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Abstract

For an ill-posed problem like boundary detection, hu-
man labeled datasets play a critical role. Compared with
the active research on finding a better boundary detector to
refresh the performance record, there is surprisingly little
discussion on the boundary detection benchmark itself.

The goal of this paper is to identify the potential pitfall-
s of today’s most popular boundary benchmark, BSDS 300.
In the paper, we first introduce a psychophysical experiment
to show that many of the “weak” boundary labels are un-
reliable and may contaminate the benchmark. Then we an-
alyze the computation of f-measure and point out that the
current benchmarking protocol encourages an algorithm to
bias towards those problematic “weak” boundary labels.
With this evidence, we focus on a new problem of detect-
ing strong boundaries as one alternative. Finally, we assess
the performances of 9 major algorithms on different ways of
utilizing the dataset, suggesting new directions for improve-
ments.

1. Introduction
Boundaries in an image contain cues that are very im-

portant to high level visual tasks such as object recognition

and scene understanding. Detecting boundaries has been a

fundamental problem since the beginning of computer vi-

sion. In the development of boundary detection, datasets

[16, 8, 5, 1] - along with their evaluation criteria1 - have

played critical roles. These datasets are responsible for our

progress in the problem of boundary detection, not only be-

cause they provide an objective quantity to judge the value

1In this paper, we refer to the images and the labels as datasets, while

the term benchmark includes images, labels as well as the corresponding

evaluation criteria.

Labeler 1 Labeler 2 Labeler 3

Labeler 4 Labeler 5 Labeler 6

Figure 1. An example image and the corresponding labels from B-

SDS 300. Top figure shows the original image overlapping with all

6 boundary maps from labelers. There is a clear difference among

different labelers. Red circle gives an example boundary segment

that is labeled by only one out of 6 labelers (labeler 4). Bound-

ary segment in the orange circle is labeled by two labelers (labeler

3 and 4). The boundary segment in green circle is unanimously

labeled by all 6 labelers.

of each newly proposed algorithm, but also because the im-

ages, the labels, and the evaluation standards they set forth

have heavily influenced the researchers during the develop-

ment of a boundary detection algorithm.
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1.1. Boundary detection is ill-defined

What is a boundary? A universally accepted definition

of a boundary may not exist. No matter how the definition

is made, one can always find counter-examples on which

people disagree. In today’s most popular benchmark BSDS

300 [16], 28 human labelers contributed a total number of

1667 high quality boundary maps on 300 images of natural

scenes (200 training, 100 testing). Within the entire dataset,

it is hard to find a image where different people have per-

fectly matched labels.

In high-level vision tasks such as object recognition or

scene classification, human annotation has been tradition-

ally considered reliable. However, the ill-posed nature of

boundary detection makes this problem a different scenari-

o. There is surprisingly little discussion about ground-truth

data reliability for boundary detection. It is commonly held

that human annotations from BSDS 300 are reliable. Previ-

ously, [16, 17] have the following observations regarding to

the reliability of BSDS 300:

1. Labelers are well trained and correctly instructed. Ex-

amined separately, each boundary seems to be aligned

to some underlying edge structure in the image. The

effect of an adversarial labeler (labelers with totally ir-

relevant output) is minimal.

2. Label variability can be explained by a perceptual or-

ganization hierarchy. Even though different labelers

may annotate boundaries in different levels of detail-

s, they are consistent in a sense that the dense labels

“refine” the corresponding sparse labels without con-

tradicting to them. In other words, the same image

always elicits the same perceptual organization across

different labelers.

Nevertheless, none of these observations are strong e-

nough to legitimatize the BSDS 300 as a benchmark. To

be able to evaluate an algorithm faithfully, the benchmark

has to be free from both type I (false alarm) and type I-

I (miss) statistical errors. Aforementioned observation #1
rules out type I errors. However, the risk of type II remains

unchecked errors in human labels. It is possible that the la-

belers may miss some equally important boundaries. Once

we benchmark an algorithm, the incomplete data may incor-

rectly penalize an algorithm that detects true boundaries.

