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Abstract

We propose a working set based approximate subgra-
dient descent algorithm to minimize the margin-sensitive
hinge loss arising from the soft constraints in max-margin
learning frameworks, such as the structured SVM. We focus
on the setting of general graphical models, such as loopy
MRFs and CRFs commonly used in image segmentation,
where exact inference is intractable and the most violated
constraints can only be approximated, voiding the optimal-
ity guarantees of the structured SVM’s cutting plane algo-
rithm as well as reducing the robustness of existing subgra-
dient based methods. We show that the proposed method
obtains better approximate subgradients through the use of
working sets, leading to improved convergence properties
and increased reliability. Furthermore, our method allows
new constraints to be randomly sampled instead of com-
puted using the more expensive approximate inference tech-
niques such as belief propagation and graph cuts, which
can be used to reduce learning time at only a small cost of
performance. We demonstrate the strength of our method
empirically on the segmentation of a new publicly available
electron microscopy dataset as well as the popular MSRC
data set and show state-of-the-art results.

1. Introduction
Markov random fields (MRF) [2] and conditional ran-

dom fields (CRF) [11] are among the most widely used

models in computer vision. They are particularly suited to

low-level tasks, such as image segmentation, due to their

ability to represent the interdependency between nearby

pixels. The maximum-margin framework [26, 28] for learn-

ing MRFs and CRFs has gained much popularity in the

recent years. As an alternative to maximum likelihood

and maximum a posteriori learning, the max-margin cri-

teria enjoy the advantage of avoiding the need to esti-

mate the computationally difficult partition function and be-

ing able to optimize for many different performance met-
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rics. A particularly successful large-margin formulation

is the structured support vector machine (SSVM) [28],

where the learning objective is to minimize a regularized

hinge loss due to the violation of a set of soft margin con-

straints. This can be solved iteratively using the SSVM cut-

ting plane algorithm [28] or by solving the equivalent un-

constrained optimization problem using subgradient based

methods [19, 15, 17, 30]. Both approaches require finding

at each iteration the most violated constraint, namely the la-

beling that maximizes the margin-sensitive hinge loss [28],

which is necessary for obtaining a valid cutting plane or a

true subgradient of the objective. Finding such constraints

is, however, intractable in loopy graphical models, such as

the MRFs and CRFs usually used in image segmentation.

Although approximate maximizers can be obtained by ap-

proximate inference, such as belief propagation [16] and

graph cuts [3], and used as substitutes, the approximation

can sometimes be imprecise enough to have a major im-

pact on learning: An unsatisfactory constraint can cause

the cutting plane algorithm to prematurely terminate if the

new constraint does not have a higher hinge loss than all

previous constraints; it can also induce erratic behavior of

subgradient-based methods when the implied descent direc-

tion is too far away from any true subgradients. These phe-

nomena therefore make the learning process more suscepti-

ble to failure.

In this paper, we propose to use a working set of con-

straints to increase robustness of approximate subgradient

descent based learning. The resulting algorithm is particu-

larly suited for minimizing the margin-sensitive hinge loss

in the SSVM formulation [28] when the most violated con-

straints and hence the resulting subgradients are not exact.

We show that the proposed method is able to obtain bet-

ter subgradient approximations by computing them with

respect to the whole working set, as opposed to existing

approaches where only the last constraint is considered.

Therefore, we are able to obtain sufficiently reliable ap-

proximate subgradients even when those due to individual

constraints are noisy. This further enables us to replace the

most violated constraints with randomly sampled labelings,

thus avoiding the need to perform inference at all during
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learning. The use of sampling leads to decreased learning

time while still maintaining good levels of performance. We

demonstrate the strength of our method on the task of learn-

ing CRF models for image segmentation.

The rest of the paper is organized as follows. We discuss

the prior work in Section 2 and provide the background on

the large-margin framework and learning techniques based

on subgradient descent in Section 3. Section 4 describes

our working set based algorithm in detail and analyze its

properties. We present the experimental results in Section 5

and conclude in Section 6.

