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Abstract

Weakly supervised image segmentation is a challenging
problem in computer vision field. In this paper, we present
a new weakly supervised image segmentation algorithm by
learning the distribution of spatially structured superpixel
sets from image-level labels. Specifically, we first extrac-
t graphlets from each image where a graphlet is a small-
sized graph consisting of superpixels as its nodes and it en-
capsulates the spatial structure of those superpixels. Then,
a manifold embedding algorithm is proposed to transfor-
m graphlets of different sizes into equal-length feature vec-
tors. Thereafter, we use GMM to learn the distribution of
the post-embedding graphlets. Finally, we propose a nov-
el image segmentation algorithm, called graphlet cut, that
leverages the learned graphlet distribution in measuring the
homogeneity of a set of spatially structured superpixels. Ex-
perimental results show that the proposed approach outper-
forms state-of-the-art weakly supervised image segmenta-
tion methods, and its performance is comparable to those
of the fully supervised segmentation models.

1. Introduction

As a preprocessing operation, image segmentation is

widely used in many computer vision applications, e.g.,
image enhancement, image understanding, etc. Typically,

these applications assume that the images are ideally seg-

mented, i.e., each segmented region covers a semantic com-

ponent. However, in order to avoid overburdening user-

s with manual work, these applications are usually built

based on unsupervised image segmentation methods, which

perform unsatisfactorily due to the lack of high-level cues.

For example, many segmented regions partially cover one

or multiple semantic objects, causing the subsequently con-

structed models to significantly deviate from the theoreti-

cal requirement of these applications. In addition, there are

many tiny segmented regions which are treated as noises.

Inspired by the progress in image retrieval area, image-
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Figure 1. The superpixel mosaic of an example image

level labels can be efficiently and accurately acquired.

Thus, it is possible to leverage weak supervision, i.e.,
image-level labels, to improve image segmentation. How-

ever, weakly-supervised image segmentation is still a chal-

lenging problem due to the following two factors:

• The intrinsic ambiguity of image-level labels:

compared with the pixel-level labels used in fully su-

pervised segmentation models, image-level labels are

much coarser cues which are difficult to be effectively

incorporated into the segmentation model.

• The ignorance of spatial structure in measuring the ho-

mogeneity of superpixels: beyond the appearance fea-

tures, the spatial structure of superpixels is also impor-

tant for measuring their homogeneity. But the state-of-

the-art segmentation models [1, 2] do not take it into

consideration. As shown in Figure 1, the yellow pyra-

mid and the sand have similar superpixel appearances.

However, the triangularly arranged superpixels are dis-

tinctive for the pyramid, thus they should be assigned

with strong homogeneity and are further encouraged to

merge.
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To address the above two problems, we propose to learn the

distribution of graphlets from image-level labels and use

the learned distribution to guide the image segmentation.

To capture the spatial structure of superpixels, we extract

graphlets by connecting spatially neighboring superpixels,

wherein the graphlets are small-sized graphs effective-

ly capturing the neighboring structures of superpixels.

Because different-sized graphlets are incomparable in

Euclidean space, we project graphlets onto the Grassmann

manifold and subsequently develop a manifold embed-

ding algorithm which incorporates image-level labels

into graphlets. Through the embedding, different-sized

graphlets are transformed into equal length feature vec-

tors, thus making it possible to model the distribution of

graphlets. Since the learned graphlet distribution reflects

the spatial structure of superpixels, we propose a new

segmentation algorithm, called graphlet cut, that leverages

the learned graphlet distribution.

2. Related Work
Recently, several weakly supervised image segmenta-

tion methods have been proposed, which focus on devel-

oping statistical models to transfer image-level labels into

superpixels unary or pairwise potentials. Verbeek et al. [5]

proposed an aspect model to estimate pixel-level labels for

each image, which is modeled as a mixture of latent topic-

s. Vezhnevets et al. [6] formulated weakly-supervised im-

age segmentation as a multiple instances learning problem.

