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Abstract

We present a novel method for clustering data drawn
from a union of arbitrary dimensional subspaces, called
Discriminative Subspace Clustering (DiSC). DiSC solves
the subspace clustering problem by using a quadratic clas-
sifier trained from unlabeled data (clustering by classifica-
tion). We generate labels by exploiting the locality of points
from the same subspace and a basic affinity criterion. A
number of classifiers are then diversely trained from differ-
ent partitions of the data, and their results are combined
together in an ensemble, in order to obtain the final cluster-
ing result. We have tested our method with 4 challenging
datasets and compared against 8 state-of-the-art methods
from literature. Our results show that DiSC is a very strong
performer in both accuracy and robustness, and also of low
computational complexity.

1. Introduction

It is well known that various tasks in computer vision,

such as motion segmentation; face clustering under varying

illumination; handwritten character recognition; image seg-

mentation and compression; and feature selection, may be

solved as low-dimensional linear subspace clustering prob-

lems (see [1]). Since in most natural data the total variance

is contained in a small number of principal axes, even if the

measured data is high-dimensional, its intrinsic dimension-

ality is usually much lower. Furthermore, it is reasonable to

model data which comes from different classes as lying in a

union of linear subspaces, rather than in a single subspace.

Therefore, the problem of high-dimensional data seg-

mentation, simplifies to one of lower-dimensional subspace

clustering. That is, recovering the appropriate linear sub-

spaces and the membership of each data point to a particu-

∗zografos@isy.liu.se (Corresponding author)
†liam.f.ellis@gmail.com
‡mester@isy.liu.se

lar subspace. For this reason, in the last few years a large

number of scientific publications in computer vision and

machine learning literature have emerged proposing a wide

range of sophisticated solutions to the subspace clustering

problem. Notable examples are the SCC method [2], where

the authors utilize the normalized volume (spectral curva-

ture) of the (d+1)-dimensional simplex formed by random

(d+2) points; The SC approach by [3], which looks at the

cosine angle between pairs of points for clustering them to-

gether, and as such is suited for linear-only subspaces; The

SLBF method [4], which defines a subspace at every point,

supported by its local neighborhood, with the neighborhood

size determined automatically; The SSC method [5], which

describes every point by a set of sparse linear combinations

of points from the same subspace. The sparsity information

is then used as a point clustering affinity. More recent ex-

amples are the LRR method by [6], that tries to recover a

low-rank representation of the data points, and its improve-

ment LLRR [7], which is able to handle the effects of un-

observed (“hidden”) data by solving a convex minimization

problem. Finally, we have the two algebraic methods SSQP

[8] and LSR [9]. The former works on the premise that

every data point is a regularized linear combination of few

other points, and a quadratic programming approach is used

to recover such configurations. LSR is a fast method which

takes advantage of the data sample correlation and groups

points that have high correlation together.

We present a novel method for the solution of the sub-

space clustering problem, which follows the machine learn-

ing principle of Discriminative Clustering, that is, solv-

ing an unsupervised learning problem by means of a clas-

sifier or put more simply “clustering by classification”.

Our method is called Discriminative Subspace Clustering
(DiSC) and is fundamentally different from the generative,

often algebraic methods that one encounters in subspace

clustering literature. The key advantage of discriminative

clustering algorithms over generative ones, is that they do

not make restrictive assumptions about the data, and so they

are usually more robust and flexible than their generative
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Figure 1. The DiSC method overview. First we extract partial labels from unlabeled data. These labels are used to train a classifier, which

in turn separates the data into different classes, thereby solving the subspace clustering problem.

counterparts. Furthermore, obtaining a generative model

can often be difficult in many application domains. Con-

versely in discriminative algorithms, performance can be

affected by incomplete and noisy training data. However as

we will show, this potential problem can be minimized by

the information leveraging abilities of ensemble clustering.

