 0: NT ū/DT ū = t0, stop with solution t0

• f(t0, ū) < 0: NT ū/DT ū < t0, tu ← NT ū/DT ū

• f(t0, ū) > 0: NT ū/DT ū > t0, tl ← t0

Each iteration is easily solved in a few seconds using the

CPLEX IP solver on a standard workstation.

4. Beyond Superpixel-derived Edgelets
Recall that the model in Section 3.1 constructs a cell

complex using a superpixel decomposition of the image do-

main. While fast algorithms for finding this decomposition

are available [22], it is known that superpixels are not ro-

bust for all types of images. Occlusion or weak boundaries

give cases where the set of superpixel boundary primitives

(the input to our optimization) do not include some valid

edgelets (ones which have not been picked up by either the

contour detector or superpixel method). The natural solu-

tion to this is to supplement the basic set of edgelet prim-

itives with additional contour pieces that bridge the ‘gaps’

and allow a more accurate contour closure even in the pres-

ence of very weak signal variations. Next, we present such

an extension to find completions using a base set of discon-

nected edgelets. But introducing completions between all

pairs of edgelets is prohibitive and leads to a problem with a

large number of variables (especially for multiple contours).

The following model, while applicable to the multiple con-

tour setting, is most effective for finding a single contour
which encloses a simply connected foreground region.

Euler Spirals. A key subcomponent of this problem is

how to join two edgelets which will follow each other on

the contour. This is the problem solved by [19] which pro-

poses to use segments of the Euler spiral. This spiral can

Figure 5: Branch-and-bound result on a BSD image.

be shown to be the curve C with minimal total curvature
TC2 =

∫
C κ(s)

2 ds where κ(s) is the curvature at a given

point on the curve parameterized by arc-length. For any pair

of points along with tangents we can construct a segment

of an euler spiral which connects these points with con-

sistent tangents. They show that these completions satisfy

the conditions given by [17] for a “pleasing” curve (invari-

ance to similarity transformations, symmetry, extensibility,

smoothness, roundness).

We parameterize the spiral by the turning angle as in

[39]. To form a completion, we consider the Euler spiral

under a similarity transformation determined by the posi-

tion and Frenet frame (P0,T0,N0) at the spiral’s inflection
point, and a scaling factor a. The transformed spiral is

Q(θ) =

{
P0 + aC(θ)T0 + aS(θ)N0 θ ≥ 0

P0 − aC(−θ)T0− aS(−θ)N0 θ < 0

where S and C are the Fresnel integrals. A choice of in-

terval [θ1, θ2] selects a given segment. [39] gives a set of

equations to determine these free variables, given segment

endpoints P1,P2 and their tangents T1,T2. We solve these

equations using a modified Newton’s method. The most ex-

pensive step, the computation of the Fresnel integrals, is

sped up considerably using [12], but augmented with pre-

computed tables. We can compute an average completion

in 30μs, versus 1ms for [19] on the same machine, making

it an attractive option to calculate a large number of comple-

tions, quickly, within the core contour completion engine.

Euler-Spirals for One Contour Completion. We are

given a set of image edgelets derived from an edge detector

as before, as well as user-provided foreground and back-

ground seeds. The core objective considered by the algo-

rithm is an alternating path p which consists of a sequence

of edgelets joined by Euler Spiral segments. The goal is to

find a closed contour that minimizes an objective function

that increases with the addition of each contour segment.

Our solution strategy is to iteratively build upon the cur-

rent partial path, until we get a cycle that encloses a feasible

region. To do this, we adopt a specialized branch and bound

procedure. Here, each node v of the branch-and-bound tree

corresponds to some alternating path p. If p is a cycle, then

v is a leaf node and thus a candidate solution. In this case,

we check p is checked for feasiblity w.r.t. the seed con-

straints. If p is not a cycle, we may construct the children of

this node by considering each image edglet in sequence and
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calculating the euler completion, on the fly. The path for

the a child is then p plus the current completion and edgelet

appended to the end. Children are discarded if they give rise

to a self-intersecting partial path; therefore, entire subtrees

can be discarded directly. Any partial path with objective

worse than the best candidate solution found so far may be

ignored. Otherwise, we descend the tree to each child in

turn, ordered by the cost of their partial contour.

This algorithm implicitly solves a model of the form in

(8), with a linear objective function on w and smoothness

constraints on the solution contour. We can construct a pla-

nar graph for this model using the extensibility property of

Euler spirals and splitting any two intersecting segments.

5. Experiments
We first provide evaluations of the model from Section

3 on images from the Weizmann Horse Database (WHD)

[5], the Weizmann Segmentation Database (WSD) [1], and

the Berkeley Segmentation Data Set (BSDS500) [3]. We

then continue to experiments with a robot user on the ISEG

dataset. These experiments will show that the combination

of interaction with a contour-based method can achieve high

levels of accuracy with a minimum of user effort.

We compare our approach (which we refer as EulerSeg)

with three other contour grouping methods: (i) Ratio Re-

gion Cut (RRC) from [34], (ii) Superpixel Closure (SC)

from [21], and an adaptive grouping method (EJ) [11]. We

note that these are unsupervised whereas our algorithm in-

corporates user interaction, but SC and EJ produce multiple

segmentations of which we select the most favorable. We

compute the F-measure by the region overlapping and re-

port quantitative results in Fig. 9.