However, both [5] and [6] fail to model the interactions be-

tween superpixels, which is important for smoothing super-

pixel labels. To model the relationships among superpixels,

Verzhnevetz et al. [7] proposed a graphical model, termed

multi-image model (MIM), to integrate image appearance

features, image-level labels and superpixel labels into one

network. To refine the MIM-based segmentation, Verzhn-

evetz et al. [8] designed an active learning scheme to selec-

t a few semantically most uncertain superpixels within an

image. The selected superpixels are accurately labeled by

querying an oracle database, and they guide the label infer-

ence for the remaining superpixels. Moreover, Verzhnevetz

et al. [9] developed a parametric family of structured model-

s, where multi-channel visual features are employed to for-

m the pairwise potential, and the weights of each channel

is computed by minimizing the discrepancy between super-

pixels labeled by segmentation models trained by different

image sets.

One weakness of these weakly supervised segmentation

methods is the low descriptive unary/pairwise potentials, re-

sulting in many ambiguous segment boundaries. To allevi-

ate this problem, high-order potentials among superpixels

are exploited to refine image segmentation. Kohli et al. [2]

proposed a high-order conditional random field for image

segmentation, where the high-order potentials are defined

over pixel sets. In [10], Rital et al. generalized the conven-

tional normalized cut into hypergraph cut, where each hy-

peredge connects multiple spatially neighboring superpixel-

s. However, hypergraph cut has two limitations: 1) supervi-

sion incorporation is difficult, and 2) label inference is com-

putationally less efficient. To overcome these limitations,

Kim et al. [1] developed a supervised high-order correla-

tion clustering technique for image segmentation. Based on

the structured support vector machine and the linear pro-

gramming relaxation, both the parameter learning and seg-

mentation process are carried out efficiently. Notably, these

approaches are either unsupervised or fully-supervised, and

it is difficult to transform them into a weakly supervised

version. Moreover, the spatial structure of superpixels, an

essential cue for measuring their homogeneity, is neglected.

3. The proposed approach
3.1. An overview

As shown in Figure 2, the proposed approach learns the

distribution of graphlets [23] and then facilitates image seg-

mentation based on the learned graphlet distribution. We

first extract graphlets from each image, which capture the

spatial structure of the superpixels. Then, the extracted

graphlets are projected onto the Grassmann manifold and

a manifold embedding algorithm is proposed to integrate

image-level labels, global spatial layout, and rough geomet-

ric context, into graphlets. After embedding, graphlets are

transformed into equal length feature vectors, and we use

GMM to learn their distribution. The learned distribution

is used to measure the homogeneity of superpixels. Finally,

we propose a graphlet cut algorithm based on the homo-

geneity measure for image segmentation.

�������	����� �����	�� ���


�����
���������	 	��
����
 �� ���������	


������� ���	������	 
�
��
����
 ������
	��
����
 ��� 
���� �� ��� �����


�����
��������� 	��
���� ��������	�
�������	 
 ��
 ������� � � ���������

�
 !"#$%&'

()*+,-./012345.6789:;<=>?@ABCDEFGHI.JKLMNOPQRST
U VW XY � Z[ \]^ _� ` �

ab
c de � fg hij �� � k  ������

	
��
������..������������ !."#$%&'()*+,


�����
��	��������� �� �
��	 	��
�������
��
����	������ ���
����

��lmno�����p q
��	o
���
p
�����o����p U

���o�����p
��� !o"�#$p

����� lmn �%��& q ' ' (o)r*p+, -�./012�3045 �
�sstl ���6 q ' ' 7o8r9p�, :�;<0=�>0?@

��	��������� ��
���

Figure 2. The pipeline of the proposed approach
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3.2. Graphlet extraction and representation

An image usually contains millions of pixels. To avoid

the high computational cost caused by such gigantic amoun-

t of pixels in image segmentation, these pixels are clus-

tered into superpixels and further associated with their s-

patial structure. And since graph is a natural and powerful

tool to describe the relationships between objects, usually

the region adjacency graph (RAG) is adopted to model the

superpixels and their spatial structures, i.e.,

G = (V,E) (1)

where V is a set of vertices, each representing a superpixel;

E is a set of edges, each connecting pairwise spatially

adjacent superpixels.

