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Abstract

We propose SCALPEL, a flexible method for object seg-
mentation that integrates rich region-merging cues with
mid- and high-level information about object layout, class,
and scale into the segmentation process. Unlike compet-
ing approaches, SCALPEL uses a cascade of bottom-up
segmentation models that is capable of learning to ignore
boundaries early on, yet use them as a stopping criterion
once the object has been mostly segmented. Furthermore,
we show how such cascades can be learned efficiently.
When paired with a novel method that generates better lo-
calized shape priors than our competitors, our method leads
to a concise, accurate set of segmentation proposals; these
proposals are more accurate on the PASCAL VOC2010
dataset than state-of-the-art methods that use re-ranking to
filter much larger bags of proposals. The code for our algo-
rithm is available online.

1. Introduction

In this paper, we focus on object localization and seg-

mentation. A common and highly successful approach is

to generate a large set of (possibly overlapping) proposed

segmentations, sometimes called a “bag of segments” or

“soup of segments.” These proposals can then be evaluated

by a more complex model to determine a final set of local-

ized and segmented objects in the image. These proposal-

based methods have proven very useful for both object de-

tection/recognition tasks (e.g. [20]) as well as image/object

segmentation (e.g. [1, 11, 22]).

A typical processing pipeline used by several state-of-

the-art bag of proposal methods [7, 5, 12] is diagrammed in

Figure 1 (Bottom half). Given an input image, many seed

regions of interest are generated. Next, a pixel-wise seg-

mentation model is solved using graph-cut to find many so-

lutions using several different parameter settings. Because

graph-cut is used as inference, the features used in the seg-

mentation model must be pairwise and sub-modular; pair-

wise features primarily use bottom-up cues such as bound-

aries, texture, etc. These pairwise features are not sufficient

to discriminate between full objects and partial segmenta-

tions, so many proposals must necessarily be generated per

seed, and many seeds must be sampled. Therefore, the final

step of the process involves learning a re-ranking classifier

to filter the fixed set of segment proposals using features

computed over the entire region, i.e. normalized cut energy

or Gestalt features such as shape moments.

In this work, we propose incorporating region features

normally reserved for a re-ranker directly into the segmen-

tation process. This allows us to be far more efficient in

terms of the number of proposals generated, as our method

can provide similar or better accuracy as state-of-the-art re-

ranking based systems with only a single proposal per re-

gion of interest. Because we can evaluate features such as

normalized cut energy during the segmentation process, our

procedure can find the right balance between filling out a

given region and finding a segmentation that has object-like

properties as a whole. Given a prior belief corresponding

to an object in the image, our approach is more likely to

get the segmentation right the first time, without needing to

generate multiple guesses.

However, incorporating region features comes at a price:

we must forego using efficient graph-cut algorithms to pro-

duce our segmentation proposals. To retain efficiency,

we adopt instead a greedy superpixel selection algorithm.

While the concept of segmentation through greedy super-

pixel selection is at least a decade old (e.g. [17]), we provide

two main innovations that are necessary in order for such a

method to outperform state-of-the-art Conditional Random

Field (CRF) approaches (Figure 1). Specifically, we incor-

porate high-level information about the scale, probable lay-

out, class of the object, and the current stage of segmenta-

tion into the procedure. This is because there are intrinsic

variations across and within objects that will affect whether

or not a given feature is useful during the greedy segmen-

tation process. For example, the usefulness of color and
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Figure 1. Top: Overview of SCALPEL segmentation. The input is a shape prior annotated with class and size information (automatically

generated from the prior generator.) The class and size are used to select a scale and class specific cascade model ws,c from a lookup table.

The cascade greedily grows a fill region (initialized from the shape prior), with each sub-model adding up to a fixed number of segments

before passing the region to the next level of the cascade, stopping whenever any level finds no superpixel candidate scoring above zero.

