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Abstract

This paper tackles the supervised evaluation of image
segmentation algorithms. First, it surveys and structures
the measures used to compare the segmentation results with
a ground truth database; and proposes a new measure:
the precision-recall for objects and parts. To compare the
goodness of these measures, it defines three quantitative
meta-measures involving six state of the art segmentation
methods. The meta-measures consist in assuming some
plausible hypotheses about the results and assessing how
well each measure reflects these hypotheses. As a con-
clusion, this paper proposes the precision-recall curves for
boundaries and for objects-and-parts as the tool of choice
for the supervised evaluation of image segmentation. We
make the datasets and code of all the measures publicly
available.

1. Introduction

Since the advent of sliding window object detectors [32],

much effort has been put into providing better spatial delin-

eation beyond sliding windows [16]. Semantic segmenta-

tion is the final objective, where detection and segmentation

meet, but it is still far from being solved [8].

In this scenario, bottom-up segmentation methods often

play an important role in the proposed algorithms [1, 5],

and thus improving segmentation techniques would entail

improvements towards better semantic segmentation [18].

In such a challenge, providing benchmarks that help re-

searchers understand the weak and strong points of their

algorithms is of paramount importance.

In this direction, in the field of object detection assess-

ment, Hoiem et al. [11] stress that the results should be

evaluated beyond performance summary measures in order

to “help understand how one method could be improved.”
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Figure 1. Examples of the meta-measure principles: How good are

the evaluation measures at distinguishing these pairs of partitions?

In other words, researchers need better feedback from the

evaluation than a single number.

Back to segmentation assessment, the precision-recall

curves for boundaries [20] are good examples of tools that

provide richer feedback than the F-measure used as sum-

mary. Moreover, as pointed out by [2], in addition to

boundary-based measures, region-oriented measures should

be considered when assessing segmentations. However, the

current ones are limited to summary measures [30, 22, 20,

2, 15, 13, 7, 4, 25, 24].

Our first contribution is a region-based precision-recall

environment for the assessment of image segmentation. In-

spired by [12, 11] and by the fact that parts of objects

are important clues for object detection [9], we present the

precision-recall for objects and parts, which is based on

classifying the regions into object and parts candidates.

Summary measures also play a role in performance com-

parison, thus the question that now arises is how to compare

the goodness of an evaluation measure. In other words, we

should define a meta-measure to compare the evaluation

measures. The principle of a meta-measure is to assume a

plausible hypothesis about the segmentation evaluation and

analyze how well measures match this hypothesis.

Some previous works based their claims on qualitative

meta-measures, that is, showing the behavior of the mea-

sures on particular qualitative examples [4, 30]. Extensive

quantitative meta-measures, however, are desirable.
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The first approach to an extensive quantitative meta-

measure was proposed in [19]. The hypothesis in this work

was that measures should be able to discriminate between

two pairs of human-marked partitions coming from differ-

ent images (for instances, the two partitions in Figure 1.a).

In an annotated database with multiple partitions per image,

the quantitative meta-measure was defined as the number of

same-image partition pairs that the measure judges as less

similar than other pairs of partitions coming from different

images. [14] presented a comparison of some measures in

terms of this meta-measure.

The second contribution of this paper is to present two

new meta-measures. Instead of basing our hypotheses on

human-made partitions, we extend the analysis to partitions

from six State-of-the-Art (SoA) segmentation algorithms.

The first assumption is that measures should be capable

of distinguishing such partitions from those obtained with-

out taking into account the content of the image. In our

case, following the proposal in [2], we use a quadtree, i.e.,

a hierarchical homogeneous rectangular grid. The meta-

measure is then defined as the number of results from SoA

algorithms that are judged worse than the quadtree. As a

qualitative example, we assess how well a measure distin-

guishes between partitions like Figure 1.b.