An image usually contains multiple semantic com-

ponents, each spanning several superpixels. Given a

superpixel set, two observations can be made. First, the

appearance and spatial structure of the superpixels col-

laboratively contribute to their homogeneity. Second, the

more their appearance and spatial structure correlate with a

particular semantic object, the stronger their homogenneity.

As shown in Figure 1, the superpixel set in the sky region

and the superpixel set in the sand region have similar

spatial structure but different superpixel appearance, thus

they should be assigned with different homogeneities.

Compared with the stripe-distributed yellow superpixels,

the strip distributed blue superpixels appear more common

in semantic objects, such as lake and river, which indicates

they are low correlated with any particular semantic object,

thus should be assigned with a weaker homogeneity. On

the other hand, the pyramid-covered and the sand-covered

superpixel sets have similar superpixel appearance but

different spatial structure, thus they should also be assigned

with different homogeneities. Compared with the stripe

distributed yellow superpixels, the triangularly distributed

yellow superpixels are unique for the Egyptian pyramid,

thus they should be assigned with a stronger homogeneity.

We propose to use graphlets to capture the appearance

and spatial structure of superpixels. The graphlets are

obtained by extracting connected subgraphs from an RAG.

The size of a graphlet is defined as the number of its

constituent superpixels. In this work, only small-sized

graphlets are adopted because: 1) the number of all the

possible graphlets is exponentially increasing with its

size; 2) the graphlet embedding implicitly extends the

homogeneity beyond single small-sized graphlets. (as

shown in Sect. 3.3); 3) empirical results show that the

segmentation accuracy stops increasing when the graphlet

size increases from 5 to 10, thus small-sized graphlets are

descriptive enough. Let T denote the maximum graphlet

size, we extract graphlets of all sizes ranging from 2

to T . The graphlet extraction is based on depth-first

search, which is computationally efficient. Besides, our

approach is also storage efficient. Given 50 superpixels

in an image, and assuming the average superpixel degree

is 5 and the maximum graphlet size is also 5, there are

50∗55/5!+ · · ·+50∗52/2! ≈ 4300 graphlets, which, after

embedding, are transformed into 4300 low-dimensional

feature vectors. Thus the required storage space is very

small.

Note that graphlets extend the non-structural homo-

geneity of superpixels [1, 2]. As shown in Figure 3,

both the pairwise and high-order potentials represent

the homogeneity of orderless superpixels, whereas the

graphlet represents the homogeneity of spatially structured

superpixels. If we ignore graphlet topology, the proposed

graphlet-based homogeneity reduces to the high-order

potential homogeneity.

A quantitative description of graphlets is necessary
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Figure 3. Different types of superpixel homogeneity

for a computational segmentation model. Given a t-sized

graphlet, we characterize the appearance of its superpixels

as a matrix Mr. Each row of Mr is a 137-dimensional

feature vector extracted from a superpixel, i.e., a 128-

dimensional histogram of gradient (HOG) [11] combined

with a 9-dimenional color moment [12]. And, for the

spatial structure of superpixels, within a t-sized graphlet,

we use a t× t-sized matrix to represent it as:

Ms(i, j) =

{
θ(Ri, Rj) if Ri and Rj are spatially adjacent

0 otherwise
(2)

where θ(Ri, Rj) is the angle between the positive horizon-

tal direction and the vector from the center of superpixel Ri

to the center of superpixel Rj . Based on Mr and Ms, a t-
sized graphlet can be represented by a t× (137+ t) matrix,

i.e.,

M = [Mr,Ms] (3)

According to the differential geometry theory [13], each

matrix can be regarded as a point on the Grassmann man-

ifold. To measure the distance between graphlets on the

Grassmann manifold, their Golub-Werman distance is de-

fined as:

dGW (M,M ′) = ||Mo −M
′
o||2 (4)

where Mo and M
′
o denote the orthonormal basis of M and

M ′ respectively.
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3.3. Manifold graphlet embedding

As mentioned in Sect. 3.2, the appearance and spa-

tial structures of semantically-consistent superpixels reflect

strong homogeneity. Thus, it is necessary to integrate cat-

egory information into graphlets in measuring the homo-

geneity of superpixels. To this end, a manifold embed-

ding algorithm is proposed to encode image-level labels in-

to graphlets. Besides image-level labels, two supplementary

cues are also incorporated into the embedding. The first is

the global spatial layout, and the second is the geometric

context.