As for observation #2, the hierarchical organization of

boundaries raises more fundamental questions: Can we give

equal weights to the strong boundaries where everyone a-

grees, and the weak boundaries where only one or two la-

belers have noticed? When we say “boundary detection”,

are we trying to solve one single problem with differen-

t thresholds? Or different problems at different levels of

the perceptual hierarchy?

1.2. The perceptual strength of a boundary

In this paper, the perceptual strength of a boundary seg-

ment refers to the composite effect of all factors that influ-

ence personal decision during boundary annotation. Such

factors may include border contrast, object type, or line

geometry. One simple way to approximate the perceptual

strength of each boundary segment is to take the proportion

of labelers who have labeled that specific segment. To get

rid of local alignment noise, we match each pair of human

boundary maps using the assignment algorithm proposed in

[11], with the same parameter set [15] used for algorithm

evaluation. For instance, given an image with N labelers,

if a boundary pixel from one subject matches with M other

labelers, it has a perceptual strength of M+1
N . The weakest

boundary labels are the ones annotated by only one labeler.

These boundaries are referred to as orphan labels. In BS-

DS 300, 29.40% of the boundary labels are orphan labels.

In comparison, the second largest population (28.99%) are

consensus labels that are labeled by everyone.

Clearly, the orphan labels and the consensus labels are

not equal. In Sec. 3, we use a psychophysical experimen-

t to assess the statistical difference of weak/strong bound-

aries. Our experimental results indicate that weak (espe-

cially orphan) labels are not capable of evaluating today’s

algorithms.

Based on this novel discovery, in Sec. 4 we investigate

the impact of these weak boundaries on the current eval-

uation system. A disappointing yet alarming result is that

all of the 9 algorithms experience significant performance

drops if we test them on strong boundaries only. Further-

more, we pinpoint a mechanism called precision bubble
in the original BSDS 300 benchmarking algorithm. This

mechanism tends to exaggerate the precision of an algo-

rithm, especially when the weak labels are included in the

groundtruth.

We raise an important yet largely neglected question:

are we ready to detect strong boundaries? Our analysis

shows that none of the 9 algorithms is capable of discov-

ering strong boundaries significantly better than random se-

lection. The output values of the algorithms are either inde-

pendent or weakly correlated with the perceptual strength.

This result is in sharp contrast to many of today’s popular

practice of using the output of a boundary detector algorith-

m as an informative feature in high-level boundary analysis.

We conclude our discussion with a comparison of pB v.s.

retrained-pB and BSDS 300 v.s. BSDS 500.

2. Related works

Over the last 12 years, a great number of boundary de-

tection algorithms have been proposed. The benchmark’s F-

measure, according to the measurements proposed in [15],

has increased 7 percent, from 64.82% [15] to 71.43% [20].
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In this paper, we focus on 9 major boundary detection algo-

rithms (shown in Tab. 1).

All of these algorithms, except cCut, provide very com-

petitive F-measures at the time when they were first intro-

duced. F-measure, also known as F-score, or the harmonic

mean of precision and recall, is recommended in [15] as

a summary statistics for the precision recall property. Over

the past 10 years, it has been accepted as the most important

score to judge a boundary detector.

Along with boundary detection, a parallel line of work

[25, 27, 12] focuses on the detection of “salient bound-

aries”. These works emphasize on finding salient 1-D struc-

tures from the ensemble of line segments discovered by

a boundary detector. The stated advantage of these algo-

rithms is to gain extra precision scores at low-recall region-

s. Therefore, it is interesting to include cCut [12], one of

the latest algorithms in this line, and evaluate it under our

quantitative framework.