2. Related work
Maximum margin learning of CRFs was first formu-

lated in the max-margin Markov networks (M3N) [26],

whose objective is to minimize a margin-sensitive hinge

loss between the ground-truth labeling and all other label-

ings for each training example. This is especially appealing

for learning CRFs with loopy structures, due to its more

objective-driven nature and its complete bypassing of the

partition function that presents a major challenge to maxi-

mum likelihood based approaches. Nevertheless, the num-

ber of constraints in the resulting quadratic program (QP)

is exponential in the size of the graph, hence making it

a highly non-trivial problem. In M3N this is handled by

rewriting the QP dual in terms of a polynomial number of

marginal variables, which can then be solved by a coordi-

nate descent method analogous to the sequential minimal

optimization (SMO) [18]. However, solving such a QP is

not tractable for loopy CRFs with high tree widths that are

often needed in many computer vision tasks and even solv-

ing it approximately can become overwhelmingly expen-

sive on large graphs.

Structured SVMs (SSVM) [28] optimize the same kind

of objective as M3N, while allowing for a more general

class of loss functions. It employs a cutting plane algo-

rithm to iteratively solve a series of increasingly larger QPs,

which makes learning more scalable. However, the cutting

plane algorithm requires the computation of the most vio-

lated constraints, namely the labeling maximizing the hinge

loss [28]. This involves performing the loss augmented in-
ference [25], which makes it intractable on loopy CRFs.

Though approximate constraints can be used [5], they make

the cutting plane algorithm susceptible to premature termi-

nation and can lead to catastrophic failure. Moreover, solv-

ing the QP can become slow as the set of constraints grows

larger after each iteration, especially when the dimension-

ality of the feature space is also high.

An alternative to solving the quadratic program deter-

ministically is to employ stochastic gradient or subgradient

descent. This class of methods has been studied extensively

for non-structured prediction problems [21]. In the con-

text of structured prediction, learning can be achieved by

finding a convex-concave saddle-point and solving it with a

dual extra-gradient method [27]. In [19] max-margin learn-

ing is solved as an unconstrained optimization problem and

subgradients are used to approximate the gradient in the

resulting non-differentiable problem. This method trades

optimality for a lower complexity, making it more suitable

for large-scale problems. The approach of [15] proposes

a perceptron-like algorithm based on an update whose ex-

pectation is close to the gradient of the true expected loss.

However, the soundness of these methods heavily depends

on the assumption that a valid subgradient is obtained at

each iteration. Hence they become much less reliable when

the subgradients are noisy due to inexact inference, as is the

case for loopy CRFs.

The recently proposed SampleRank [29] avoids perform-

ing inference altogether during learning; Instead it sam-

ples labelings at random using Markov chain Monte Carlo

(MCMC). At each step, parameters are updated with respect

to a pair of sampled labelings. Though achieving notable

speed improvement, the method does not in fact optimize

the actual hinge loss but rather a loose upper bound on it.

Hence, unlike our method, it solves a problem that is sub-

stantially different from the original max-margin formula-

tion.

3. Max-margin Learning of CRFs

Conditional random fields (CRF) [11] are graphical

models used to encode relationships between a set of in-

put and output variables. Given its parameters w, a CRF

predicts the labeling Y for a given input X by maximizing

some score function Sw : X × Y → R, i.e.,

Ŷ = argmax
Y ∈Y

Sw(Y ) = argmax
Y ∈Y

wTΨ(X,Y ) (1)

The score is usually expressed as a linear function of w and

can be written as wTΨ(X,Y ), where the vector Ψ(X,Y )
is the feature map corresponding to the input X and the

labeling Y . The fundamental properties of random fields

imply that the feature map Ψ(X,Y ) and hence the score

Sw decompose into sums over individual nodes and edges

for any pairwise CRFs [2]. For a comprehensive review of

CRF models, we refer readers to [11] and [24].