To incorporate the global spatial layout information, we

would like our embedding scheme to maximally preserve

the relative distances between the graphlets. This is helpful

to expand the homogeneity of superpixels across individual

graphlets. As shown in the left of Figure 4, preserving the

relative distances in the embedding process encodes global

spatial layout into graphlets, which implicitly extends the

homogeneity beyond the individual small-sized graphlets.

As demonstrated by Vezhnevets et al. [6], rough geomet-

ric context [14] effectively complements image-level labels

for image segmentation. Rough geometric context means

categorizing each pixel in an image into ground, different

oriented vertical regions, non-planar solid, or porous. This

motivates us to integrate geometric context information into

the embedding process. Intuitively, a graphlet with consis-

tent geometric context should reflect stronger homogeneity.

As shown in the right of Figure 4, graphlet G1 has more

consistent geometric context than graphlet G2, thus super-

pixels within G1 should be assigned with stronger homo-

geneity than those within G2.

To capture the above three cues, namely, image-level

AB

C�

Figure 4. Left: example of preserving global spatial layout; Right:

adding rough geometric context into graphlets, ground(green),

sky(blue), different oriented vertical regions(red), non-planar sol-

id(‘x’)

labels, global spatial layout, and geometric context, we pro-

pose a manifold embedding algorithm with the objective

function defined as:

argmin
Y

∑
h

∑
ij
[dGW (Mh

i ,M
h
j )− dE(y

h
i , y

h
j )]

2 ∗ φh
i φ

h
j︸ ︷︷ ︸

global spatial layout+geometric context

+ [
∑

ij
||yi − yj ||2ls(i, j)−

∑
ij
||yi − yj ||2ld(i, j)] ∗ φiφj︸ ︷︷ ︸

Image−level labels+geometric context

(5)

The first term
∑

ij [dGW (Mh
i ,M

h
j ) − dE(y

h
i , y

h
j )]

2 de-

scribes the discrepancy between pairwise graphlet distances

on the Grassmann manifold [21] and those in the Euclidean

space. The minimization of this term will maximally pre-

serve the global spatial arrangement of the graphlets. The

second term φh
i φ

h
j enforces the geometric context constraint

on graphlets. That is, graphlets with more consistent geo-

metric context are assigned with smaller weights. The third

term
∑

ij ||yi − yj ||2ls(i, j) −
∑

ij ||yi − yj ||2ld(i, j) en-

codes image-level labels into pairwise graphlets. That is,

the proximity of two graphlets in feature space should be

consistent with their image-level labels.

The variables in (5) are defined as follows. Mh
i and

Mh
j denote two identical-sized graphlets; yhi and yhj are

their low-dimensional representations; ls is a function that

measures the similarity of two graphlets. ld is a function

that measures the difference between two graphlets. Let

b(G) denote the C-dimensional row vector containing the

class label of the image corresponding to graphlets G. De-

note �N = [N1, N2, · · · , NC ]T where N c is the number of

images for category c, then ls(i, j) =
[b(Gi)∩b(Gj)] �N∑

c Nc and

ld(i, j) =
[b(Gi)⊕b(Gj)] �N∑

c Nc . φi reflects the geometric context

consistency of the i-th graphlet, which is implemented as

the i-th graphlet entropy, i.e., φi = −∑
j gi(j)log2gi(j),

where gi(j) is percentage of the j-th geometric context cor-

responding to graphlet Gi. φ
h
i is the geometric context ob-

tained from the i-th graphlet in the h-th training image.

Denoting Dh
GW = [dGW (Mh

i ,M
h
j )] as the matrix

whose entry dGW (Mh
i ,M

h
j ) is the Golub-Werman distance

between the i-th and j-th identical-sized graphlets extract-

ed from the h-th image. Its inner product matrix is obtained

by:

τ(Dh
GW ) = −RNh

Sh
GWRNh

/2 (6)

where (Sh
GW )ij = (Dh

GW )2ij , and RNh
= INh

−�eNh
�eTNh

/N
which is the centralization matrix. INh

is an Nh×Nh iden-

tity matrix, �eNh
= [1, 1, · · · , 1]T ∈ R

Nh , N is the number

of all training graphlets, and Nh the number of graphelts

from the h-th training image.