Bottom: Overview of previous graph-cut and re-ranking based pipelines.

texture information from the prior depends on whether or

not the object class has consistent color and texture, as well

as if the object is too large or small to get good estimates

of color and texture. Similarly, segmenting a large object

requires ignoring interior boundaries early on in the greedy

selection process, yet respecting exterior boundaries once

the object has been fully segmented in the later stage of the

process.

We model these variations by (i) learning scale and class

specific models where different weight vectors are used for

different (scale, class) combinations, and (ii) learning a

cascade of selection models in which different stages of

the segmentation process have different parameters. Un-

like a fixed model, the cascade is capable of learning to

ignore boundaries early on in the process yet use them as

a stopping criterion once the object has reached a certain

size. When paired with a novel system that generates bet-

ter localized shape priors than our competitors, our method

leads to a concise, accurate set of roughly 650 proposals per

image without any re-ranking; moreover, these proposals

are more accurate on the PASCAL VOC2010 dataset than

other state-of-the-art methods [5, 7]. We call our approach

Segmentation Cascades with Localized Priors and Efficient

Learning, or SCALPEL. To summarize, the contributions of

this work are as follows.

1. Region features during segmentation. We demon-

strate that it is feasible to incorporate features normally

reserved for re-ranking directly into the segmentation

process, using a simple greedy method for superpixel

selection.

2. Efficiently trained segmentation cascades. We show

how to efficiently train a set of models for greedy su-

perpixel selection using standard SVM solvers.

3. Accurate greedy segmentation. We show how to sig-

nificantly increase the performance of the model by

learning separate models for objects of different scale

and class. We learn to infer these properties using a

simple localized shape prior generation scheme that

localizes objects with higher recall than either purely

bottom-up or top-down methods. Notably, we outper-

form graph-cut based approaches on the challenging

PASCAL VOC2010 Segmentation dataset.

2. Related Work

Several previous works have attempted to form segmen-

tations of objects in the image given a detection bounding

box [6, 22, 10, 14, 15]. [6] and [22] both learn several

shape priors using the root or parts of the DPM [9], whereas

we learn hundreds of holistic shapes from a fine-grained

clustering in mask pixel space. Furthermore, [6, 22] trust

the class assignments of the detections; we use bottom-up

bounding boxes with no class information to increase recall,

and instead generate shape predictions based on the content

of the bounding boxes. Most importantly, where [14, 10]

simply transfer a matched object mask and [6, 15] learn to

segment on pixels using graph-cut and sub-modular edge

features, we learn to greedily segment on superpixels with

arbitrary features, a cascaded weight vector, and with a set

of class- and scale-specific models.

Both [7, 6] incorporate learning into their segmentation

method by learning either a set of unary scores for graph-

cut [7] based on harvested region pairs or by directly using

max-margin structured learning with graph-cut as inference

[6]. While [6] combines bottom-up and top-down image
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Figure 2. Overview of entire SCALPEL processing pipeline. (1) Roughly 900 Bounding boxes per image are generated from several

different sources combining bottom-up and top-down information. (2) Top: Each box is evaluated by a shape classifier (Section 4) that

provides a rough estimate of the shape of an object inside the box. Bottom: These estimates are integrated over superpixels to form a

localized shape prior. (3) Superpixels are greedily selected using a cascaded segmentation model to form the final output (Section 3).

cues as we do, these cues are transferred from a nearby

training example, and not via a learned shape prior as in

our approach. Furthermore, these approaches are again lim-

ited to sub-modular edge weights and graph-cut as infer-

ence, while we in contrast learn cascaded weights on fea-

tures computed over arbitrary groups of superpixels that are

not required to be sub-modular.

Our greedy inference procedure is superficially similar

to the Maximal Weighted Clique (MWC) scheme used by

[11]. However, our goal is to group super-pixels into a sin-

gle coherent region, not to produce a tiling of segments that

cover coherent regions over the entire image; we stop ag-

glomerating superpixels when the score no longer exceeds

a desired threshold. More importantly, our cascaded weight

vector allows for the scoring function to change as inference

proceeds, features can be computed over arbitrary groups

of superpixels (not only pairwise), and we use the local-

ized shape priors to seed our method and guide inference.