DiSC exploits three very simple observations: First and

foremost is that two subspaces in general configurations

(i.e. non-coincidental intersection) can be optimally sepa-

rated by a quadratic classifier; Second is the locality princi-

ple. Namely that very often a point lies in close proximity

to a small number of points from the same subspace; And

third, that by combining together the results of multiple,

diversely-trained classifiers (ensemble), we can obtain an

overall improved result. The first requires the provision of

labels. The second provides a set of weak (incomplete and

noisy) labels, and the third generates a final, robust result

from an ensemble of diverse clusterings.

Our contribution with this paper is the combination of

these three basic observations inside a workable discrim-

inative clustering framework and the production a novel

method for the accurate and robust solution of the subspace

clustering problem. We have tested our method on a num-

ber of real and synthetic datasets and against state-of-the-

art approaches from literature. The experiments show that

DiSC compares very favorably against the other methods.

In addition, it is stable to parameter settings and has low

complexity as a function of the number of subspaces, the

number of points and the number of ambient dimensions.

2. Our approach
We may define a subspace of dimensionality d<D as:

L =
{
x ∈ R

D : x = μ+Uy
}
, (1)

with μ∈RD an arbitrary point1 on the subspace, U∈RD×d

is some basis for the subspace and y∈Rd are the coordinates

of x in the basis U. Given a set of N points
{
xj ∈ R

D
}N

j=1

1If μ = 0 then L is linear subspace, otherwise it is an affine subspace

that is drawn from a union of K subspaces
⋃K

i=1 Li, the

objective of subspace clustering is to recover the number

of subspaces K, their dimensions di, their bases Ui, the

points μi and the membership of the data points x to each

subspace. However, in practice it is sufficient to recover

only the membership of points to subspaces, since given

a correct membership (clustering) it is straightforward to

find the remaining parameters per subspace afterwards, us-

ing for example PCA. Therefore the majority of methods

from the literature, including ours, only solve the member-

ship sub-problem, given some general information, such as

the number K of subspaces and their maximum intrinsic

dimensionality d=max(di).

Our approach, DiSC, involves formulating and solv-

ing the subspace clustering problem inside a discriminative

clustering framework, without having to rely on a strong

generative model a-priori. An overview of DiSC can be

seen in Fig. 1. We first label a subset of the unlabeled

data. These labels are used to train a classifier and finally

the classifier gives a solution to the problem. It is important

to provide the classifier with consistent and representative
data. By consistent we mean data samples belonging to the

same subspace, having the same labels. By representative

we mean data that is sampled regularly and sufficiently, so

that no populated region of the subspaces is neglected. Such

labeled data is obtained from an unlabeled set, using the

principle of locality (or “common fate”) in the data points,

and a subspace affinity criterion (see Fig. 2 and 3).

Of course, due to the unsupervised nature of the data in-

herent in any clustering problem, we cannot guarantee that

the consistency and representativeness requirements will be

fulfilled exactly. As a result, the classifier will be a weakly
trained one, and as such, it may not be able to solve the sub-

space clustering problem adequately in every case. In or-

der to improve robustness, we leverage multiple, diversely-

trained classifiers and combine their results in an ensemble.

Diversity in the classifiers is achieved by two means: ran-
dom projections and randomized local sampling.

With random projections, we project the data into a

lower dimensional ambient space using random projection
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Figure 2. Generating labels from unlabeled subspace data. First we create a small set of random, local clusters. The points in each cluster

most likely lie on the same subspace. We then merge these clusters to obtain the training data for the classifier.

matrices. This serves a twofold purpose. First it improves

the clustering problem by essentially discarding redundant

dimensions in the data and second, it provides each classi-

fier with slightly different “views” of the same data. The

randomized local sampling on the other hand, improves the

ensemble by bootstrap aggregating (or bagging). That is,

generating multiple training sets by random sampling with

replacement. Once a diverse ensemble of classifier outputs

has been produced, we can solve an ensemble clustering

problem and obtain a more accurate and robust result than

that of a single, weakly-trained classifier.

The main algorithm of the DiSC method is presented

in Algorithm 1, while its constituent parts are explained in

more details next.