Thus the first part of (5) can be rewritten as:

argminY
∑

h

∑
ij
[dGW (Mh

i ,M
h
j )− dE(y

h
i , y

h
j )]

2 ∗ φh
i φ

h
j

= argminY
∑

h
||τ(Dh

GW )− τ(Dh
Y )||2 ∗ φh

i φ
h
j

= argmaxY
∑

h
tr(Y hτ(Dh

GWΦh)(Y h)T )

= argmaxY tr(Y τ(DGW )Φ)Y T
(7)

where Φ = [φi, φj ] is an N × N matrix; and DGW is a

block diagonal matrix, the h-th diagonal block is Dh
GW .

The second part in (5) can be reorganized into:

argmaxY [
∑

ij
||yi − yj ||2ld(i, j)−

∑
ij
||yi − yj ||2

ls(i, j)] ∗ φiφj = argmaxY tr(Y RY T ) (8)
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where R = [−�eTN−1, IN−1]
TW1[−�eTN−1, IN−1] + · · · +

[IN−1,−�eTN−1]
TWN [IN−1,−�eTN−1], and Wi is an N ×N

diagonal matrix whose h-th diagonal element is [ls(h, i) −
ld(h, i)] ∗ φhφi.

Based on above formulation, we can reorganize the ob-

jective function as:

argmax
Y

Y (τ(DGW )Φ +R)Y T

= argmax
Y

Y ZY T s.t. Y Y T = IN (9)

where Z = τ(DGW )Φ + R is an N × N matrix, and

Y Y T = IN is a term to uniquely determine Y . Note that the

embedding in (9) can only handle identical-sized graphlets.

Assuming the maximum graphlet size is T , the embedding

is repeated T times.

We note that (9) is a quadratic programming with

quadratic constrains that can be solved through eigenval-

ue decomposition, which has a time complexity of O(N3).
However, Z is a large-sized matrix because usually N >
50, 000. Therefore it is computational intractable to solve

(9) using a global once-for-all eigenvalue decomposition on

matrix Z. Instead, we decompose the eigenvalue decom-

position into a set of sub-problems. Particularly, we first

solve an initial embedding Y (0) using (9) under N (0) train-

ing graphlets, where N (0) << N . Then we use coordinate

propagation [15] to transmit the embedded coordinates to

the new graphlets. The coordinate propagation is carried

out fast based on the iterative algorithm proposed by Xiang

et al. [15].

3.4. Probabilistic graphlet cut

After the embedding process, graphlets of different sizes

are transformed into d-dimensional feature vectors. To em-

ploy these post-embedding graphlets for image segmenta-

tion, we train a standard GMM to model their distribution.

Given an post-embedding graphlet f(Gtest) from the test

image, the homogeneity of its superpixels is computed by:

p(f(Gtest)|θ) =
∑K

k=1
wkN (f(Gtest)|μk,Σk) (10)

where θ = {wk, μk,Σk} are the GMM parameters learned

by using expectation maximization from training data, and

the Gaussian component number K is set to 5.

Next, we apply the graphlet-based homogeneity measure

for image segmentation in the normalized cut framework.

The proposed approach improves the conventional normal-

ized cut in two aspects. First, the conventional normalized

cut measures the similarity between superpixels using the

distance between their appearance feature vectors, where-

as our approach measures their similarity by taking into

consideration their spatial structures. Second, conventional

normalized cut fails to incorporate supervision, while our

approach integrates image-level labels, global spatial lay-

out, and rough geometric context to refine the segmentation

process. The objective function of our graphlet-guided nor-

malized cut is given below:

PGcut(V1, V2) =
cut(V1, V2)

assoc(V, V1)
+

cut(V1, V2)

assoc(V, V2)
(11)

where V1 and V2 are two disjoint sets of superpixels. The

three terms cut(V1, V2), assoc(V, V1) and assoc(V, V1) are

defined in the next paragraph. (11) can be solved in the

same way as the conventional normalized cut. Note that 2-

way cut is presented in (11) and the multi-way variant can

be derived straightforwardly by following [16].