3.1. Discriminative Learning

Discriminative learning uses the labeled training data to

learn the CRF parameters so that the inferred labeling of

the CRF is “close” to that of the ground truth, defined as

yielding a low loss. More specifically, given a set of N
training examples D = ((X1, Y 1), . . . , (XN , Y N )) where

Xi ∈ X is an input example, such as the image or features

associated to it, and Y i ∈ Y is the associated labeling, the

learning task consists in finding model parameters w that

198619861988



achieve low empirical loss subject to some regularization.

In other words, we seek

w∗ = argmin
w

L(D,w)

= argmin
w

∑
(Xn,Y n)∈D

l(Xn, Y n,w) +R(w),(2)

where l is the surrogate loss function and R(w) is the reg-

ularizer (typically the L2 norm). The most common choice

of l is the hinge loss, as used in [26, 28], which will be

described later on in this section. Note that the definition

of the surrogate loss l depends on the score function Sw,

since the goal of learning is to make the maximizer of Sw a

desirable output for the given input.

3.2. Max-margin Formulation

The max-margin approach is a particular instance of dis-

criminative learning, where parameter learning is formu-

lated as a quadratic program (QP) with soft margin con-

straints [28]:

min
w,ξ≥0

1

2
||w||2 + C

N∑
n=1

ξn (3)

s.t. ∀n : Sw(Y n) ≥ max
Y ∈Yn

(Sw(Y ) + Δ(Y n, Y ))− ξn,

where Yn is the set of all possible labelings for example n,

the constant C controls the trade-off between margin and

training error, and the task loss Δ measures the closeness of

any inferred labeling Y to the ground truth labeling Y n.

The QP can be converted to an unconstrained optimiza-

tion problem by incorporating the soft constraints directly

into the objective function, yielding:

min
w
L(w) = (4)

min
w

1

2C
||w||2 +

N∑
n=1

[Sw(Y ∗) + Δ(Y n, Y ∗)− Sw(Y n)]+,

where

Y ∗ = argmax
Y ∈Yn

(Sw(Y ) + Δ(Y n, Y )). (5)

It is easy to see that Eq. 4 has the same form as Eq.2 where

the hinge loss is used as the surrogate loss l, i.e.,

l(Y n, Y ∗,w) = [Sw(Y ∗)+Δ(Y n, Y ∗)−Sw(Y n)]+ (6)

For most existing approaches, a key challenge to solving

Eq. 4 effectively is the loss-augmented inference, i.e., find-

ing Y ∗.

3.3. Stochastic Subgradient Descent

The objective function of Eq. 4 can be minimized via

stochastic subgradient descent, similar to [19, 15]. This

class of methods iteratively computes and steps in the op-

posite direction of a subgradient vector with respect to a

example Xn chosen by picking an index n ∈ {1 . . . N}
uniformly at random. We then replace the objective in

Eq. 4 with an approximation based on the training exam-

ple (Xn, Y n), yielding:

f(w, n) = l(Y n, Y ∗,w) +
1

2C
||w||2 . (7)

A subgradient of the convex function f : W → R at w
is defined as a vector g, such that

∀w′ ∈ W,gT (w′ −w) ≤ f(w′)− f(w). (8)

The set of all subgradients at w is called the subdifferential
at w and is denoted ∂f(w). The subdifferential is always a

non-empty convex compact set.

A valid subgradient g(Y n, Y ∗,w) with respect to the pa-

rameter w can always be computed as the gradient of f(w)
at Y ∗. Hence for the hinge loss, it can be computed as:

∂f(Y n, Y ∗,w)

∂w
= ψ(Y ∗)− ψ(Y n) +

w

C
. (9)

This results in a simple algorithm that iteratively computes

and steps in the direction of the negative subgradient. In

order to guarantee convergence, the step size η(t) has to sat-

isfy the following conditions :

lim
T→+∞

T∑
t=1

η(t) =∞ and lim
T→+∞

T∑
t=1

(η(t))2 <∞.
(10)

For loopy CRFs, however, true subgradients of the hinge

loss cannot always be obtained due to the intractability of

loss-augmented inference. This can lead to erratic behavior

due to noisy subgradient estimates and loss of performance.