Name F-measure Year

pB [15] 0.65 2002

UCM [2] 0.67 2006

Mincover [9] 0.65 2006

BEL [7] 0.66 2006

gPB [4] 0.70 2008

XRen [19] 0.67 2008

NMX [13] 0.71 2011

cCut [12] 0.45 2011

SCG [20] 0.71 2012
Table 1. The list of boundary detection algorithms referred in this

paper. Their F-measures increase over time.

2.1. Relevant theories on dataset analysis

In contrast to the perennial efforts in breaking bench-

mark performance records, theoretical analysis on bench-

mark reliability is brought to people’s attention only in re-

cent years. These studies can be roughly categorized into ei-

ther human annotation analysis, or benchmark design anal-

ysis. The first problem of human annotation comes with the

recent trends of obtaining annotation data via crowdsourc-

ing [22]. Many seminal models [18, 26] have been proposed

to analyze the crowdsourced annotation process in gener-

al. Specifically, [24] has proposed strategies to estimate the

quality of crowdsourced boundary annotation. On the oth-

er hand, [23] has raised a series of interesting questions to

the design philosophy of today’s object recognition bench-

marks. Their alarming results suggest the potential pitfalls

of some widely adopted benchmarks.

3. A psychophysical experiment
While collecting the human annotation, BSDS 300 [16]

gave the following instructions to each of the labelers:

Divide each image into pieces, where each piece
represents a distinguished thing in the image. It
is important that all of the pieces have approxi-
mately equal importance. The number of things
in each image is up to you. Something between 2
and 20 should be reasonable for any of our im-
ages.

The instruction is intentionally made vague in order to min-

imize potential labeling bias towards any specific sub-type

of boundaries. However, the absence of precise instruction

also leads to a considerable labeling variation. As we have

discussed in Sec. 1, 31.39% of the boundary labels are or-
phan labels. On one hand, we know that these boundaries

are labeled by well-educated Berkeley students chosen from

a graduate level computer vision class. On the other hand,

we also aware that the annotation of these orphan labels is

due to a pure random assignment of labelers. How well can

we trust these relatively weak labels?

In this section, we introduce a two-way forced choice

paradigm to test the reliability of a boundary dataset. In

each trial, a subject2 is asked to compare the relative per-

ceptual strength of two local boundary segments with the

following instruction:

Boundaries divide each image into pieces, where
each piece represents a distinguished thing in the
image. Choose the relatively stronger boundary
segment from the two candidates.

One of the two boundary segments is chosen from the

human label dataset, and the other is a boundary segmen-

t produced by an algorithm. The advantage of this two-

alternative experiment is that it cancels out most of the cog-

nitive fluctuations, such as spatial attention bias, subject fa-

tigue, and decision thresholds that are different among sub-

jects. Moreover, compared to the tedious labeling process,

this paradigm is much simpler and cheaper to implement-

ed via crowdsourcing. In our experiment, the average re-

sponse time for each trial is 5 seconds. One caveat is that

the comparison experiment requires the algorithm generat-

ed candidate segment to have a similar appearance to the

human labels. Among the 9 benched algorithms, BEL is

the only algorithm that does not produce thinned edges, and

therefore is skipped for the experiment.

3.1. Easy and hard experiments for boundary com-
parison

Using different boundary sampling strategies, we can de-

sign two experiments: hard and easy. In the hard experi-

ment, each algorithm is first thresholded at its optimal F-

measure, and then matched to the original human labels to

2We refer to labelers as the people who originally labeled the BSDS300

dataset, while subjects refers to people we recruited to perform our two-

way forced choice experiment.
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Algorithm detected
boundary set
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A) B) C)