The numerator in (11) measures the cost of removing all

edges spanning superpixel sets V1 and V2, i.e.,

cut(V1, V2) =
∑

u∈V1,v∈V2

w(u, v)

=
1

|G|
∑

u∈V1,v∈V2

∑
G⊇(u,v)

p(G|θ) (12)

where w(u, v) is the relationship between superpixel u and

v. The term G ⊇ (u, v) contains all the parent graphlets of

superpixel pair (u, v), and 1/|G| functions as a normaliza-

tion factor.

The two denominators in (11) respectively accumulate

connections from superpixels in set V1 and V2 to the entire

superpixels, i.e.,

assoc(V, V1) =
∑

u∈V,v∈V1

w(u, v) (13)

=
1

|G|
∑

u∈V,v∈V1

∑
G⊇(u,v)

p(G|θ)

assoc(V, V2) =
∑

u∈V,v∈V2

w(u, v) (14)

=
1

|G|
∑

u∈V,v∈V2

∑
G⊇(u,v)

p(G|θ)

Similar to many segmentation methods such as [6],

which assign semantics to segmented regions, our approach

can also label semantics for each superpixel. Particularly,

we first learn a multi-label SVM based on the d-dimensional

post-embedding graphlets and the category labels of the

images from which the graphlets are extracted. Given a

test graphlet Gtest, based on the probabilistic output of

SVM [17], we obtain its probability of belonging to seman-

tic class c : p(Gtest → c), and the semantic label of seg-

mented region R is computed by maximum majority voting

of all its spatially overlapping graphlets:

argmax
c

∑
Gtest∩R �=∅ p(Gtest → c) (15)

The detailed implementation procedure of the proposed

probabilistic graphlet cut is given in Table 1.
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Table 1. Probabilistic Graphlet Cut

//training stage:

input: a set of training images {I1, I2, · · · , IH} associated

with image-level labels {c1, c2, · · · , cH};

output: trained embedding model and a multi-class SVM;

1. Construct RAG for each image and extracted graphelts

from these RAGs; then use manifold graphelt embedding to

transformeach graphlet into d-dimensional feature vector

according to (5);

2. Using GMM to model the statistics of these training

post-embedding graphlets;

3. Learn a multi-label SVM based on the post-embedding

graphlets and the image-level labels;

//test stage:

input: a test image Itest and its image-level label ctest; the

number of segmented regions L;

output: a segmentation mask of Itest;
1. Construct RAG for Itest and extracted its graphelts; Using

the trained manifold embedding model to represent each

graphelt by a d-dimensional feature vector;

2. Using (11) to partition Itest into L disjoint sets; infer the

semantics of each segmented region in Itest accordingly

based on (15);

4. Experimental results and analysis
In this section, we validate the effectiveness of the pro-

posed approach for weakly-supervised segmentation based

on four sets of experiments. The first set of experiments

compares our approach with representative segmentation al-

gorithms. The second set of experiments evaluates the indi-

vidual components of our approach. Discussion of param-

eter setting is given in the third part. The last part analyzes

the segmentation results of our approach on SIFT-flow [3].

4.1. Comparison with the state of the art

In this experiment, we compare our approach with four

segmentation methods including two weakly-supervised

segmentation methods: multi-image model (MIM) [7] and

its variant(GMIM) [9], as well as two fully-supervised seg-

mentation algorithms: TextonBoost (TB) [18] and hierar-

chical conditional random field (HCRF) [19].