4. Estimating Subgradient Using Working Sets
Our algorithm aims at better estimating an approximate

subgradient of f(Y n, Y,w) by using working sets of con-

straints, denoted An, for learning loopy CRFs where exact

inference is intractable. The algorithm we propose is out-

lined in Algorithm 1. It first solves the loss-augmented in-

ference to find a constraint Y ∗ and add it to the working set

An. It then steps in the opposite direction of the approx-

imate subgradient computed as an average over the set of

violated constraints belonging to An.

Hence unlike dual averaging methods [17, 30] that ag-

gregate over all previous subgradients, our algorithm only

considers the subset of active, namely violated, constraints
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Algorithm 1
1: INPUTS :
2: D : Training set of N examples.

3: β : Learning rate parameter.

4: w(1) : Arbitrary initial values, e.g., 0.

5: OUTPUT : w(T+1)

6: Initialized An ← ∅ for each n = 1 . . . N
7: for t = 1 . . . T do
8: Pick some example (Xn, Y n) from D
9: Y ∗ = argmaxY ∈Yn

(Sw(Y ) + Δ(Y n, Y ))
10: An ← An ∪ {Y ∗}
11: An′ ← {Y ∈ An | l(Y, Y n,w(t)) > 0}
12: η(t) ← β

t

13: g(t) ← 1
|An′ |

∑
Y ∈An′

∂f(Y n,Y,w(t))
∂w(t)

14: w(t+1) ← w(t) − η(t)g(t)

15: end for

when computing the parameter updates. Therefore all sub-

gradients are computed with respect to the parameters at the

current iteration, as opposed to using their historical values.

This produces more meaningful descent directions, as evi-

denced by the results in Section 5.

We now analyze the convergence properties of the algo-

rithm presented in Algorithm 1. Although finding true sub-

gradients as defined in Eq. 8 cannot be guaranteed for loopy

CRFs, interesting results can still be obtained even if one

can only find an approximate ε-subgradient g, as defined

in [22]:

∀w′ : gT (w −w′) ≥ f(w)− f(w′)− ε (11)

The convergence properties of ε-subgradient descent meth-

ods were studied in [20, 22, 19]. The “regret” (i.e., loss)

of the parameter vector w can be bounded as follows (the

re-derivation of the proof using our notation is given in the

supplementary material):

E‖w(t+1) −w∗‖22 ≤
G2

λ2t
+
ε

λ
, (12)

where G is a constant satisfying the condition ||g||2 ≤ G2

and λ = 1
C .

Given that the choice of the step size satisfies Eq. 10,

we can see that the first term on the right side of Eq. 12

goes to 0 so stochastic ε-subgradient descent converges to

a certain distance ε to the optimum. The key to improving

convergence is thus to obtain more accurate ε-subgradients,

and we show below how this is achieved through the use of

working sets.

Let g1, . . . ,gm ∈ R
d be the approximate subgradients

with respect to example (Xn, Y n) of L for labelings in the

working set An that still violates the margin constraint at

a given iteration. Assume that each gi ∈ R
d comes from

some distribution with mean μi ∈ ∂L(w) and bounded

variance.

Let δi = gi−μi be the difference between approximate

ε-subgradient gi and true ε-subgradient μi, and assume that

all δi are independent of one another. Note that, by defini-

tion, each δi has zero expectation and hence their average

δ̄ = 1
m

∑
δi =

1
m

∑
gi − 1

m

∑
μi.

Therefore, using Hoeffding’s inequality [6] and the

union bound, we can show that the average error δ̄ concen-

trates around its expectation, i.e., 0 in this case, as the num-

ber of violated constraints in the working set m increases:

Pr
(∣∣∣∣δ̄∣∣∣∣ ≥ r

) ≤ 2d exp

(−mr2
2G2

)
, (13)

The convexity of the subdifferential ∂L(w) implies that

μ̄ = 1
m

∑
i μi ∈ ∂L(w). Therefore the probability of

g(t) � 1
m

∑
gi being more than a distance r away from

any true subgradient is bounded by Eq. 13 as well.

