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Abstract

Given an area of interest in a video sequence, one may
want to manipulate or edit the area, e.g. remove occlu-
sions from or replace with an advertisement on it. Such
a task involves three main challenges including temporal
consistency, spatial pose, and visual realism. The proposed
method effectively seeks an optimal solution to simultane-
ously deal with temporal alignment, pose rectification, as
well as precise recovery of the occlusion. To make our
method applicable to long video sequences, we propose a
batch alignment method for automatically aligning and rec-
tifying a small number of initial frames, and then show how
to align the remaining frames incrementally to the aligned
base images. From the error residual of the robust align-
ment process, we automatically construct a trimap of the
region for each frame, which is used as the input to alpha
matting methods to extract the occluding foreground. Ex-
perimental results on both simulated and real data demon-
strate the accurate and robust performance of our method.

1. Introduction

There exist many tools to edit an image to meet differ-

ent demands, such as removing, adding or replacing tar-

gets [13][14], inpainting [11] and color manipulation [6].

For instance, if one wants to change the original facade

bounded by the green window (Fig. 1 left) into the target

in the right, two operations are required: registering the tar-

get to the source, and separating foreground. Some of the

existing tools already allow the users to process one or two

such images interactively. But editing a long sequence of

images remains extremely difficult. Since the sequence is

usually captured by a hand-held camera, images of the re-

gion of interest will appear to be scaled, rotated or deformed

throughout the sequence. Thus, the consistency of editing

Figure 1. An example of video editing. Left: an original frame,

where the facade of a selected building and the occlusion map are

shown within the small windows. Right: the result by replacing

the facade with a new texture. The three small windows are the

new facade (top-left), the trimap (bottom-left), and the mask of

occlusion (bottom-right), respectively.

results across the image sequence and the amount of man-

ual interaction are two extra issues need to be considered.

To guarantee visual consistency and alleviate human in-

teraction, we first need to automatically align the region of

interest precisely across the sequence. [8] and [7] propose

to align images by minimizing the sum of entropies of pixel

values at each pixel location in the batch of aligned images.

Conversely, the least squares congealing procedure of [3],

[4] seeks an alignment that minimizes the sum of squared

distances between pairs of images. Vedaldi et al. [16] min-

imize a log-determinant measure to accomplish the task.

The major drawback of the above approaches is that they

do not simultaneously handle large illumination variations

and gross pixel corruptions or partial occlusions that usually

occur in real images. To overcome the drawback, Peng et
al. [12] propose an algorithm named RASL to solve the task

of image alignment by low-rank and sparse decomposition.

This method takes into account gross corruptions, and thus

gives better results in real applications.

Spatial pose (or 2D deformation of the region) also af-

fects the visual quality of editing. RASL only takes care of

temporal alignment but not the 2D deformation of the re-

gion being aligned. As can be seen from Fig. 3 (d), the
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Figure 2. Some real world examples. The rectified versions of the

objects (bounded by red dotted windows) are displayed on top-left.

circular Starbucks logo looks awkward if directly pasted on

the deformed facade. One way of improving visual quality

of editing is to transform the logo according to the facade

pose. But this is inconvenient for users to do manually. An-

other way is to rectify the facade as shown in Fig. 3 (e). This

can be done by TILT [19], which assumes that the rectified

texture has lower rank than its deformed versions. Actu-

ally, it is pervasive that many natural and man-made things

(of interest for editing) have low-rank appearance in their

rectified position. Some examples are shown in Fig. 2, in

which the rank of each rectified (top-left) image is much

lower than that of its original. In this paper, we adopt the

same assumption as [19]. However, TILT alone is not ad-

equate for our task, since TILT is insensitive to translation

and scaling of the texture (see [19] for reasons). As a result,

applying TILT independently on each frame is very likely to

introduce misalignment. Both RASL and TILT are based on

the common mathematical framework of Robust PCA [1].

Hence it is natural to try to combine them together to handle

the alignment and rectification problem for video editing.

Besides, to make the editing results look natural and

real, it is crucial to preserve the occluding foreground.

That means the foreground need to be precisely matted, ex-

tracted, and synthesized too. Plenty of literature about al-

pha matting has been published [9][2][15]. But these meth-

ods require human interaction for initializing trimap. In this

work, we will show how this can be done automatically.

As discussed above, temporal alignment, spatial rectifi-

cation, and occlusion of the area are three main issues we

have to handle properly for the desired video editing task.

In this paper, we propose an effective and efficient frame-

work that simultaneously handles these three challenges.

The core of the proposed framework is based on sparse

and low-rank decomposition. With the consideration of the

limitation of sparse and low-rank decomposition on large

data, we first construct the area basis based on several im-

ages. Every individual area is then parsed into its intrin-

sic appearance and the corresponding residual, according to

the well-constructed basis. We automatically generate the

trimap from the area and its residual, then adopt alpha mat-

ting methods to extract the foreground.