As a second approach, we assume that any measure

should be able to distinguish a partition obtained by a SoA

method on an image from a partition obtained by the same

method but on a different image, as the two partitions shown

in Figure 1.c. The meta-measure in this case is defined as

the number of cases in which the measure correctly judges

the same-image partition as better.

The third contribution is to survey and structure a wide

set of evaluation measures and the newly-proposed one and

compare them using the three previously discussed meta-

measures. We show that the two precision-recall measures

(boundary- and objects-and-parts-based) have outstanding

results as summary measures with respect to the rest of mea-

sures, while providing richer information for researchers

to interpret the results. We further interpret these two

precision-recall environments by comparing six SoA seg-

mentation algorithms.

We make the code to compute all the measures publicly

available in [28], as well as all the segmentation results to

make our research reproducible and to make it effortless for

researchers to assess their segmentation methods.

The remainder of the paper is organized as follows. Sec-

tion 2 reviews and structures the main segmentation mea-

sures available in the literature. Section 3 motivates and de-

scribes the newly proposed measure. Section 4 presents the

two new meta-measures and the already available one used

to compare the evaluation measures. Section 5 presents

the experimental comparison of the measures using the

three meta-measures. It also shows the applicability of the

boundary-based and the newly proposed precision-recall

curves for objects and parts in the comparison of six SoA

segmentation techniques. Section 6 concludes the paper.

2. Measure Review and Structure
The state-of-the-art measures can be classified depend-

ing on the image partition interpretation on which they are

based. The most common interpretation is as a clustering of

the pixel set into a number of subsets or regions, A partition

can also be interpreted as a two-class clustering of the set of

pairs of pixels, with some pairs linking pixels from the same

region and others linking pixels from different regions. Fi-

nally, a partition can be represented as a two-class clustering

of the pixel contours into boundaries and non-boundaries.

The following sections review the main measures found

under each of these interpretations, keeping the notation

from the original papers where possible. Table 1 shows an

overview of the studied measures.

2.1. Pixel-Set Clustering

The directional Hamming distance from one partition

S to another S′ [15, 13] is defined as:

DH (S⇒S′) = n−
∑

R′∈S′
max
R∈S

|R′ ∩R| (1)

where R and R′ are regions in S and S′, respectively, and

n is the number of pixels in the image. In [4] this same

measure was coined as asymmetric partition distance. It

is equivalent to the achievable segmentation accuracy [23]

used in superpixel assessment.

A symmetric version of this measure was presented

in [7] as the van Dongen distance:

dvD(S, S′) = DH (S′⇒S) +DH (S⇒S′) (2)

The segmentation covering of a partition S by a parti-

tion S′ was defined in [2] as:

C (S′→S) =
1

n

∑
R∈S

|R| · max
R′∈S′

|R ∩R′|
|R ∪R′| (3)

The intuitive step further is to measure the maximum

overlap when performing a bijective matching between the

regions of the two partitions. This idea was presented in [4]

as symmetric partition-distance, in [14] as bipartite-graph-
matching (BGM) distance, and in the context of clustering

comparison, in [22] as classification error distance. It is

shown in [4] that it is equivalent to the minimum number

of pixels that must not be taken into account for the two

partitions to be identical.

In [19], the consistency of the BSDS300 human parti-

tions is analyzed by means of two measures GCE, LCE,

aiming at being robust against different granularities of the
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Partition Interpretation Measure Representative References Notation

Pixel-set clustering

Directional Hamming distance [13, 4] DH

van Dongen distance [7] dvD
Segmentation covering [2] C
Bipartite graph matching [14, 4] BGM
Bidirectional consistency error [19] BCE
Variation of information [22] VoI

Pairs-of-pixels classification
Probabilistic Rand index [26, 30] PRI
Precision-Recall for regions [19] Pr, Rr

Boundary map Precision-Recall for boundaries [17, 19] Pb, Rb

Table 1. Measure structure overview for the three interpretations of an image partition

scene interpretation. As the author points out, these mea-

sures are not suitable for general-purpose image segmenta-

tion evaluation. The same work proposes a measure that is

not transparent to oversegmentation: the bidirectional con-

sistency error (BCE), which can be rewritten as:

BCE (S,S′)=1−1

n

∑
R∈S
R′∈S′

|R∩R′|min

{|R ∩R′|
|R| ,

|R ∩R′|
|R′|

}

(4)

The work in [22] introduced a new point of view to the

measures of clustering assessment based on information-

theoretic results. The author defines a discrete random vari-

able taking N values that consists in randomly picking any

pixel in the partition S={R1, . . . , RN} and observing the

region it belongs to. Assuming all the pixels equally prob-

able to pick, the entropy H(S) associated with a partition

is defined as the entropy of such random variable. The mu-

tual information I(S,S′) between two partitions is defined

equivalently. The variation of information is then:

VoI (S, S′) = H(S) +H(S′)− 2I(S, S′) (5)

It can be normalized by logN , its maximum possible value.

2.2. Pairs-of-Pixels Classification

An image partition can be viewed as a classification of all

the pairs of pixels into two classes: pairs of pixels belong-

ing to the same region, and pairs of pixels from different

regions. Formally, let I = {p1, . . . , pn} be the set of pix-

els of the image and consider the set of all pairs of pixels

P = { (pi, pj) ∈ I × I| i < j}. Given two partitions S and

S′, we divideP into four different sets, depending on where

a pair (pi, pj) of pixels fall [22]:

P11: in the same region both in S and S′,
P10: in the same region in S but different in S′,
P01: in the same region in S′ but different in S,

P00: in different regions both in S and S′.
The Rand index, originally defined in [26] as a cluster-

ing evaluation measure, arises naturally in this context:

RI (S,S′) = |P00|+|P11|
|P| . It counts the pairs of pixels that

have coherent labels for the two partitions being compared,

with respect to the number of possible pairs of pixels.

In the context of image segmentation and having a set

{Gi} of ground-truth partitions of the same image, the

Probabilistic Rand Index [30] is computed as:

PRI (S, {Gi}) =
∑
i

RI (S,Gi) (6)

In this same context, the precision-recall for re-
gions [19] is defined as:

Pr =
|P11|

|P11|+ |P10| Rr =
|P11|

|P11|+ |P01| (7)

As a summary measure, the F measure Fr is used.

This pair of measures would be a candidate in our quest

for a non-boundary-based precision-recall measure. As it

will be shown in the experiments, however, this measure

does not provide good meta-evaluation scores.

2.3. Boundary Map

All measures above could be applied to any clustering

algorithm, no matter the nature of the elements being clas-

sified. In fact, the majority of the indices presented come

from the application of general-clustering assessment mea-

sures to image segmentation.

Image pixels, however, are spatially distributed in the im-

age plane, and so the concept of neighborhood arises natu-

rally. Therefore, an image partition with connected com-

ponents can be unambiguously defined by their boundaries,

i.e., a bijection could be made between all possible image

partitions and all possible closed boundaries maps.

Recalling the definition of P as the set of pairs of pixels

in the image, let us define the set of pairs of neighboring

pixels as N ⊂ P . One can define a bijection between the

set of boundary segments B andN linking each segment to

the pair of pixels at each of its sides. Using this notation,
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boundary detection can be understood as a two-class clus-

tering of B, dividing the segments into those being bound-

aries and those not. This way, comparing two partitions can

be translated into comparing two clustering of B.

To be robust to unnoticeable shifts of boundary local-

ization, [17] proposes to compute the optimal matching be-

tween the segments of boundaries of the two partitions as

a maximum-weight bipartite-graph matching. The algo-

rithm is improved in [19, 20] leading to the well-known

precision-recall for boundaries (Pb, Rb, and Fb).

3. Measure Proposal
In the context of image segmentation evaluation,

precision-recall curves for boundaries [19, 20] are a boon

for researchers. They statistically reflect, for instance, that

an algorithm is providing too coarse segmentations (low re-

call, high precision) or instead its results are too fragmented

(low precision, high recall).