2.1. Generating labels from unlabeled data

Random data projection
A typical first step in many subspace segmentation meth-

ods is dimensionality reduction in order to simplify the clus-

tering problem, especially if the ambient dimensionality of

the data is very large. A common such technique is PCA,

which despite being expensive to compute, is deterministic

and unique and an optimal mean square projection.

In our case however, we are not only interested in the di-

mensionality reduction but also in introducing diversity in

classifiers, by obtaining similar but slightly different views

of the training data. Instead of carrying out PCA, we per-

form a different dimensionality reduction projection to R
r

for each classifier, using a Gaussian (0, 1/
√
r) distributed

random projection matrix R[r×D] such that

X̃ = RX, (2)

where X is the original data matrix with N observations

in R
D. Provided that the new dimensions r are of appro-

priate size then according to [10] there exists a map which

preserves the metric structure of the data introducing only

small bounded distortions. Nevertheless, an overly large r
will include unnecessary dimensions of noise, whereas a

very small r will increase the dimensionality of the inter-

section between the subspaces. Given the fact that the inter-

section is the most problematic region to cluster our aim is

to choose r large enough so that the dimensionality of the

intersection between subspaces is minimized. Inspired by

[3] we chose the projection dimension

r = K ·max (di) + 1, i = 1, . . . ,K (3)

where K is the number of subspaces and di are their

intrinsic dimensions.

Randomized local sampling
Following the random projection, in order to introduce

additional ensemble diversity, robustness to noise and

avoid overfitting, we select subsets of training data from

the union of subspaces by randomized local sampling.

The first step of this technique involves generating a

number Q<<N of random local clusters consisting of P
points each. Random local clusters are formed by initially

sampling Q random points from the subspace union, and

then forming the clusters around each of these points and

their (P -1)-nearest neighbors in the ambient Euclidean

distance (see Fig. 2). This is an approach used in many

subspace methods and exploits the observation that points

on the same subspace generally lie in close proximity to (at

least a few) other points from the same subspace. For small

neighborhoods, we have a high likelihood of obtaining local

clusters which contain points from the same subspace. This

likelihood generally decreases for points near the subspace

intersection, which is why it is particularly useful to mini-

mize the dimensionality of the intersection in the first place.

From local to global: Merging
The next step involves merging the Q local clusters into

K clusters, where K is the number of subspaces. In that

way, the classifier will obtain a more representative, “global

view” of the data, while at the same time maintaining the

consistency in the samples from the previous step. The

merging is carried out using spectral clustering [11] with
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Figure 3. Mutual projection affinity between two clusters. For each

cluster we fit a local subspace and project the points of the other

cluster to the subspace. We then calculate the average projection

residual and use an exponential kernel to create the affinity. This

affinity is very effective and more robust than algebraic affinities.

the aid of a subspace-based affinity. Here, since we need

to merge clusters together, we define the “mutual projection

distance” between two clusters Cq and Cs as:

E(q, s) =
1

2

√
δ (xq, Ls) +

1

2

√
δ (xs, Lq), (4)

where δ (xq, Ls) is the mean squared orthogonal distances

of points x ∈ Cq , to the subspace Ls defined by cluster

Cs (see Fig. 3). It is obvious then that we need at least

P ≥ d + 1 points in each cluster. The clusters are allowed

to overlap, but duplicate points are removed before being

passed into the classifier.

The distance in (4) is turned into an affinity by using the

exponential kernel as

A(q, s) = exp (−E(q, s)/α) , (5)

where α is the kernel width, and is related to the amount of

noise in the data. The affinity in (5) is based on a geomet-

ric residual and because of that it is more robust to noise

than algebraic residuals, it can deal with mixtures of sub-

spaces of different dimensionalities, and scales well with an

increase in intrinsic and ambient dimensions. The merg-

ing step is summarized in Algorithm 2. The number of lo-

cal clusters we sample is always fixed at Q=0.1N and with

P=d+3 points. In the end, we obtain a representative set of

points with consistent labels that come from each subspace

(see Fig. 2), which forms the classifier training set.