Rather, our segmentation approach is more related to the

greedy MCMC inference used by [17], again with the ad-

dition of shape priors and our modeling innovations. Our

cascade approach is most similar to that developed indepen-

dently by [18], but we incorporate high-level information

rather than taking a purely bottom-up approach.

Finally, we note that our shape priors are inspired by

mask transfer approaches to segmentation, i.e. extract-

ing descriptions of object shape from training examples

and matching these to regions in a test image. Class-

specific matching typically requires detecting objects and

then adapting a segmentation mask to the detected box from

either a single training exemplar [14] or cluster of exem-

plars [10]; alternatively, fragments of the test image can

be matched with fragments of objects of known shape and

class [4, 3]. Category-independent matching ignores the

class label of training exemplars and attempts to match ei-

ther regions [12], windows [13], or entire images [19], with-

out regard to detected objects. We take a middle-ground

approach; we combine predictions from both category-

independent and class-specific methods to form the input

to our segmentation model.

3. Learning to segment with SCALPEL
Given a prior belief about an object in an image, our goal

is to find a selection of superpixels that both match the prior

and have excellent support from image cues. Here, we focus

on the segmentation; we discuss the prior generation in Sec-

tion 4. One price we pay by incorporating region-based fea-

tures into the segmentation process is that pixel-wise seg-

mentation becomes prohibitively expensive. Therefore, we

opt to perform segmentation at the superpixel level, using

the output of gPb-owt-ucm [2] with 200 superpixels.

3.1. Segment selection algorithm

We first describe a greedy segment selection algorithm

without a cascade; we will then extend the algorithm to the

cascaded setting. Intuitively, our algorithm begins with a

single superpixel and then repeatedly adds neighboring su-

perpixels to the set until a stopping criterion is reached. Let

S(x) = {1, . . . , 200} be the set of superpixels for an input

x. We represent a filled-in object mask as a subset of super-

pixels that we turn “on.” We represent a labeling of x as a

binary vector y, where yi = 1 if superpixel i is included in

the object and yi = −1 otherwise. Because the greedy in-

ference algorithm selects superpixels sequentially, we also

define a selection order z to be an ordered subset of S(x)
indicating the order in which superpixels were selected by

the greedy algorithm.

We next define our features in terms of the decisions

made by the greedy inference scheme. Given a selection

order z and a candidate superpixel s, the algorithm com-

putes features Δf(x, z, s) that measure the change in region

properties when s is selected as the next element. Note that

these difference features are typically very computationally

efficient, as only the changes in region properties by adding

s to z need to be computed.
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Figure 3. Feature overview and scoring. The feature vector Δf(x, y, s) consists of 8 region features and 3 unary features. Above, we show

each feature channel for the segmentation of a dog instance. y is visualized for reference as a fixed blue-colored region; the superpixels are

then colored according to the value of each feature computed w.r.t this fill region. The features are scored according to a single selected

row of the cascaded weight vector to produce the final scores over candidate superpixels on the right.

Given a weight vector w, feature generating function

Δf , and initialization s1, the inference procedure greedily

optimizes the following linear scoring function:

z�(w, x) = argmax
z:z1=s1

∑
i

w�Δf(x, z1:i, zi+1), (1)

where z1:i is the first i elements of z. Inference proceeds as

follows. Let z(t) be the selection order so far at iteration t,
where z(1) = s1. We define the best next candidate s(t),

s(t) = argmax
s∈N(z(t))

w�Δf(x, z(t), s), (2)

where N(z) are the neighboring superpixels to those al-

ready in the selection order z. In other words, s(t) is the

neighboring superpixel with largest score according to the

current selection order z(t). We then define the greedy up-

date to the selection order z(t) at step t to update only if the

estimated change in score is positive:

z(t+1) ←
{ z(t) if w�Δf(x, z(t), s(t)) < 0
z(t) ∪ s(t) otherwise.