As pointed out by [2], however, region benchmarks are

also needed apart from the boundary benchmarks when as-

sessing image segmentation. Region benchmarks, however,

are currently limited to summary measures as the ones re-

viewed in Section 2.

This section presents a new region benchmark that goes

beyond the summary measures: the precision-recall for ob-

jects and parts. Motivated by the fact that image segmen-

tation is increasingly being used as a preliminary step for

object detection [18, 1], we propose to assess segmentation

under this perspective, that is, we interpret regions in a par-

tition as potential object candidates, and classify them as

correct or not. Similarly, we interpret regions in an overseg-

mentation as parts of objects, if merged together can form

an object of the ground truth (inspired by [12] in range im-

age segmentation evaluation).

Precision and recall are then computed as the fraction

of weighted candidates with respect to the total number of

regions, that is, part candidates are only partially counted.

Formally, let S={R1, . . . , RN} be an image partition

and {Gk} a set of ground-truth partitions of the same image.

We consider the set G = {R′
1, . . . , R

′
M} of all the regions

in {Gk}. For each pair of regions Ri ∈ S, R′
j ∈ G we

compute the relative overlaps as:

Oij
S =

|Ri ∩R′
j |

|Ri| Oij
G =

|Ri ∩R′
j |

|R′
j |

We define an object threshold γo and a part threshold
γp < γo and classify the regions in both partitions as de-

scribed in Algorithm 1, where “←” means that a region is

classified only if it previously did not have a more favorable

classification.

Let oc and oc′ be the number of object candidates in S
and G, respectively (note that they can differ, given that G

Algorithm 1 Region candidates classification

1: for all Ri ∈ S, R′
j ∈ G do

2: if Oij
S >γo and Oij

G >γo then
3: Ri, R

′
j ←Object candidates

4: else if Oij
S >γp and Oij

G >γo then
5: Ri ← Fragmentation candidate

6: R′
j ← Part candidate

7: else if Oij
S >γo and Oij

G >γp then
8: Ri ← Part candidate

9: R′
j ← Fragmentation candidate

10: else
11: Ri, R

′
j ←Noise

12: end if
13: end for

can be formed by more than one partition and thus a region

in S can be matched as object with more than one region in

G), and pc and pc′ the number of part candidates. Regard-

ing the fragmentation candidates, we compute the percent-

age of the object that could be formed from the matched

parts. Formally, we define the amount of fragmentation

fr(Ri) of a region Ri ∈ S as the addition of the relative

overlaps of the part candidates matched to Ri:

fr(Ri) =
∑
j

{
Oij

G s.t. Oij
S > γo

}
(8)

and fr ′(R′
j) is defined equivalently for G. The global frag-

mentation fr and fr ′ is computed adding the amount of frag-

mentation among all the fragmentation candidates of S and

G, respectively. Figure 2 shows a toy example to illustrate

the proposed classification and measures.

We then defined the precision-recall for objects and
parts as follows:

Pop=
oc + fr + β pc

|S| Rop=
oc′ + fr ′ + β pc′

|G| (9)

Partition Ground Truth

Figure 2. Classification of the regions into object and part can-

didates. The rectangles are classified as object candidates, despite

not fully overlapping. The partition circle is a fragmentation can-

didate with a fragmentation of 1 (parts cover it totally), and the

ground-truth half-circles are parts candidates. The opposite holds

for the triangles, but in this case the fragmentation is 0.9. Both

pentagons are classified as noise.
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Intuitively, in a completely oversegmented result, the

recall would be high but the precision very low. Con-

versely, a completely undersegmented result (one single re-

gion) would entail a high precision but very low recall. As

a summary measure, we propose to use the F measure (Fop)

between Pop and Rop.