2.2. The quadratic classifier for subspace data

The quadratic classifier is known to be a minimum Eu-

clidean distance classifier for data that is modeled using pro-

jections onto subspaces [12]. Here we examine the classi-

fication problem from a statistical viewpoint and show how

the basic model can be extended further to incorporate ad-

ditional information about the subspace data.

Assume that we have training data xi ∈ R
D that lives in

a union of subspaces Li, and classes ωi, corresponding to

each subspace. We also have a new observation z ∈ R
D for

which we wish to make a classification decision. A reason-

able decision rule is to assign z to the class with the highest

posterior probability

P (ωi|z) > P (ωj |z), ∀i �= j. (6)

Since the vectors xi are restricted to live on the subspaces,

the observation model must necessarily integrate a measure-

ment error term, otherwise the model cannot explain arbi-

trary data z ∈ R
D. Thus we consider an additive measure-

ment error term ν
z = x+ ν. (7)

A reasonable assumption about ν is that it is zero-mean

isotropic and Gaussian distributed

p(ν) = cν exp
(−1/2νT [σ2

νI]
−1ν

)
, (8)

with cν a normalization constant and σ2
ν the scale of the

noise. Then the first two moments of xi are:

E[xi] = μi,
Cov[xi] = Ui Cov[yi] U

T
i ,

(9)

where y is defined in (1). Since Cov[xi] has rank di < D,

we avoid writing down the expression for p(x|ωi) and in-

stead point out that for any two uncorrelated random vari-

ables x, ν we have:

E[xi + ν] = E[xi] + E[ν],
Cov[xi + ν] = Cov[xi] + Cov[ν].

(10)

From (7), (10) we obtain:

E[z|ωi] = μi,
Czi = Cov[zi] = Cov[xi] + σ2

νI.
(11)

Since I is full rank, Czi is also full rank. From the first two

moments of zi we can define a parametric model of p(z|ωi)
as:

p(z|ωi) =
exp

(
− 1

2 (z − μi)
T
C−1

zi (z − μi)
)

(2π)
D/2 |Czi |0.5

. (12)

We may now define a parametric form of the discriminant

boundary between two classes ω1, ω2, and assuming that the

class priors have simple forms (i.e. the class frequencies),

as:

|Cz2 |1/2 exp
(
− 1

2 (z − μ1)
T
C−1

z1 (z − μ1)
)

|Cz1 |1/2 exp
(
− 1

2 (z − μ2)
T
C−1

z2 (z − μ2)
) =

n2

n1
,

(13)
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where n1, n2 are the sizes of the training sets in ω1, ω2

respectively. By taking the logarithm of (13) and some re-

arrangement of terms we obtain the quadratic form

zTAz + bT z + c = 0, with (14)

A =C−1
z1 −C−1

z2 ,

b =2
(
μ1C

−1
z1 − μ2C

−1
z2

)
,

c =μ2C
−1
z2 μT

2 − μ1C
−1
z1 μT

1 + log (|Cz2 |)
− log (|Cz1 |) + 2 (log(n2)− log(n1)) .

We can see that (14) determines a second order surface,

which is defined by the Mahalanobis distance induced by

each training set. In practice, we may simplify the calcu-

lation of Czi and avoid the expensive subspace fitting step

necessary for recovering Cov[xi], by estimating:

μi ≈ 1
ni

∑
xi,

Cov[xi] ≈ 1
ni−1

∑
(xi − μi)(xi − μi)

T .
(15)

Then from (11)

Czi = Cov[xi] + ξ2I (16)

where ξ is a regularization coefficient s.t. ξ ≥ λd+1 with

λd+1 being the d + 1 largest eigen-value of Cov ˜[xi]. From

the above formulation, and as a direct result of the Gaussian

assumption, the quadratic classifier is a minimum Maha-

lanobis distance classifier. Note that although the quadratic

classifier is a generative approach, we are only interested

in its discriminative boundaries and we are not using the

fitted Gaussian models explicitly. In principle, other pure

discriminative classifiers may be used here instead.