Figure 2. An illustration of the two-way, forced choice experiment (hard mode). A) The experiment interface: In each trial, a subject is

presented with two images. On the left image, two boundary segments (high contrast squares with red lines) are superimposed onto the

original photo. The subject is asked to click on one of two boundary segments that she/he feels stronger. At the same time, the original

image is also presented in a separate window. B) The Venn diagram of sets of boundary segments: The thick circle encompasses the

full human labeled boundary set of the dataset. The subset of orphan labels is shown in the green area. The algorithm detected boundary

set is the dotted ellipsoid. The subset of algorithm false alarms is highlit in red. In each trial, we randomly select one boundary segment

from the green area, and the other one from the red area. C) Orphan labels v.s. algorithm false alarms: Some example images with both

human orphan labels (shown in green lines) and false alarms of PB algorithm (shown in red lines). In many examples, the relative strength

between algorithm false alarm and human orphan labels is very hard to tell.

find false alarms – boundary segments that are considered

weaker than human labels. And then, for each testing im-

age, we randomly draw one instance of algorithm false alar-

m, and compare it against another randomly selected human

orphan label. Fig. 2 gives a detailed illustration of this pro-

cess. This experiment is called “hard experiment” because

the relative order between human labeled orphan label and

algorithm detected false alarms is not easy to determine (as

one can see in Fig. 2.C).

Similarly, we also design an easy experiment. First, we

remove all the human labels that are not unanimously la-

beled by everyone. This leaves us with a very small but

strong subset of labels (perceptual strength equals 1). Then,

with this new dataset, we re-benchmark all 8 algorithms,

determining their optimal F-measures and thresholds (high-

er than their original thresholds), and find each algorithm’s

false alarms under its new optimal threshold. Finally, the

competition is made between strong human labels and con-

fident output of algorithm false alarms.

For each algorithm on either easy/hard experiment, we

produce one trial per image for all 100 test images. 5 sub-

jects participated in the experiment, and a total number of

8000 responses are collected. The final ordering for each

trial is determined by majority voting of all 5 subjects. To

interpret the result, we introduce a term called dataset risk.

This value measures the probability that an algorithm false

alarm wins over a human label. Ideally, a perfectly con-

structed dataset should have zero risk, because it does not

miss any strong boundary segments, and algorithm false

alarms are always weaker than any instance from the per-

fect boundary dataset. However, our experiment results in

Fig. 3 show that the BSDS 300 – especially those orphan

labels, are far away from being perfect.

pb ucm mincover gpb xren nmx ccut20 scg
0

0.2

0.4

0.6

0.8

D
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Hard Experiment
Easy Experiment

Figure 3. Results of our hard and easy experiments. The aver-

age risks over all algorithms are 0.5017 and 0.1082 for hard and

easy experiments, respectively. Dotted red line indicates the 50%
chance performance. The average result of the hard experiment is

even greater than chance level.

3.2. Interpreting the risk of a dataset

From Fig. 3, we observe high risks in the hard experi-

ment for all algorithms that we have tested. The first conclu-

sion one can draw from this observation is rather depress-

ing – the orphan labels are extremely unreliable since they

falsely classify good algorithm detections into false alarms

(or falsely include weak algorithm detections into hits, de-

pending on the thresholds). Yet, we can also interpret the

results of hard experiments in a more optimistic way: the

computer vision algorithms have performed so good that
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their results look as good as some of the human’s. In other

words, these algorithms have passed a restricted Turing test

if the dataset risk is equal to or greater than 0.5.

No matter whether to choose the pessimistic or the opti-

mistic perspective, it is clear that the orphan labels are not

appropriate to serve as a benchmark – or even parts of a

benchmark. Instead, we should put more focus on the con-

sensus boundaries because the risk is much lower.

It is worth mentioning that our results on the easy exper-

iment does not necessarily imply that the consensus bound-

aries is a perfect dataset. However, as long as the missed

boundaries of consensus labels cannot be accurately detect-

ed by an algorithm, this data remains to be valid for a bench-

mark. In other words, given the performance of today’s

top algorithms, detecting strong boundaries is a meaning-

ful Turing test that is not yet solved.

4. F-measures and the precision bonus
Given the fact that the orphan labels are unreliable, what

role do those labels play in the benchmarking process? How

much can they affect the result of F-measure? In this sec-

tion, we show that the orphan labels can create a “precision

bonus” during the calculation of the F-measure..