Algorithm 2
1: INPUTS :
2: D : Training set of N examples.

3: Q : MCMC walker.

4: β : Learning rate parameter.

5: w(1) : Arbitrary initial values, e.g., 0.

6: OUTPUT : w(T+1)

7: Intialized An ← ∅ for each n = 1 . . . N
8: for t = 1 . . . T do
9: Pick some example (Xn, Y n) from D

10: Sample Y ∗ according to Q(w(t), Y n)
11: An ← A∪ {Y ∗}
12: An′ ← {Y ∈ An | l(Y, Y n,w(t)) > 0}
13: η(t) ← β

t

14: z← w(t)

15: for Y ∈ An′
do

16: g(t) ← 1
|An′ |

∂f(Y n,Y,w(t))
∂w(t)

17: z← z− η(t)g(t) * atomic update *

18: end for
19: w(t+1) ← z
20: end for

Algorithm 1 solves the loss-augmented inference to gen-

erate new constraints, which can be expensive to compute.

The analysis presented in Section 4 suggests that it is possi-

ble to use a sampling method instead of the loss-augmented

inference to obtain new constraints, and under similar as-

sumptions the average subgradient ḡ still converges to a

valid subgradient. Based on this observation, we propose

an adaptation of Algorithm 1 that uses sampling instead

of solving the loss-augmented inference. This adapation

described in Algorithm 2 generates new constraints using

an MCMC walker denoted Q similar to the one described
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in [29]. We also replace the standard update of Algorithm 1

by a sequence of atomic updates that has been shown to im-

prove the speed of convergence [29]. Concerning the prac-

ticality, we would like to point out that the working set does

not lead to a significant increase in memory as we only need

to store the feature maps rather than the whole labellings.

5. Experimental Results
We apply our algorithm to image segmentation. We first

briefly describe how a CRF model is used for this task

and then present our experimental results on two distinct

datasets to demonstrate the effectiveness of our method.

5.1. CRF for Image Segmentation

As a standard preprocessing step, we perform a prelim-

inary over-segmentation of our input image into superpix-

els 1 using SLIC [1]. The CRF G = (V, E) is thus defined

so that each node i ∈ V corresponds to a superpixel and

there is an edge (i, j) ∈ E between two nodes i and j if the

corresponding superpixels are adjacent in the image. Let

Y = {yi} for i ∈ V denote the labeling of the CRF which

assigns a class label yi to each node i.
The score function associated with the CRF can then be

written as

Sw(Y ) =
∑
i∈V

Di(yi) +
∑

(i,j)∈E
Vij(yi, yj), (14)

where Di is the unary data term and Vij is the pairwise spa-

tial term. Both Di and Vij are linear in the CRF parameters

w and also depend on the observed data X in addition to

the labeling Y . For inference, we use graph cuts when the

corresponding energy function (i.e., negated score) is sub-

modular [7] and belief propagation otherwise.

A natural choice for the task loss Δ (Eq. 3) is the per-

superpixel 0-1 loss Δ(Y n, Y ) =
∑

i∈V I(yi �= yni ), which

penalizes all errors equally. However, in image segmenta-

tion, it is common for certain classes to occur much more

frequently than others. To ensure good performance across

all classes, we adopt a loss function that weighs errors for

a given class inversely proportional to the frequency with

which it appears in the training data.

5.2. Methods

In the following, we will compare our learning methods

(referred as Working sets + inference and Working sets
+ sampling) with the following baselines. We also experi-

mented with averaging all past subgradients [17, 30], which

did not produce meaningful results for our task.

• Linear SVM – A linear SVM classifying each sample

independently (i.e., without CRF).

1Or supervoxels in the case of volumetric data.

Figure 1. A nearly isotropic stack of neural tissue acquired using EM

microscopy annotated for training and testing. This stack contains 1065

images of 2048 × 1536 pixels, and was used for the task of segmenting

mitochondria, indicated by arrows.

• SSVM – The cutting plane algorithm described in [28].