4. Meta-Measures
This section is about how to compare the goodness of

the segmentation evaluation measures. The objective of this

section is therefore not to tell which segmentation algorithm

to use, but which evaluation measures better summarize the

quality of these algorithms. To distinguish these two anal-

yses, we will refer to the quantitative metrics to compare

segmentation measures as meta-measures.

A meta-measure analysis must rely on accepted hypothe-

ses about the segmentation results and assess how coherent

the measures are with such hypotheses. As examples, an

accepted hypothesis can be the human judgment of quality

of some particular examples. The meta-measure is then de-

fined as a quantization of how coherent the evaluation mea-

sures are with this judgment [30, 4].

To provide statistically significant results, however, one

must go beyond a handful of examples and provide a quan-

titative analysis on an annotated database. The remain-

der of this section explains one meta-measure already pub-

lished in the literature (Sec. 4.1) and presents two new meta-

measures (Sec. 4.2 and 4.3).

4.1. Swapped-Image Human Discrimination

Given an image, there is no unique valid segmentation,

since it depends on the perception of the scene, the level of

details, etc. In order to cope with this variability, the Berke-

ley segmentation dataset (BSDS300 [21] and BSDS500 [2])

consists of a set of images each of them manually seg-

mented by more than one individual.

The hypothesis behind the first meta-measure is that an

evaluation measure should be able to tell apart the ground-

truth partitions coming from two different images. In

other words, given a pair of ground-truth partitions from

BSDS500, a measure should be able to tell whether they

come from the same image (thus differences are an accept-

able refinement) or different images (unacceptable discrep-

ancies).

As first proposed by [19] to evaluate the coherence of

BSDS300, given an evaluation measure m, we compute

the Probability Density Function (PDF) of the values of m
for all the pairs of partitions in BSDS500, grouped in two

classes: those coming from different images and those from

the same one. Figure 3 shows the PDFs for these two types

of pairs of partitions using the Fb measure.

A simple classifier was then defined setting a threshold

on the measure to discriminate the two types of pairs. The

0.2 0.4 0.6 0.8
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F
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q
u
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Fb=0.15 Fb=0.75

Fb=0.28 Fb=0.33

Figure 3. Distribution of Fb for the same-image pairs of partitions

( ) and different-image pairs ( ). In gray rectangles, four

representative pairs of partitions: a pair of correctly classified as

different image (up-left) and as same image (up-right); and a pair

incorrectly classified as different image (down-left) and as same

image (down-right).

Swapped-Image Human Discrimination (SIHD) meta-

measure is defined as the percentage of correct classifi-

cations of that classifier, that is, the sum of the area un-

der the curve above and below the threshold for the same-

image and different-image pairs, respectively. (In the origi-

nal work, the authors reported the Bayes Risk.)

As qualitative examples, Figure 3 depicts four pairs of

partitions as representatives of the type of mistakes and cor-

rect classifications using Fb.

4.2. SoA-Baseline Discrimination

One of the reasons why SIHD can be criticized is the

fact that it is based only on human-made partitions, that

is, it does not show how measures handle the real-world
discrepancies found between SoA segmentation methods.

This subsection and the following are devoted to present

two meta-mesures based on SoA segmentation results.

The hypothesis on which we base the meta-measure pre-

sented in this section is that evaluation measures should be

able to distinguish between (i) partitions obtained by any

SoA segmentation method on a given image and (ii) par-

titions obtained regardless of the image, that is, partitions

that are created without taking into account the content of

the image. These partitions are interpreted as a baseline,

that is, the results that could be obtained by chance.

As in [2], we use a quadtree as baseline. In particular,

we build the hierarchical partitions starting from the whole
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image and iteratively dividing the regions into four equal

rectangles. Figure 1.b shows an example of partition ob-

tained by a SoA method and by a quadtree.

For each of the techniques considered as SoA segmen-

tation methods, we compute the number of images in the

dataset in which an evaluation measure correctly judges

that the baseline result is worse than the SoA generated

partition. We refer to the resulting meta-measure as SoA-
Baseline Discrimination (SABD), and it is defined as the

global percentage of correct judgments for a given measure.