2.3. Weighted ensemble clustering

After the application of the multiple, weakly trained clas-

sifiers we have obtained a number of approximate solutions

to the subspace segmentation problem. That is, the set

of clusterings {Ym}Mm=1 resulting from the classifiers are

highly correlated but also exhibit some diversity. Our aim

is to now combine these intermediate results for improv-

ing the final clustering. Note that because the classifiers

have been trained from different subsets and projections of

the data, they might not assign identical labels to the same

clusters (label permutation). As such, the classifiers can-

not be combined directly in a voting scheme or a boosting
configuration. However, since a clustering is not affected

by the semantics of the labels, what we can do instead is to

combine the classifier outputs into a cluster ensemble.

For this purpose we have adapted the graph partition-

ing (HBGF) algorithm by [13]. HBGF combines both the

pairwise information between the points and the clustering

information from the ensembles as the vertices of a bipar-

tite graph. The edges of the graph specify the point-to-

cluster memberships. Then the cluster ensemble solution

is a min-cut through the set of points. Conceptually, this

can be thought of as the volume of the graph encoding how

often points end up together. Cutting the graph equates to

finding groups of points with high probability of belonging

together.

Given an ensemble C={Ym}Mm=1 of M clusterings with

K classes, HBGF creates a “connectivity matrix” Z with N
rows corresponding to the points and M ·K columns corre-

sponding to the clusterings. Each row of Z is populated in

a block-wise fashion as

Z(j,Bm) = 1(j, i,m), j = 1, ..., N (17)

with 1(j, i,m) being an indicator function that takes the

value 1 if point j has label i in clustering Ym, and 0 oth-

erwise. Bm is the K-sized row block defined as

Bm = Z(:, 1 +K(m− 1) : Km). (18)

We have made two modifications to the original HBGF al-

gorithm. First we enhance the bipartite graph by including

some subspace quality information in the form of the edge

weights:

wm = exp

(
−

K∑
i=1

√
δ(xi, Li)/α

)
, (19)

with xi being all the points in clustering Ym that have the

class label i. Li is the subspace fitted to those points. The

function δ() is defined similarly to that in (4) and α is the

same parameter to the one used in (5). The weights are

applied to each normalized row of Z as:

Ẑ(:,Bm) =
Z(:,Bm)∑
m Z(:,Bm)

wm. (20)

This has the effect of increasing the edge strength of clus-

terings with low point-to-subspace projection error, while

suppressing edges of clusterings with large errors.

The second modification is that the actual graph cut is

now carried out with spectral clustering, by creating the

affinity matrix AZ=(ẐẐT )β . Spectral clustering has been

chosen because it is much faster and more accurate than the

agglomerative clustering initially employed by [13]. Fol-

lowing [11], the optimal value of the β parameter is auto-

matically chosen so as to minimize the overall cluster dis-

tortion Δ. The weighted ensemble clustering algorithm is

given in Algorithm 3, with a fixed number of ensembles

M=50. We note here that the ensemble clustering (includ-

ing spectral clustering) is also a discriminative step that fits

very well into the whole discriminative spirit of the DiSC

method.

3. Experiments
We now present the results from our comparative exper-

iments on real and synthetic datasets. For all experiments

210921092111



Figure 4. Computational speed experiments for all methods on synthetic data. Left, as a function of sample size. Middle as a function of

ambient dimensionality and right as a function of the number of subspaces. The DiSC method is shown in bold.

Figure 5. Sensitivity analysis of the important parameters in DiSC, tested on the Hopkins155 dataset over 10 runs. From left-to-right, the

number of clusters C, the number of ensembles M , the number of points per cluster P and finally the kernel regularisation parameter α.