• SampleRank – The method described in [29].

• SGD + inference – solve the loss-augmented inference

using graph-cuts or belief-propagation. This algorithm

is the SGD (subgradient descent) formulation of [19].

• SGD + sampling – Instead of performing inference,

use MCMC to sample constraints from a distribution

targeting the loss-augmented score. This is equivalent

to the method named “SampleRank SVM” described

in [29].

In all cases, we used a decreasing step size rule of 1√
t

and

used cross-validation on the training set to determine the

regularization constant. The results reported for the sam-

pling method and SampleRank were averaged over 5 runs.

5.3. MSRC Dataset

The MSRC dataset is a popular multi-class object seg-

mentation dataset containing 591 images with objects from

21 categories. Training and testing are done using the stan-

dard split of the dataset [23], and we used the annotated

images provided by [14]. We extract feature vectors by first

over-segmenting images using SLIC superpixels [1]. We

then extract SIFT descriptors and color histograms from im-

age patches surrounding each superpixel centroid. We then

create a bag-of-words descriptor by first generating a dic-

tionary containing 1,000 words for SIFT features, and 400

words for color histograms are constructed using k-means

on extracted features. We also include location informa-

tion as in [9] and the unary potentials of [8]. The resulting

feature vector xi is used to train the various methods. Simi-

larly to [23], the pairwise term we used was made gradient-

adaptive by including parameters for each discretized im-
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Table 1. MSRC segmentation results. We follow the standard reporting procedure. For each category, the pixel-wise classification rate is

provided. Global pixel-wise accuracy and average per-category scores provide measures for overall performance. Bold entries are used

for each part separately to indicate best performance. Note that all the methods in the top part of the table were optimized for the average

score, for which our method achieves the best results. We also include the results of two state-of-the-art algorithms as reported in [31].
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Linear SVM 63 88 77 90 85 91 89 59 86 88 94 85 80 53 93 85 79 65 50 82 0 74.8 79.6

SSVM [28] 69 91 82 80 82 92 78 68 85 79 85 90 77 58 95 82 87 74 44 80 44 77.1 82.3

SampleRank 66 91 80 84 80 92 76 70 82 65 89 91 85 54 93 80 88 69 48 89 40 76.7 82.2

SGD + sampling 67 93 80 82 75 93 64 67 84 74 81 93 82 43 93 75 88 68 52 73 48 75.4 82.1

SGD + inference [19] 69 91 84 87 82 92 80 64 86 82 85 83 76 61 95 82 88 73 43 74 35 76.7 82.2

Working set + sampling 71 90 87 91 84 92 83 74 82 84 85 87 66 46 94 84 88 79 49 74 37 77.2 83.3

Working set + inference 67 89 85 93 79 93 84 75 79 87 89 92 71 46 96 79 86 76 64 77 50 78.9 83.7

Ladickỳ et al. [10] 73 93 82 81 91 98 81 83 88 74 85 97 79 38 96 61 90 69 48 67 18 75.8 85.0

Yao et al. [31] 67 92 80 82 89 97 86 83 86 79 94 96 85 35 98 70 86 78 55 62 23 77.4 84.4

Original

Ground truth

SGD + inference [19]

Working set + inference

Figure 2. Example segmentations from the MSRC dataset. Best viewed in color.

age gradient level. In a similar fashion, it also considers

geometric relationships such as “sky appears above grass”.

Table 1 summarizes the segmentation performance of

the various approaches and example segmentations appear

in Fig. 2. The quantitative results show that the working

set of constraints improves the average score regardless of

whether inference or sampling was used during learning.

The results obtained by the sampling approach are close to

those from using inference, but with a significantly lower

running time as shown in Table 3. In addition to the base-

line methods described above, we compare our approach to

state-of-the-art approaches [10, 31]. We achieve the best re-

sults in terms of the average score for which we optimize

our algorithm.