(3)

We now extend the greedy algorithm to a cascaded set-

ting in a straightforward fashion. Specifically, we define

a series of K weight vectors w1, . . . ,wK . Inference then

proceeds in a stage-wise fashion, where stage k uses wk

to either stop inference or select one or more additional

superpixels before passing to the next stage (Figure 1).

Specifically, we substitute w in (3) with w�(x,z(t)), where

l(x, z(t)) �→ {1, . . . ,K} is a cascade lookup function that

defines the schedule of the cascaded inference. For ex-

ample, one simple lookup schedule is to evenly divide the

range of inference steps each stage of the cascade, using

�(x, z) = �|z|K/|S(x)|�. In Section 5, we discuss a more

useful lookup schedule based on our shape priors (Section

4).

3.2. Learning the Cascade

We now turn to learning the weights w1, . . . ,wK . We

use the shorthand {wk} to refer to the set of weights jointly,

and we use ψj(z, s) = yjsw�(x
j , z) ·Δf(xj , z, s) to be the

SVM-style margin of selecting superpixel s given selection

z on input xj . Our training procedure is simple, and learns

the cascade in a bottom-up fashion. We treat each selection

step (3) as a binary classification problem as follows. Recall

that ys is the label of superpixel s; we then define the fol-

lowing standard max-margin hinge loss objective, summed

over a training set {(xj , yj)}nj=1 of n examples:

L({wk}) =
n∑

j=1

∑
z,s∈N(z)

max{0, 1 − ψj(z, s)}, (4)

where we sum over all selection orderings z and possible se-

lections s. Intuitively, this objective states that all selections

that correct select the next superpixel, regardless of context,

should score positively, while all incorrect selections should

be rejected.

Unfortunately, there are far too many selection orderings

for optimization of (4) to be practical. Instead, we itera-

tively approximate the sum in (4) with samples from a sin-

gle selection ordering zj :

L′({wk}) =
n∑

j=1

∑

i,s∈N(zj
1:i)

max{0, 1−ψj(z
j
1:i, s)}. (5)

Note that given zj , we can optimize (5) using standard SVM

solvers such as [8]. We found that an iterative procedure

to choose zj worked well in practice: we first set zj =
{1, . . . , S(xj)} and solve for {w}1:K . We then fix w1, set

zj = z�({w}1:K , xj) and repeat, fixing w2 on the next

iteration, and so forth until all K models have been learned.
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Figure 4. Example of the soft object mask dictionary learned for a

single aspect ratio, sorted by class. Each sub-image is the average

resized mask of all objects in that cluster.

3.3. Class- and Scale- Specific Models

Class- and scale-specificity. While many of the features

we use are generic, there are intrinsic variations across ob-

jects that will affect whether or not a given feature is use-

ful to greedily segment that object. Although the cascaded

model introduced in the previous section can learn to dis-

count features early on in the segmentation process and

change weights as inference proceeds, it cannot handle a
priori variations between objects due to either object size or

object category. We propose a simple yet effective scheme

to model these variations: we divide objects in the train-

ing set into 5 different scales and by each of the 20 classes

in the PASCAL dataset, and for each unique (scale, class)
pair, we learn an entirely separate segmentation model. At

test time, we use the area of the target bounding box to de-

termine the scale bin and the output of the shape classifier

to determine the appropriate class bin, and run the selected

model accordingly (Figure 1). Note that even if the class

and scale predictions are incorrect at test time, selecting a

different model for each prior is a useful way to generate a

diverse set of proposals from a pool of priors.