To compare our approach with the existing weakly super-

vised segmentation methods, we carry out experiments on

SIFT-flow, because the objects are of diversified structures

and the image-level labels are off-the-shelf. Additionally,

it is important to compare our approach with fully super-

vised segmentation methods, because the comparative re-

sults show how effectively the image-level labels facilitate

image segmentation. To this end, we also experiment on

PASCAL VOC 2008 [4]. Note that, only foreground objects

are labeled in the VOC 2008. To obtain background labels,

for each image we manually assign one of sky, road, indoor

as its background label. We further combine the foreground

Table 2. Average per-class measure from the five compared meth-

ods on SIFT-flow and PASCAL VOC 2008
MIM GMIM TB HCRF Our

SIFT-flow 14% 21% 24% 31.22% 27.73%

VOC 2008 8.11% 9.24% 13.2% 20.1 % 14.87%

label and the background label as the image-level label. On

both data sets, we use standard training and test splits.

The segmentation performance is evaluated by average-

per-class measure, which averages the correctly classified

pixels per-class over all classes. In Table 2, we report the

segmentation performance of the five compared method-

s. There are two observations. First, on both data set-

s, our approach significantly outperforms the other two

weakly-supervised segmentation methods: MIM and G-

MIM, demonstrating that image-level labels are more ef-

fectively encoded by our model. Second, our approach out-

performs TextonBoost on both datasets, and performs com-

parably to HCRF on VOC 2008. This demonstrates that,

even though image-level labels are much coarser cues com-

pared with pixel-level labels, if exploited effectively they

can boost segmentation performance to the same extent as

pixel-level labels.

4.2. Step-by-step model justification

This experiment justifies the effectiveness of the three

main components in the proposed approach, i.e., graphlet

extraction, manifold graphlet embedding, and the proba-

bilistic segmentation model.

To justify the effectiveness of graphlets for weakly-

supervised segmentation, two experimental settings are

adopted to weaken the description power of the graphlet-

s. First, we reduce graphlets to superpixels, that is, 1-sized

graphlet which captures no spatial structure of superpixel-

s.Second, we remove the structure term Ms from (3). In

Figure 5, we present the segmentation results under the two

experimental settings. We can see that segmentation using

superpixels or non-structural graphlets results in many am-

biguous segment boundaries.

To justify the effectiveness of manifold graphlet em-

bedding, three experimental settings are used. In the first

setting, we remove the geometric context term φh
i φ

h
j and

φiφj from the objective function (5). In the second set-

ting, we transform our approach into an unsupervised ver-

sion by abandoning the image-level label encoding term

from (5). In the third setting we transform our approach

into an unsupervised version by replacing the manifold em-

bedding with kernel PCA, where the kernel is defined as

k(M,M ′) = ||MTM ′||2F . We present segmentation re-

sults under the three experimental settings in Figure 5. By

comparing with the ground truth, we can see that segmenta-

tion by removing the geometric context term results in large

incorrectly labeled regions. This demonstrates the impor-
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Table 3. Average per-class accuracy on PASCAL VOC 2008
aeroplane bicycle bird boat bottle bus car chair cow diningt

21.11% 15.23% 12.34% 23.12% 16.13% 18.24% 13.45% 16.22% 12.98% 11.18%

diningt. dog horse motorbike person pottedp. sheep sofa train tv

14.66% 17.21% 10.01% 15.37% 9.98% 16.12% 17.35% 17.10% 8.14% 10.15%

Table 4. Performance decrease of component replacement
Component replacement SIFT-flow VOC 2008

Superpixel as graphlet 4.21% 3.43%

Non-structral graphlet 3.36% 2.77%

Remove geometric context term 6.54% 5.43%

Remove image-level label term 3.31% 2.58%

Replace graph. embed. with kernel PCA 5.12% 4.67%

Normalized cut with 2-sized graphelts 4.49% 4.54%

tance of incorporating geometric context into the segmenta-

tion process. Besides, segmentation without image-level la-

bel supervision performs less satisfactorily. This shows that

image-level labels contribute positively to image segmen-

tation. Furthermore, very poor segmentation results are ob-

served when kernel PCA is adopted because both geometric

context and image-level label supervision are neglected.

To justify the effectiveness of the probabilistic segmen-

tation model, we restrict the graphlet size to two and thus

only binary relationships of superpixels are exploited in the

normalized cut based segmentation. As shown in Figure 5,

segmentation with 2-sized graphlets results in numerous

over-segmented patches, because of the limited superpix-

el label smoothing capability of 2-sized graphlets. Beyond

the analysis of the sample segmentation results, the statistic-

s in Table 4 shows the performance degradation caused by

the above component replacements, which clearly demon-

strates the indispensability and inseparability of compo-

nents in our approach.