In the original benchmarking protocol of BSDS 300, the

false negative is defined by comparing each human bound-

ary map with the thresholded algorithm map, and count the

unmatched human labels. In comparison, the false posi-

tive is defined by comparing the algorithm map with all
human maps, and then count the algorithm labels that are

not matched by any human. In other words, the cost of

each algorithm missing pixel is proportional to the human

labelers who have detected that boundary, whereas the cost

of each false alarm pixel is just one. This protocol exag-

gerates the importance of the orphan labels in the dataset,

and encourages algorithms to play “safely” by enumerating

an excessive number of boundary candidates. Strategically,

detecting strong boundaries has become a much more risky

endeavor under the current framework of F-measure.

We can better evaluate the impact of such precision
bonus by re-benchmarking the algorithms on different lev-

els. First we threshold the human labels by different percep-

tual strengths, from 0, 0.2, 0.4 . . . to 1. And then use each

of these subset of the human labels as the ground-truth to

benchmark all 9 algorithms. At each perceptual strength, an

algorithm find its optimal threshold that produces the max-

imal F-measure. Fig. 4 plots the precision and recall values

at the optimal algorithm thresholds for all 9 algorithms.

Despite its strong influence on the benchmark scores,

the precision bubble by itself should not be considered as a

“mistake” in the design. What makes today’s benchmarking

practice questionable is the joint cause of the following fact-

s: 1) weak boundaries in BSDS 300 are not reliable enough

to evaluate today’s algorithms; and 2) precision bonus gives

1
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Figure 4. The optimal precision and recall values for all algorithm-

s, benchmarked under different label strengthes. By increasing the

perceptual strength, we transform the problem from “boundary de-

tection” to “strong boundary detection”. The precision values for

algorithms dropped 28.7% in average. In contrast, the recall val-

ues, which are not affected by the precision bonus, only dropped

9% in average.

extra credits to algorithms working on the low perceptual

strength boundaries – which according to fact 1, is not a

good practice.

5. Detecting strong boundaries
The simplest way to avoid the problem of weak labels

is to benchmark the algorithms using consensus labels on-

ly, as shown in Fig. 5. However, the performances of the

tested algorithms have dropped so significantly that it stim-

ulates us to ask another question: are we detecting strong
boundaries better than random?

To compute the baseline performance of a null hypothe-

sis, we design a control experiment called partial labels. In

this experiment, we crop out a part of each human bound-

ary map to make the total number of pixels in the remaining
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Figure 5. Benchmarking all 9 algorithms using different ground truths. The top figure shows the precision recall curves, with solid dots

indicating the maximal F-measure location. The bottom figure gives an example image and the ground-truth labels: original labels,

consensus labels, and partial labels. The partial label (bottom right figure) of this image is clearly an unrealistic ground-truth because the

majority of the bird boundary is discarded.

map equals to that of a strong boundary map (see Fig. 5).

Because such cropping operation is completely independent

of the image content, it can be considered as a random sub-

sampling from an algorithm perspective.
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Figure 6. Algorithm performances (optimal F-measures) evaluated

under different ground-truths.

With the PR curves shown in Fig. 5, the optimal F-

measures of all three experiments are compared in Fig. 6.

Except for cCut, all other algorithms have suffered severe

performance decreases when shifting from detecting all la-

bels to detecting consensus labels only. Such performance

drop is so devastating that the F-measures are no better

(even worse for pB algorithm) than the control experiment

with randomly contaminated ground-truth.

In this experiment, the salient boundary algorithm cCut

has the most significant performance drop on partial labels.

However, the overall performance of cCut is not comparable

with the state-of-the-arts detectors (such as gPB, NMX, or

SCG), even if we benchmark them on the consensus labels.

The comparative results of consensus and partial labels

contradict our intuitions that algorithm detection strength is

correlated with the perceptual strength of a boundary. It also

questions the practices in computer vision that use bound-

ary detector output as a feature for high-level visual tasks.