Algorithm 1 Complete DiSC method

Input: Data matrix X[D×N ], # subspaces K, dim. d
Output: N×1 label vector Y of K classes

For each m = 1 : M
Random data projection to R

Kd+1 using (2)

Random local sampling of C clusters

Merge C local clusters using Algorithm 2

Train quadratic classifier using (16) and (14)

Apply classifier to data and obtain clustering Ym

Append Ym to ensemble C

Ensemble clustering of C using Algorithm 3 to obtain Y

Algorithm 2 Merging of local clusters

Input: Q point clusters, # subspaces K, dimension d, α
Output: Q×1 label vector YQ of K classes

Fit a subspace L of dim. d to each cluster C using PCA

For each q = 1 : Q
For each s = 1 : Q

Calculate E(q, s) using Cq ,Ls and Cs,Lq from (4)

Calculate A(q, s) using E(q, s) from (5)

Do spectral clustering on A as in [11] with K clusters

Obtain result YQ

we have calculated the segmentation error

Error = # of missegmented points/N · 100%, (21)

Algorithm 3 Weighted ensemble clustering

Input: Ensemble C , # subspaces K, α
Output: N×1 label vector Y of K classes

Compute matrix Ẑ according to (20)

Distortion Δ =∞
For each β = 2 : 8
AZ = (ẐẐT )β

Do spectral clustering on AZ as in [11] with K clusters

Obtain result Yβ and clustering distortion Δβ

If Δβ < Δ then Δ = Δβ and Y = Yβ

which is a standard measure of clustering performance. All

tested methods were used with fixed parameters per dataset.

When authors provided parameter settings we used those,

otherwise we made our best effort to tune them ourselves.

SC, SBLF, and SCC required no tuning. DiSC has a single

tuning parameter, α from (5). It was kept fixed to α=0.01

for all datasets, except for the MNIST dataset where it was

set to α=1 due to the large amount of noise.

The first dataset is the Hopkins155 [14], which consists

of 155+4 sequences of point trajectories in 2-5 rigidly mov-

ing objects. There are approximately 200 points and 30-40

frames in each sequence. Subspace clustering of the motion

trajectories amounts to motion segmentation. Each algo-

rithm was given the number of moving objects K and the
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intrinsic dimension d=4. The results are shown in Table 1.

We can see that DiSC has the lowest segmentation error.

Next is the Extended Yale B dataset [15], which contains

face images of 28 individuals from 9 poses and under 64 il-

luminations. We experimented with the illumination subset,

since such images are known to live in a low-dimensional

subspace. Subspace clustering here amounts to face cluster-

ing under illumination variations. All images were rescaled

to 160×120 and projected to R
Kd+1 using PCA. The intrin-

sic dimensionality was set to d=5 and each subspace con-

tained 64 points. We tested K=2,...,9 by randomly choosing

K faces from the 28. We could not go beyond 9 faces since

methods such as SSC and SSQP became very slow. We

run 100 random tests for each K and the averaged results

are shown in Fig. 6. The Extended Yale B has very little

noise which is apparent in the initial good performance for

all methods. Beyond 5 objects however, accuracy degrades

considerably in some approaches. SSC performs the best up

to 9 objects, with SLBF and DiSC following closely, with

an error of under 1%.

The last real image dataset is the MNIST dataset [16]

which contains binary images of 10 handwritten digits. The

images for each digit live approximately in a subspace of

d=3. Because they are handwritten digits, there is a lot of

noise present in the dataset. We have used the Test-set of

MNIST with 10,000 images of 28×28 pixels. We randomly

sampled 200 images from each digit (i.e. points on each

subspace) and projected them in R
20. We experimented

with random K=2,...,5 digits (subspaces) and again the up-

per limit was determined by the slow SSC and SSQP. The

results after 100 runs for each K are summarized in Fig. 7.

We can see that for all methods the segmentation errors are

much higher now than before, due to the increased noise.

For K=2, LSR is the best performer followed by SSC and

DiSC. However as soon as K increases, DiSC becomes the

method with the lowest error.

Next, we have generated a low-noise, synthetic dataset

with random points on subspaces. This set was designed

for “torture-testing” each method for robustness to specific

geometric configurations of the subspaces and not the noise

in the measurements. Tests like this are generally difficult to

set up with real data, since datasets such as Hopkins155 and

Extended Yale B exhibit low geometric complexity. There

are 7 subsets (“difficulty levels”) in the dataset, each adding

an extra degree of complexity. For all levels, we have run

100 random tests, each with fixed noise of σ=0.01, random

ambient D, random intrinsic d=[1,...,10], random subspaces

K=[2,...,5] and random [50,...,150] points per subspace.