Contributions of this paper: 1) Our work is the first

to consider both temporal and spatial image correlation in

a unified framework. 2) We provide an approach to apply-

ing the low-rank and sparse decomposition techniques on

(a) (b) (c) (d) (e)

Figure 3. An example of image alignment and rectification. (a)

The median of initial inputs without either alignment or rectifi-

cation. (b) The median after alignment by RASL only. (c) The

median with both alignment and rectification by our method. (d)

and (e) Adding a circular logo on (b) and (c), respectively.

large datasets, significantly broaden the applicable range of

RPCA-based methods. 3) This paper gives a new way to

edit a target (with low-rank textures) in videos with mini-

mal human intervention.

2. Our Method

2.1. Initial Batch Frame Alignment

In the simplest case, the areas of interest are clean (with-

out occlusions or gross corruptions) and temporally well-

aligned. If we stack the 2D areas as columns of a ma-

trix B ∈ R
m×n, where m is the number of pixels of the

area, the matrix B is low rank. In the real world, the ar-

eas are very likely to have partial occlusions or specular re-

flections, which may break the low rankness of the matrix

B. Since these errors typically affect only a small fraction

of an area, we treat them as sparse errors whose nonzero

entries can have arbitrarily large magnitudes. Therefore,

we have B + E = A, where E is the sparse resid-

ual matrix between the corrupted matrix A and the clean

(low rank) area matrix B. As aforementioned, the ar-

eas are probably temporally misaligned. In this work, we

assume that the area lies on a (nearly) planar surface in

the scene. Let A1, A2,..., An be n misaligned areas.

There are domain transformations that lie in a certain Lie

group G: R
2 → R

2, say τ1, τ2,..., τn ∈ G transform all

the misaligned areas to well-aligned A1 ◦ τ1, A2 ◦ τ2,...,

An◦τn. By integrating them in the form of matrix, we have

A ◦ Γ = [vec(A1 ◦ τ1)| vec(A2 ◦ τ2)|...| vec(An ◦ τn)],
where Γ contains the n transformations τ1, τ2,..., τn.

As we know from the work of RASL, enforcing low-

rankness among multiple frames will still leave the ambi-

guity of a common 2D transformation on all the frames. To

fix this, we may assume that the region of interest has some

spatial structures and at its “normalized” pose, the region

as a 2D matrix achieves the lowest-rank.1 Based on these

assumptions, we can naturally formulate our task as the fol-

1Please note that, the 2D region does not have to be a strictly low-rank

texture for this to be helpful for resolving the ambiguity.
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lowing optimization problem:

min
B

rank(B) + ω
n∑

i=1

rank(R(B(i))) + λ‖E‖0,

s. t.B +E = A ◦ Γ, (1)

where || · ||0 denotes the �0-norm, ω and λ are the coeffi-

cients controlling the weights of the terms of the rank of

each individual area in spatial space and the sparse matrix

E, and R(·) represents the linear operator of reshaping a

vector back to its original 2D form.

Let us take a closer look at the optimization problem

(1). The objective function is non-convex due to the non-

convexity of the rank function and the �0 norm. It is ex-

tremely difficult (NP-hard and hard to approximate) to min-

imize such an objective. Alternatively, minimizing the nat-

ural convex surrogate for the objective function in (1) can

exactly recover the low rank matrix B, as long as the rank

of the matrix B to be recovered is not too high and the

number of non-zero elements in E is not too large [1].

The convex relaxation replaces rank(·) and the �0 norm

with the nuclear norm and the �1 norm, respectively. An-

other obstacle to solve the problem (1) is the nonlinear-

ity of the constraint B + E = A ◦ Γ, because of the

complicated dependence of A ◦ Γ on Γ. Linearization

is a popular technique to approximate the original con-

straint around the current estimate when the transformations

change slightly. The linearized constraint can be written as

B + E = A ◦ Γ +∑n
i=1 J iΔΓεiε

T
i , where J i is the Ja-

cobian of the ith area with respect to the transformation pa-

rameters τi and {εi} denotes the standard basis for Rn. By

putting the convex relaxation and the linearization together,

the optimization problem (1) turns out to be like:

min
B
‖B‖∗ + ω

n∑

i=1

‖R(B(i))‖∗ + λ‖E‖1,

s. t. B +E = A ◦ Γ +
n∑

i=1

J iΔΓεiε
T
i . (2)

The optimal solution to (2) can not be obtained directly,

since the linearization is only a local approximation to the

original. We solve it iteratively to converge to a (local) min-

imum of the original non-convex problem.