For instance, intervene contour [14, 6] is a well-established

method that computes the affinity of two points in the im-

age by integrating the boundary strengths along the path

that connects those two points. Many other works such as

[21, 10, 3] also included pB (or gPB) boundary intensity in

their feature design. To understand the relationship between

algorithm output and the perceptual strength of a boundary,

we further plot the perceptual strength distribution with re-

spect to algorithm detector output for all 9 algorithms. In

Fig. 7, we can see that the correlation between algorith-

m output and perceptual strength of the boundary is rather

weak.

5.1. Retrain on strong boundaries

Another useful test to evaluate our current progress on

strong boundary is to retrain an algorithm. Because of its

great popularity, we focus on pB algorithm for the retraining

212621262128
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Figure 7. Boundary perceptual strength distribution. This experi-

ment is done with the original (full) labels. In each sub-figure, the

X-axis is the percentage of matched human label strength (always

summing to 1), the Y-axis is the algorithm output value. If we ex-

tract one row with y = k in a sub-figure, the color strips represent

the distribution of the human labels that are matched to all algo-

rithm pixels where detection output is equal to k. Red area rep-

resents human labels with perceptual strength in [0, 0.2), whereas

green represents perceptual strengths in [0.2, 0.4) . . ., and finally

the gray area shows the population of consensus labels. Ideally,

the gray area should have a upper triangular shape (XREN is the

closest) – that is, algorithm output being correlated with human

perceptual strength.
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Figure 8. Retrain pB algorithm using consensus labels, and com-

pare the results on original (all) and consensus (con) boundaries

respectively.

experiment. Using the publicly available MATLAB codes

from the authors’ website, we re-generate the training sam-

ples with consensus boundaries and learn a new set of pa-

rameters. This retrained-pB is then compared against the o-

riginal pB in the original as well as the consensus label test

sets. The retrained-pB does not gain superior F-measure

even if we use consensus labels as the ground-truth.

5.2. BSDS 300 and BSDS 500

Recently, BSDS 300 has been enriched to BSDS 500

with 200 additional testing images. According to [4], the

protocol used to collect new human labels remains the same

as in BSDS 300. According to our analysis, the population

of orphan and consensus labels of these 200 new images are

30.58% and 30.15%, respectively. Not only the statistics of

BSDS 500 looks very similar to the original BSDS 300, the

performance of algorithms on this new dataset is also very

close. Since BSDS 500 is fairly new, not many algorithms

have provided their results on this new dataset. We choose

two most representative algorithms SCG and gPB for our

analysis. The optimal F-measure of these algorithms un-

der all boundaries, or consensus boundaries are reported in

Fig. 9.
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Figure 9. Comparison of SCG and gPB algorithms on BSDS 300

and BSDS 500 datasets. The comparison is also made by either us-

ing original (all) boundaries or consensus (con) boundaries only.

The difference between BSDS 300 and BSDS 500 is small (mean

difference is 0.028) and consistent (STD over all 4 different set-

tings is 0.0058).

6. Discussion
In this paper, we have raised doubts on the current way

of benchmarking an algorithm on the most popular dataset

of boundary detection (Further results are provided in the

supplemental material). With a psychophysical experimen-

t, we show that the weak, especially the orphan labels are

not suitable for benchmarking algorithms. However, if we

shift from the original problem of boundary detection, to the

new problem of strong boundary detection, we are on one

hand blessed with a more reliable dataset; but on the other

hand, disappointed by the experimental results that none of

the current algorithms has shown evidence of good perfor-

mance.

Our results in Fig. 7 do not conclude that the curren-

t algorithms’ output value is a useless feature for high-level

tasks. The validity of using boundary detector output to

reveal high-level semantic information may not have a one-

line answer. It depends critically on the specific scenarios

as well as the design of the high-level vision algorithms. At
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present, researchers from different topics have not yet con-

verged to one common framework.
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