The cell complex is generated from superpixels via [22]

and the same number of superpixels as SC in all our exper-

iment. We typically indicate 1 ∼ 2 interior seeds for the

sought objects, but in the presence of ≥ 2 objects, we may

need 3− 7 points including both interior and exterior seeds.

The indicated seeds are shown in the images: green marks

are foreground and red marks are background.

RRC was run using the default parameters λ = 0, α =
1. That method has an additional parameter to indicate an

arbitrary number of objects. However, it frequently fails

to get a second boundary even when the image includes 2

objects. For SC, we use their reported best parameters with

the number of superpixels set to 200 and Te = 0.05. That

algorithm generates K = 10 possible solutions, here we

report results for the best one.

WHD Results: WHD consists of 328 side-view images

of horses, with exactly one horse in each image. Fig. 6

shows both RRC and SC select large regions of ground be-

tween the horses’ legs due to their large-region bias. As the

examples show, our objective function minimizes gaps in

the closure and leverages user seeds to handle slender ob-

jects better and outperforms both with ≤ 5 seeds.

RRC SC EulerSeg RRC SC EulerSeg

Figure 6: Sample results from WHD. Best viewed in color.

WSD Results: WSD contains 200 images and is divided

into 2 subsets of images with one or two foreground objects.

As shown in Fig. 7, our algorithm is comparable to RRC

and SC when there is one object with only one seed. How-

ever, when the image contains 2 objects, our Euler charac-

teristic constraint fires in and we correctly segment both ob-

jects of interest, while RRC and SC either selects one of the

objects or segments one large region which includes both.

BSDS500 Results: Compared with WSD and WHD, im-

ages in this dataset are more complicated. We note that in

some images of BSDS500, there are no salient objects or

closed contours (e.g., images of sky or street). In these cases

our algorithm cannot find a meaningful closed contour, but

where one is present our model performs at least as well

as any of the compared methods. However, another chal-

lenging class of images in BSD are those that depict a large

number of foreground objects, here our algorithm signifi-

cantly improves upon previous results with a small amount

of user guideline and the topological constraint. An exam-

ple of this can be seen in the bottom row of Fig. 8, where

RRC and SC fail whereas our method is able to find the

correct solution easily.

ISEG Results: We compare our algorithm with the

state-of-art interactive segmentation methods on the ISEG

RRC SC EulerSeg RRC SC EulerSeg

Figure 7: Sample results from WSD. Best viewed in color.
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RRC SC EulerSeg RRC SC EulerSeg

Figure 8: Sample results from BSDS500. Best viewed in color.

 0

 0.2

 0.4

 0.6

 0.8

 1

WHD WSD (1 obj) WSD (2 obj) BSD500

F-
m

ea
su

re

Region Accuracy

RRC
EJ

SC
EulerSeg

Figure 9: F-measure scores on datasets described in Section 5.

dataset[15]. These include Boykov & Jolly (BJ) with no

shape constraints [6], shortest paths method (SP) [4], Ran-

dom Walker (RW) [13], and Geodesic Star Convexity se-

quential system (GSCseq) [15]. We measure the effects of

user interactions using a robot user setting. All the algo-

rithms are set up with the default setting using the robot

engine from [15]. The question we ask is how much user

interaction is required to get a region F-measure score of

0.95 for the ISEG dataset (restricted to cases where all al-

gorithms can achieve F=0.95 within 20 strokes). Table 1

demonstrates that EulerSeg requires the fewest stokes to

reach a reasonable segmentation. On the other hand, as

ISEG already provides a good initialization, which benefits

the rest methods for building up an appearance model, the

extra effort needed for a good segmentation is reduced. It is

important to note that seeds in EulerSeg act as a pure geo-

metric role and enable segmentation with fewer stroked pix-

els. When starting with no initialization (which we refer as

EulerSeg-0), EulerSeg is still able to segment the object(s)

within 5-10 strokes. These results are shown in Fig. 10.

Table 1: Average interaction efforts required to reach an F=0.95

Method BJ RW SP GSCseq EulerSeg

Avg. Effort 5.51 6.48 4.54 2.30 2.06

Running Time The preprocessing to generate super-

pixels is the primary computational cost, and is the only

resolution-dependent component of our method. The total

number of variables in our ILP typically is about 2000 (with

residuals); on a 3GHz i7 CPU, each iteration of the linear

ratio objective solver takes < 1s. Given superpixels, our

implementation creates a segmentation usually within 15 it-

erations, though for some exceptionally textured images or

those with a large number of components our algorithm may

take more than 1 minute to solve.

6. Discussion
We present a framework based on discrete calculus

which unifies the contour completion and segmentation set-

tings. This is augmented with a Euler characteristic con-

straint which allows us to specify the topology of the seg-

mented foreground. Our model easily accommodates user

indications and multiple foreground regions. Two solvers

specialized toward different aspects of the problem are de-

rived, one based on an ILP over superpixels and the other

a branch-and-bound using completions with spirals to join

edgelets. We demonstrate our model finds salient con-

tours across a large dataset, showing significant improve-

ment over similar methods.
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