The major task now is to solve the inner loop, i.e. the

linearized convex optimization problem (2). The Aug-

mented Lagrange Multiplier (ALM) with Alternating Di-

rection Minimizing (ADM) strategy is an efficient and ef-

fective solver [10]. But, in our problem (2), there are two

terms with respect to B. To separate them, we introduce an

auxiliary variable S to replace B in the second term of the

objective function (2). Accordingly, B = S is as an addi-

tional constraint. Thus, the augmented Lagrangian function

is given by:

Lμ(B,E,S,ΔΓ,Y ,Q) = ‖B‖∗ + ω
n∑

i=1

‖R(S(i))‖∗ +

λ‖E‖1 + 〈Y ,M〉+ μ

2
‖M‖2F + 〈Q,O〉+ μ

2
‖O‖2F ,

where we define M = A ◦Γ+∑n
i=1 J iΔΓεiε

T
i −B−E

and O = S −B, Y and Q are Lagrange multiplier matri-

ces, μ is a positive penalty scalar, 〈·, ·〉 denotes the matrix

inner product, and ‖·‖F represents the Frobenius norm. Be-

sides the Lagrange multipliers, there are four variable terms,

i.e. B, E, S and ΔΓ. It is difficult to simultaneously opti-

mize them. So we approximately solve it in the manner of

minimizing one variable at a time, i.e. Alternating Direction

Minimizing (ADM) strategy, as following:

Bk+1 = argmin
B

Lμk
(B,Ek,Sk,ΔΓk,Y k,Qk), (3)

Ek+1 = argmin
E

Lμk
(Bk+1,E,Sk,ΔΓk,Y k,Qk), (4)

Sk+1 = argmin
S

Lμk
(Bk+1,Ek+1,S,ΔΓk,Y k,Qk),

(5)

ΔΓk+1 = argmin
ΔΓ

Lμk
(Bk+1,Ek+1,Sk+1,ΔΓ,Y k,Qk),

(6)

Y k+1 = Y k + μkMk+1,Qk+1 = Qk + μkOk+1,

where {μk} is a monotonically increasing positive se-

quence. For the subproblems (3)-(6), each has a simple

closed-form solution, and hence, can be solved efficiently.

For convenience, we denote T = A ◦ Γ +∑n
i=1 J iΔΓk +

μ−1
k Y k. The solutions are:

(UB ,ΣB ,V B) = svd(
1

2
(T −Ek + Sk +

Qk

μk
)),

Bk+1 = UBS 1
2μk

(ΣB)V
T
B ;

Ek+1 = S λ
μk

(T −Bk+1);

∀i ∈ [1...n] : (U i,Σi,V i) = svd(R(Bk+1(i)− Qk(i)

μk
)),

Sk+1(i) = vec(U iS ω
μk
(Σi)V

T
i );

ΔΓk+1 =

n∑

i=1

J†i (Bk+1 +Ek+1 −A ◦ Γ− μ−1
k Y k)εiε

T
i ;

where Sε(·) is the shrinkage operator: Sε(x) =
sgn(x)max(|x| − ε, 0). The extension of the shrinkage op-

erator to vectors and matrices is applying it element-wise.

J† denotes the Moore-Penrose pseudoinverse of J .

The entire algorithm of solving the problem (2) has

been summarized as Algorithm 1. The outer loop of Al-

gorithm 1 terminates when the change of objective func-

tion value between two neighboring iterations is sufficiently
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Algorithm 1: Batch Frame Alignment

Input: λ > 0, ω > 0, n misaligned and non-rectified

regions A = [vec(A1)| vec(A2)|...| vec(An)]
and initial transformations Γ = [τ1|τ2|...|τn]
obtained by feature matching and RANSAC.

while not converged do
k = 0;Y 0 = B0 = E0 = 0; ΔΓk = 0;
μ0 > 0, ρ > 1;

Compute the warped areas A ◦ Γ and their

Jacobians J i =
∂
∂τi

vec(Ai ◦ τi);
while not converged do

T = A ◦ Γ +∑n
i=1 J iΔΓk +

Y k

μk
;

(UB ,ΣB ,V B) =

svd( 12 (T −Ek + Sk +
Qk

μk
));

Bk+1 = UBS 1
2μk

(ΣB)V
T
B ;

Ek+1 = S λ
μk

(T −Bk+1);

for i = 1 : n do
(U i,Σi,V i) =

svd(R(Bk+1(i)− Qk(i)
μk

));

Sk+1(i) = vec(U iS ω
μk
(Σi)V

T
i );

end
H = Bk+1 +Ek+1 −A ◦ Γ;

ΔΓk+1 =
∑n

i=1 J
†
i (H − μ−1

k Y k)εiε
T
i ;

Y k+1 = Y k+μk(
∑n

i=1 J iΔΓk+1εiε
T
i −H);

Qk+1 = Qk + μk(Sk+1 −Bk+1);
μk+1 = ρμk; k = k + 1;

end
Γ = Γ +ΔΓk;

end
Output: Optimal solution (B∗ = Bk)

small (e.g. 0.01) or the maximal number of outer itera-

tions is reached. The inner loop is stopped when ‖A ◦
Γ +

∑n
i=1 J iΔΓkεiε

T
i − Bk − Ek‖2 ≤ δ‖A ◦ Γ +∑n

i=1 J iΔΓkεiε
T
i ‖ with δ = 10−7 or the maximal num-

ber of inner iterations is reached.