4.3. Swapped-Image SoA Discrimination

Segmentation evaluation measures are often used to ad-

just the parameters of a segmentation technique. They are

therefore used to compare different partitions created by the

same algorithm. To incorporate this type of comparisons to

the meta-measures, we compare (i) the results created by a

SoA segmentation technique with (ii) the results created by

that same algorithm but on a different image.

In other words, we compare the ground-truth of a certain

image with two results obtained using the same algorithm

and parameterization: (i) one segmentation of that same im-

age and (ii) one of a different image. The hypothesis in this

case is that the evaluation measures should judge that the

same-image result is better than the different-image one. In

the example of Figure 1.c, the measure should judge that the

first partition is better than the second one compared both

with the ground-truth of the former. In this meta-measure,

evaluation measures have to tackle the potential bias of the

SoA methods towards their specific type of results.

For each SoA segmentation technique, we compute the

number of images in the dataset in which an evaluation

measure correctly judges that the same-image SoA result

is better than the different-image one. We define the meta-

measure Swapped-Image SoA Discrimination as the per-

centage of results in the database, for all the SoA methods,

that the measures correctly discriminates.

5. Experimental Validation

The state of the art of segmentation is represented in

this paper by the following six methods: the Ultramet-

ric Contour Maps on the gPb contour detector (gPb-OWT-

UCM) [2], the Efficient Graph-Based (EGB) image seg-

mentation algorithm [10], the Mean Shift (MShift) algo-

rithm [6], the Normalized Cuts (NCuts) algorithm [29], and

two types of Binary Partition Trees [27]: the Normalized

Weighted Euclidean distance between Models with Con-

tour complexity (NWMC) tree [31], and the Independent

Identically Distributed - Kullback Leibler (IID-KL) tree [3].

The exact parameterizations for each algorithm is detailed

at [28], where we also publish the code of all measures and

meta-measures used in this work. All methods are assessed

Measure
Global Meta-Measure

Meta-Meas. SIHD SABD SISD

Fb 98.4 99.5 95.6 100.0

Fop 96.7 98.4 94.2 97.5

VoI 94.0 96.9 87.5 97.7

C(S→{Gi}) 91.5 93.1 86.0 95.3

dvD 90.7 95.1 86.9 90.1

DH(S⇒{Gi}) 89.5 78.5 91.3 98.8

BCE 89.2 93.3 78.9 95.4

BGM 88.1 90.7 81.6 92.0

PRI 86.7 77.7 88.8 93.7

C({Gi}→S) 86.3 91.3 77.4 90.1

Fr 86.1 77.0 84.2 97.1

DH({Gi}⇒S) 80.5 73.0 92.1 76.5

Table 2. Measure comparison in terms of quantitative meta-

measures. Values refer to percentages of correct results

at the Optimal Dataset Scale (ODS) [2] with respect to each

evaluation measure.

The parameter values of the newly proposed measure

are: γo = 0.95, γp = 0.25, and β = 0.1. They have

been trained on the training set of BSDS500 [2], optimizing

the global meta-measure described in the following section

(See Table 2). Note that this optimization would not have

been feasible without such quantitative meta-measures.

Meta-Measures Results: Table 2 shows the three meta-

measure results for the test set of BSDS500, as well as

a global summary meta-measure. Given that each meta-

measure represents a percentage of correct results, we de-

fine the global meta-measure as the global percentage of

correct results.

In global terms, Fb and Fop are the two top-ranked sum-

mary measures. On top of that, they both provide much

richer information in form of precision-recall curves, thus

we propose the pair Fb-Fop as the measures of choice.

Regarding the computational cost of the measures,

the mean time for image to compute the distances

to the multiple-partition ground truth of BSDS500 is

3.79± 2.06 s for Fb and at least one order of magnitude

lower for the rest of measures. In particular, Fop takes

0.078± 0.020 s.