The 7 levels were constructed as follows: Level 1 (eas-

iest): non-intersecting linear subspaces, D≥Kmax(di)+1,

all subspaces of equal dimensions, points drawn from uni-

modal Gaussian distributions and the intrinsic dimension

passed to the algorithms d=di; Level 2: intersecting sub-

Figure 6. Results from the Extended Yale B dataset for up to 9

faces at 64 samples each. The DiSC method is shown in bold.

spaces; Level 3: d≥di. This simulates fitting to degener-

ate subspaces; Level 4: Subspaces of different dimensions.

This simulates mixtures of subspaces; Level 5: affine sub-

spaces; Level 6: points drawn from bimodal Gaussian dis-

tributions instead (i.e. disconnected point clusters); Level 7:

the most difficult, with ambient D=max(di)+1, which does

not allow for any dimensionality reduction and the lower

bound for the subspace intersection dimensionality is max-

imal. The results for all levels are illustrated in Fig. 8. We

see that only SLBF and DiSC manage to do well for the

majority of this dataset. All other methods fail when we

allow for degeneracies and subspace mixtures. Note that

there is no significant change from using linear to affine

subspaces. SLBF fails when at level 6 when we introduce

multi-modal point clusters. This is due to the method’s “fur-

thest insertion” sampling scheme that is prone to completely

disregarding some clusters. Our method is robust to discon-

nected clusters even though the classifier is using the uni-

modal Gaussian assumption. Where we expect our method

to deteriorate in performance, is in cases where there is very

limited and sparse data on the subspaces, and as a result the

locality assumption in the points will not hold.

We have also run a limited set of computational speed

experiments. Each method has been executed 10 times on

synthetic data and on the same computer, and the averaged

results are illustrated in in Fig. 4. We see that while DiSC

is not the fastest method, it is of low complexity as a func-

tion of points N and number of subspaces K, and of almost

constant complexity as a function of the ambient dimen-

sions D. Finally, we show some analysis of the sensitivity

in the DiSC parameters. Each test was executed 10 times on

the Hopkins155 dataset and the graphs of the parameter vs

segmentation error (y-axis) are shown in Fig. 5. The most

sensitive parameter, as expected, is the kernel parameter α
from (5). However, in general a small value usually yields

good results, which is why it has been kept fixed for the

majority of tested datasets.
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SC [3] SLBF [4] SCC [2] SSC [5] LRR [6] LLRR [7] SSQP [8] LSR [9] DiSC

1.36% 1.45% 4.119% (0.241) 1.47% 1.64% 1.40% (0.051) 1.49% 3.32% 1.25% (0.025)

Table 1. Segmentation results from the Hopkins155 dataset. All numbers show the segmentation error rate (21) averaged over the 159

sequences. Numbers in brackets show the variance (over 100 different runs) for the stochastic methods.

Figure 7. Results from the MNIST dataset for up to 5 random dig-

its at 200 samples each. The DiSC method is shown in bold.

Figure 8. Results from the synthetic dataset for the 7 complexity

levels. The DiSC method is shown in bold.

4. Conclusion
We have presented a novel method for segmenting data

drawn from a union of subspaces. Our method, DiSC,

solves the subspace clustering problem by using a classifier

trained from unlabeled data. We have used the quadratic

classifier, which is an optimal minimum Mahalanobis dis-

tance classifier for subspace data. We generate training la-

bels by exploiting the locality of points lying on the same

subspace and a basic subspace affinity criterion. We di-

versely train a number of classifiers and combine their out-

puts in an ensemble to obtain the final clustering solution.

Our experiments have shown that our method performs very

well compared to the state-of-the-art, is of low complex-

ity and it is robust to complicated geometric configurations

of the subspaces. Our future work will be to extend the

DiSC algorithm into an online approach, capable of predict-

ing the labels of sequential data and incrementally updating

the classifiers and discriminant boundaries. Also of interest

is the adaptation and application of DiSC to multi-manifold

clustering problems.
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