5.4. Electron Microscopy Dataset
Here, we perform mitochondria segmentation in 3D us-

ing the large image stack from Fig. 1. This electron mis-
cropy dataset is publicly available at http://cvlab.
epfl.ch/data/em. Performance is measured by the

Jaccard index commonly used for image segmentation [4].
The Jaccard index is the ratio of the areas of the intersection
between what has been segmented and the ground truth, and
of their union. It is written as:

Jaccard index =
True Positive

True Positive + False Positive + False Negative
.

The segmentation process begins by over-segmenting the

volume using SLIC supervoxels [1]. For each supervoxel,

we extract a feature vector that captures local shape and

texture information using Ray descriptors [13] and inten-

sity histograms. These feature vectors are used to train each

baseline method, as well as our model. In a second set of

experiments, we also transform the features using the ker-

nel method of [12]. The original feature vectors are 120-

dimensional and are thus mapped to a higher dimensional

space. The details are described in [12]. Due to the high

cost of labeling such large volumes, our experiments are re-

stricted to two subvolumes containing 1024×768×165 vox-

els. The first subvolume was used to train the various meth-
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Table 2. Segmentation performance measured with the Jaccard index for the mitochondria EM dataset. We report results for two different

set of features (see text for full description). Note that the original features were already kernelized with a RBF-SVM in [13].

SVM Lucchi SSVM SampleRank SGD + SGD + Working set + Working set +

[13] [28] [29] sampling inference [19] sampling inference

Original features 73.0% 80.0% 80.5% 81.2% 77.5% 79.9% 83.0% 84.5%

Kernelized features 75.4% - 83.5% 82.9% 80.1% 81.5% 84.4% 86.7%

Ground truth Linear SVM SGD + inference [19] Working set + inference

Figure 3. Segmentation results on the EM dataset.

Table 3. Running time for the EM and MSRC datasets for T =
1000 iterations. The computational overhead reported in the

brackets is the increase in time resulting from the working set. On

both datasets, our method achieves better results at the price of a

very slight overhead.

EM MSRC

SampleRank [29] 2524s 80s

SGD + Sampling 2481s 72s

Working set + Sampling 2619s (+5.5%) 76s (+5.2%)

SGD + inference [19] 5315s 546s

Working set + inference 5842s (+9.9%) 583s (+6.8%)

ods while the second one was used for testing. Each sub-

volume contains ∼13K supervoxels. The resulting graphs

have ∼91K edges. Example segmentations are shown in

Fig. 3 and quantitative results are provided in Table 2. The

increased reliability due to the use of working sets leads to

higher scores for both the inference and sampling methods.

The inference version of our algorithm outperforms the pre-

vious state-of-the-art [13].

5.5. Time analysis

We conducted a time analysis of the standard subgradi-

ent method of [19] against the 2 versions of the algorithm

introduced in this paper. As shown in Table 3, the sampling

method is much faster than solving the loss-augmented in-

ference to find the most violated constraint. We can see

that the computational overhead due to the working set is

(a) Training set, EM (b) Test set, EM

(c) Training set, MSRC (d) Test set, MSRC

Figure 4. Evolution of the training and test scores (Jaccard index

for EM and average score for MSRC) as a function of the number

of iterations t. We report results for the sampling method with and

without working set in green and blue respectively.

of the order of 5% for the sampling method and less than

10% when solving the loss-augmenting inference to find

the most-violated constraint. The evolution of the training

scores as a function of the number of iterations is shown on

Fig. 4 for the EM and MSRC datasets. The curves clearly

show that the working set of constraints leads to a much

higher score on both the training and test sets.
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6. Conclusion
We have presented a working set based approximate sub-

gradient descent method for learning graphical models for

structured prediction. Our method is particularly appealing

for learning large CRFs with loops, which are common in

computer vision tasks, since under these circumstances the

use working sets of constraints produces better subgradi-

ent estimates and higher-quality solutions. We applied our

method the the task of image segmentation, where the re-

sults show that our method compares favorably against pre-

vious methods in terms of segmentation accuracy. More-

over the method allows us to use sampling to replace the

more expensive inference step without much performance

loss, leading to significantly lower learning time.
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