In scenarios where the time limitations are tight, the au-

thors believe that Fop would be the tool of choice. To pro-

vide an in-depth analysis of the final results, the tandem of

precision-recall curves for boundaries and for objects-and-

parts would be the most adequate option. The following

section provides a thorough analysis of both frameworks on

the six SoA methods used in this paper.

Precision-Recall Frameworks: Figure 4 shows the

boundary and objects-and-parts precision-recall curves for
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Figure 4. Precision-Recall curves for boundaries (left) and for objects and parts (right). The solid curves represent the six SoA segmentation

methods and the quadtree (see legends). In dashed lines with the same color, the SoA techniques assessed on a swapped image. The marker

on each curve is placed on the Optimal Dataset Scale (ODS). The isolated red asterisks refer to the human performance assessed on the

same image and on a swapped image. In the legend, the F measure of the marked point on each curve is presented in brackets.

the six SoA segmentation methods studied and the human

performance. Prior to the assessment of segmentation tech-

niques, let us focus on the comparison of the two evaluation

frameworks.

It is noticeable that the human baseline performance (hu-

man assessed on a different image) for Fb is 0.21, which

could be interpreted as Fb being too lax. In this same direc-

tion, the baseline boundary precision for Fb is between 0.2

and 0.3, that is, any result, no matter how wrong it is, will

be judged as providing at least a 0.2 precision.

While in the case of Fop the human baseline is correctly

downgraded to 0.05 (as well as the swapped-image results),

then the surprising fact is that human performance is as low

as 0.56 (0.81 in Fb), which could entail that Fop is too strict.

Although the dynamic range is a little higher in Fb (0.60

versus 0.51), the gap between the best method and humans

is much higher in Fop (0.08 versus 0.21). In other words,

Fop gives more resolution at the places where improve-

ments over the SoA would be placed.

Regarding the comparison among segmentation tech-

niques, both frameworks confirm that the gPb-OWT-UCM

technique has outstanding results with respect to the rest.

The advantages of going beyond the summary measures

are also clear on these plots. For instance, the summary

Fb measure of quadtree (0.41) judges this technique close

to NWMC (0.55), but in the precision-recall curves it is

clear that quadtree is much worse. Similarly, judging by

Fb, NWMC would be clearly discarded but if we are inter-

ested in low recall rates it could be of interest (apart from

gPb-OWT-UCM).

As common points between the two measures, NCuts is

judged as being much better at high recall rates than at low

ones and conversely, NWMC is much better at high preci-

sion rates. The measures are coherent also in the fact that

human results have a better precision than recall.

As one of the main discrepant points, however, EGB is

judged as the third best technique by Fb while being the

worse for Fop. To further analyze this behavior, Figure 5

shows an image (a), an EGB result (b), and the associated

ground truth (c). The EGB result consists of thin long re-

gions that surround the object but do not close. The assess-

ment value of this result is Fb = 0.62 and Fop = 0.05.

From a region-based point of view, this type of results is

correctly penalized by Fop and not by Fb, since as a con-

tour detector the result is correct.

To sum up, both measures are complementary thus we

propose them in tandem as the tool of choice for image seg-

mentation evaluation.

(a) (b) (c)

Figure 5. EGB result correctly penalized by Fop but not by Fb
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6. Conclusions

This paper reviews an extensive set of segmentation eval-

uation measures and presents the new precision-recall mea-

sure for objects and parts. Three meta-measures are used

(two newly proposed) to quantitatively compare the good-

ness of the evaluation measures. The results show that

the tandem boundary and objects-and-parts precision-recall

curves is a good candidate for benchmarking segmenta-

tion algorithms; since apart from obtaining the best meta-

measure results, their precision-recall curves provide rich

knowledge about the results. By making our code and

datasets publicly available we allow researchers to easily

assess their results and gain deeper understanding of their

algorithms.
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