Features. The segmentation model uses 8 features com-

puted on groups of segments and 6 unary features for a total

of 14 features. These features are summarized and visual-

ized for a particular example in Figure 3. The unary features

are computed once for each superpixel s, while the region

features are computed during inference, relative to a fixed

already-filled region z and a candidate superpixel s. The

first two region features are the difference in normalized cut

energy if s is added to z using both boundary strength and

color similarity as the cut edge weights. The next features

are computed on the boundaries: the strength of the exte-

rior boundary of s w.r.t. z, the strength and max strength

of the interior boundary of s w.r.t. z, and the total bound-

ary length. The final two region features are the average

similarity between superpixels within z and the candidate

s in terms of color and texture. The six unary terms are

������

Figure 5. Examples of HoG based shape classifiers. While (a) is

a typical informative shape prior from the sheep class, the clus-

ter of aeroplane objects in (b) are mis-aligned, do not provide an

informative prior, and are discarded at run-time.

the localized shape prior and the output of two logistic re-

gression models trained to differentiate the prior from the

background using texture and color respectively, plus three

bias terms: a generic bais, a term for the size of the super-

pixel, and a term for the ratio of the boundary to the area of

the superpixel.

4. Generating Localized Shape Priors

From object hypotheses to localized priors. In this sec-

tion, we now explain how we generate the input to the seg-

mentation pipeline (Figure 2). First, we sample bound-

ing boxes from three different publicly available bound-

ing box generation methods: purely bottom-up boxes from

the segmentation hierarchy of gPb-owt-ucm [2], category-

independent boxes from [16], and purely top-down class-

specific boxes from [9]. (For more information on the

bounding boxes, see the supplement.) We pool the boxes

together and discard the class information provided by [9]

to form our object hypotheses. Our next step is to predict

a soft object mask (Figure 4) for each box, which we in

turn use to compute a localized shape prior for the image.

The final input to segmentation algorithm is therefore a pool

of shape priors annotated by (scale, class) pairs, where the

area of the bounding box is used for the scale of the object,

and the class is taken from the predicted object mask.

Learning a soft mask dictionary. In order to predict soft

masks for each bounding box, we first need a dictionary to

define the space of possible soft masks (Figure 4). Using the

annotations provided by [4], we first cluster all objects in the

PASCAL VOC2011 training set into five aspect ratio clus-

ters using K-means. We then extract the binary mask for

each object and resize into a low-resolution thumbnail. The

use of thumbnails ensures that minor variations in shape

will not significantly change distance in mask pixel space.

Using [21], we perform hierarchical K-means clustering in

mask pixel space for every unique (aspect ratio, class) pair

that exists in the dataset, producing 92 cluster trees. Finally,

we pool all of the mask clusters for a given aspect ratio into

a single set, yielding roughly 350 shapes per aspect ratio

and a total of 1428 shapes.
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Method IoU Recall Covering

Priors Only 71.1 80.7 80.4

Object proposals [7] 71.2 82.5 79.5

CPMC [5] 71.4 79.9 82.8

SCALPEL 73.1 82.9 82.9
Table 1. Segmentation results on VOC2010 validation set. Note

that the SCALPEL priors are already competitive with state-of-

the-art; SCALPEL outperforms [7] and [5] in every metric.

Learning a soft mask classifier. Given a bounding box, we

need to choose the soft mask that best matches the object

inside the box. In the interests of generalization and effi-

ciency, we opt not to use nearest-neighbor methods, and in-

stead learn a linear SVM classifier using Histogram of Gra-

dients (HoG) features to differentiate between exemplars in

each soft mask cluster. We use the LIBLINEAR [8] soft-

ware package to train a linear multi-class SVM classifier,

and we choose the regularization parameter C of the SVM

as well as the size of the HoG cells using cross-validation

on a development set. After the first round of training, we

harvest false-positives from the bounding box pools on the

training set and introduce them as examples of an additional

negative class for a second round of training (Figure 5).

Localization with superpixels. The predicted soft object

mask is often only roughly aligned with the object (e.g. Fig-

ure 2), and leaks into the background. To fix this, we inte-

grate the soft mask over underlying superpixels and nor-

malize by the area of each superpixel. This largely elim-

inates bleeding into the background when the background

consists of large superpixels and the mask at least partially

covers the object. We also discard soft object masks that

suffer from misalignment in the corresponding cluster by

throwing out any predicted mask classifications where the

average soft mask accounts for less than 40% of the hy-

pothesized bounding box (Figure 5).