Figure 5. Example of segmentation results under functionally re-

duced component(First column: original photo. Second column:

ground truth. Third column: superpixel→graphlet. Fourth col-

umn: non-structural graphlets. Fifth column: remove image-level

labels in the embeddding. Sixth column: graphlet embedding→
kernel PCA. Seventh columun: graphlet cut→2-sized graphlets.

Last column: proposed method)

4.3. Effects of maximum graphlet size

The maximum graphlet size T influences significantly

the segmentation results. In Table 1, we present segmenta-

tion accuracy, time consumption corresponding to T rang-

ing from 1 to 10, on VOC 2008 [4]. We do not experi-

ment with T larger than 10 because the segmentation takes

too long, for example, longer than one hour to segment an

1024×768 image. From Table 5, we have two observation-

s. First, segmentation accuracy increases moderately as T
goes up from 1 to 6, and remains table as T goes up further

Table 5. Segmentation accuracy and time consumption per image

under different maximum graphlet size T
T Seg. Acc Seg. Time T Seg. Acc Seg. Time

1 7.76% 3.23s 6 14.65% 124.56s

2 8.56% 6.78s 7 14.76% 278.56s

3 9.87% 15.67s 8 14.87% 675.89s

4 10.23% 32.45s 9 14.87% 1345.77s

5 13.45% 66.65s 10 14.87% 2688.73s

from 7 to 10. This implies that 6-sized graphlet is adequate-

ly descriptive to capture the homogeneity of superpixels.

Second, segmentation time increases exponentially as the

graphlet size goes up. Therefore it is better to keep T small.

In our experiments, we typically set T to 6.

4.4. Segmentation results analysis

We first categorize the photos into six groups according

to their semantics, and then present segmentation results of

each group. As shown in Figure 6, we make the follow

observations. The first observation is that, the proposed ap-

proach performs satisfactorily on sky+mountain, sky+sea,

sky+forest, and sky+building dominated photos. This is be-

cause: 1) the objects are quite well semantically distributed.

For example, the sun region is embedded in the sky region,

the car region is contained in the road region, etc. Such

semantic relationships are well captured by the proposed

graphlets; 2) The objects in these groups are sufficiently

large relative to the superpixel size, thus not many super-

pixels span multiple objects; 3) photos in SIFT-flow are

accurately assigned with multiple image-level labels. The

proposed graphlet embedding method effectively leverages

the image-level labels to refine the segmentation process.

The second observation is that for the architec-

ture+windows dominated photos, the proposed approach

accurately labels the architecture area and the sky area, but

fails to localize small-sized components, such as windows,

cars, and pedestrians. This is because a moderate sized su-

perpixel may contain multiple small objects. To maintain

the geometric consistency, its semantic label is forced to be

the surrounding one.

The third observation is that for the road+car dominat-

ed photos, the proposed approach performs acceptably. The

main challenge is that the cars are too small in size, and our

method only identifies a few of them.

5. Conclusions and future work
In this paper, we have presentd a weakly supervised im-

age segmentation method by learning the distribution of s-
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Figure 6. Example segmentation results on SIFT-flow (OP: origi-

nal photo, GT: ground truth, PM: proposed method)

patially structured superpixel sets. We introduced the notion

of graphlet that captures the spatial structures of superpix-

els. To integrate image-level labels, a manifold embedding

technique is proposed to transform different-sized graphlet-

s into equal length feature vectors. The embedding allows

us to use GMM to learn the distribution of the embedded

graphlets, which is used to measure the homogeneity of su-

perpixels for image segmentation. An important property of

such homogeneity measure is that it takes the spatial struc-

ture of the superpixels into consideration..

In the future, we will investigate an active-learning [8]-

based graphlet selection scheme to accelerate image seg-

mentation, and a new semi-supervised [22] segmentation

framework that simultaneously decomposes an image into

regions and determines their semantics.
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