5. Segmentation Results

Experimental design. We train our method using the PAS-

CAL VOC2012 trainseg set, we evaluate our approach on

the VOC2010 valseg set. To develop our algorithm, we used

the images in the set {valseg2012− valseg2010}.
Cascade schedule. The schedule should ideally be aware

of not simply how many superpixels have been selected,

but how much of the object has been segmented, so that

different weights can be used for early vs. late decisions

in the segmentation procedure. Although we do not know

at test-time how much of the object is covered, the shape

priors are a useful substitute; therefore, in practice, we set

�(x, z) = �∑i p(x, zi)K�, where p(x, j) is the fraction of

the shape prior covered by superpixel j for input x. Fur-

thermore, for scale-specific cascades, we choose K based

on the scale of the target object, as selecting even a single

Specific? K IoU Recall Covering Avg

— 1 72.1 81.0 82.0 78.4

— 16 72.5 81.4 82.5 78.8

Scale 1 72.4 81.4 82.1 78.6

Scale 16 72.7 82.0 82.3 78.9

Class 1 72.4 81.6 82.7 78.9

Class 16 73.2 82.4 83.1 79.5

Class&Scale 1 73.0 82.6 82.7 79.4

Class&Scale 16 73.1 82.9 82.9 79.6
Table 2. Effect of model complexity on performance for various

SCALPEL variants. Adding specificity and cascaded weights al-

ways leads to an increase in performance. Overall, superior aver-

age performance across the three metrics is achieved with class-

and scale-specific cascades.
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Figure 6. Comparison of bounding box strategies. Recall is com-

puted for a fixed number of boxes.

superpixel will use up significant percentages of the prior

for smaller objects. We use K = {1, 2, 4, 8, 16} for each

scale bin respectively. For non-scale specific cascades, we

use K = 16.

Implementation/Run-time. To seed our segmentations,

we use the single superpixel with highest localized prior

score. For features, we compute dense PHoW using [21] for

texture descriptors and the (L,a,b) colorspace as our color

descriptors. The descriptors are discretized into a code-

book on the training set and we use the inner product of

histograms to compute similarities in texture and color be-

tween pairs of superpixels. In our region features, all simi-

larities are weighted by the size of the originating superpixel

to aggregate similarities. Our system runs at speeds compa-

rable to other state-of-the-art systems; after roughly 4-5 min

of preprocessing to compute gPb-owt-ucm and features per

image, prior prediction takes roughly 30s and segmentation

takes 2-4 min per image, running unoptimized MATLAB

code on a 2.8 Ghz Opteron machine.

Evaluation. For each proposed segment and ground truth

object in an image, we compute the overlap score, which

is the sum of the intersection of the two masks divided by

the union (abbreviated IoU). To evaluate a pool of segments
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Figure 7. Diversity of weight vectors for large object cascade for

different classes. Left: Weight of shape prior. The prior is more

important for easily identifiable shapes (buses) than for more com-

plex objects (people and bicycles). Note that bicycles do not learn

any feature weights for the later stage of the cascade, instead al-

ways stopping early. Right: Weight of exterior edge feature. Ex-

terior edges are far more important for bicycles than for buses and

people; the people cascade learns to ignore exterior edges until the

object is mostly segmented.

with respect to a given object, we report the best overlap

score across all segments. As we are interested in the pre-

cision and recall of the segment pools, we compute average

best overlap across all objects in the test set, as well as re-

call percentage at the standard 0.5 overlap threshold. We

also follow [5, 2, 12] and report the average covering of

each image in the test set. For a given pool of segments

and objects, the covering metric is the average best overlap-

ping score between ground-truth and proposed segments,

weighted by the number of pixels in each object. Because

the covering penalizes incorrect segmentation of large ob-

jects greater than small objects, we also investigate the av-

erage overlap as a function of object size.

Baselines. We compare several variations of our method to

the publicly available implementation of CPMC, which we

ran with default parameters. We also use precomputed bags

of ranked proposals provided by [7]. We calibrated each

method to output roughly 650 proposals per image, which

is the number of proposals produced with the CPMC de-

fault parameters (we did not run the CPMC re-ranking step.)

Finally, since we use the same error metric and the same

evaluation data, we also compare to the published results of

[12], as there was no publicly available implementation.

Localized Prior Quality. We first evaluated the quality of

the bounding boxes and localized priors themselves. We

first compared our mixed bounding box sampling approach

against sampling 900 boxes of each method individually

(Figure 6), and found that our method greatly increases re-

call compared to any individual method. Next, to generate a

proposed segmentation for each prior, we greedily selected

superpixels to obtain a segmentation with highest overlap

with the soft mask. We compare to the reported numbers

from Shape Sharing [12] for their neighbor-search based

priors. We find that our priors, while similar in number (658

vs. 608), have significantly higher covering than the Shape

Sharing priors (80.4% vs 77.0%). Note that we would ex-

pect our priors to be more informative, as our method lever-

ages category-specific information, while Shape Sharing is
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Figure 8. Improvement of SCALPEL over CPMC grouped by

scale of the object. The gains of SCALPEL come in the difficult

tiny and small objects.

entirely category-independent.

Segmentation Proposal Quality. We evaluate several vari-

ants of our method against several state-of-the-art baselines.

First, we investigated the contribution of the various tech-

niques we applied to make the greedy inference procedure

robust to variations within and across objects (Table 2). We

find that both cascades and class- and scale-specific mod-

els are important, effective means of improving the perfor-

mance of the greedy inference scheme. Based on our devel-

opment set, we choose the final variant including cascades

and both specificities to represent SCALPEL in a compari-

son against state-of-the-art baselines.

We compared SCALPEL to Object Proposals [7] and

CPMC [5]. Note that Object Proposals initially gener-

ates many more proposals, but uses a separately trained

re-ranker to reduce their number. While CPMC sacrifices

recall for covering and Object Proposals sacrifices cover-

ing for recall, SCALPEL outperforms both on IoU, recall,

and covering simultaneously. We also compared favorably

to Shape Sharing [12], which uses 1448 proposals per im-

age and achieves 84.3% covering; by proposing two shape

priors per bounding box, we can increase our proposals to

1456 and achieve 84.4% covering.

6. Discussion

SCALPEL improves segmentation of difficult objects.
We analyze the difference in average overlap between

SCALPEL and CPMC in Figure 7 when objects are grouped

into scale by quintile, where scale is defined as the percent-

age of image occupied by the object. For tiny (≈ 10% of to-

tal width) and small (≈ 20% total width) objects, SCALPEL

offers a large improvement over CPMC; the total relative

improvement for these difficult and small objects is over

100%. SCALPEL performs slightly worse than CPMC for

the largest objects, most likely due to the greedy inference

being unable to handle occlusions that separate objects into

multiple disconnected regions.

Cascades use different features at different stages. We

show the weight values for two different features of the cas-

cade in Figure 8. As desired, the cascade learns to weight

features differently at different stages of inference; for ex-
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Figure 9. Selected segmentation results. Right column: Failure cases. Remaining: Several successful segmentations; note that simply

thresholding the prior would result in failures on the more difficult examples.

ample, the (Large,Person) cascade learns to down-weight

exterior edges until nearing completion of the inference pro-

cess.

7. Conclusion
We have presented SCALPEL, a novel method for state-

of-the-art segment proposal generation with efficient train-

ing of class- and scale-specific segmentation cascades. The

segments proposed by SCALPEL are more accurate than

state-of-the-art competitors as measured by three different

error metrics. Furthermore, our approach can be extended

to incorporate arbitrary new features or bounding box pro-

posals, and additional specifities besides class and scale

(such as shape or color) could be explored as well.
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