2.2. New Single Frame Alignment

As the above optimization involves expensive matrix op-

timization, it is not desirable to run it on a whole long se-

quence. Given a set of n frames are already aligned as

above, when a new frame, say a arrives, we can try to rec-

tify and align it to the basis B obtained from Algorithm 1,

subject to some error e. In general, the well-aligned and

rectified region can be represented by a linear combination

of the columns from the basis, i.e. Bx, where x is a coef-

ficient vector. So the formulation of aligning a new frame

is:

min ‖e‖0 s. t. Bx+ e = a ◦ τ, (7)

Algorithm 2: Single Frame Alignment

Input: a basis B from initial batch, a misaligned and

non-rectified region a in a new frame, initial

transformation matrix τ (obtained by feature

matching and RANSAC) and ρ > 1.

Initialization: initial support Ω = 1m;

while not converged do
k = 0;y0 = 0;x0 = 0; e0 = 0; Δτ0 = 0;μ0 > 0;

Compute the warped area a ◦ τ and its Jacobian

J = ∂
∂τ vec(a ◦ τ);

while not converged do
t = a ◦ τ + JΔτk + μ−1

k yk;

xk+1 = PΩ(B)†PΩ(t− ek);
ek+1 = Sμ−1

k
(PΩ(t−Bxk+1));

h = Bxk+1 + ek+1 − a ◦ τ ;

Δτk+1 = PΩ(J)
†PΩ(h− μ−1

k yk);
yk+1 = yk + μkPΩ(JΔτk+1 − h);
μk+1 = ρμk; k = k + 1;

end
τ = τ +Δτk; Ω = support(a ◦ τ −Bxk);

end
Output: Optimal solution (x∗ = xk; τ∗ = τ )

where e represents the residual, and τ is the transforma-

tion matrix of a. The formulation of (7) has been noticed

earlier in the field of face recognition [17][18]. But they

do not explicitly give the solution in a manner of ALM. In

this section, we intend to detail an algorithm for solving the

problem based on ALM and ADM.

To make the problem (7) tractable, similarly with (1), we

again employ ‖e‖1 as the surrogate of ‖e‖0, and linearize

the constraint. The ALM method gives us:

Lμ(x, e,Δτ,y) = ‖e‖1 + 〈y,a ◦ τ + JΔτ −Bx− e〉
+
μ

2
‖a ◦ τ + JΔτ −Bx− e‖22.

With the help of the ADM strategy, we have the iteration:

xk+1 = B†(a ◦ τ + JΔτk + μ−1
k yk − ek),

ek+1 = Sμ−1
k
[a ◦ τ + JΔτk + μ−1

k yk −Bxk+1],

Δτk+1 = J†(Bxk+1 + ek+1 − a ◦ τ − μ−1yk),

yk+1 = yk + μk(a ◦ τ + JΔτk+1 −Bxk+1 − ek+1).

When the region to be aligned is corrupted by sparse oc-

clusions or corruptions, the procedure proposed above can

handle well. If the corruption is out of the range that the

robust linear regression can make up, the recovered regres-

sor x may not be so reasonable. In such case, we gradually

remove some of the pixels that have very large reconstruc-

tion errors, and run the above robust alignment again on the

remaining region. The associated problem (7) becomes:

min
x
‖PΩ(e)‖0, s. t. PΩ(Bx+ e) = PΩ(a ◦ τ), (8)
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Figure 4. Quantitative performance analysis of Algorithm 1 on simulated data. (a) x-translation vs. y-translation. (b) angle of rotation vs.

y-translation. (c) angle of rotation vs. skew. (d) occlusion rate vs. skew. (e) occlusion rate vs. skew using more images. Lighter regions

indicate higher probabilities of success, while darker ones stand for lower.

whereΩ ∈ {0, 1}m is the support for the good pixels, PΩ(·)
is the operator that keeps the elements of vector (the rows

of matrix) with Ωi = 1 and turns those with Ωi = 0 into

zeros.

If Ω and τ are provided exactly, then x can be estimated

by linear regression. However, τ is also unknown, and the

intermediate estimation of the support Ω could be wrong in

a subset of its entries. Fortunately, if the initialization of τ
and the guess of Ω are reasonable, the algorithm converges

reliably to the optimal alignment. In our experiments, τ is

initialized by feature matching and RANSAC [5]. Here, we

give an efficient and effective support estimation method.

To estimate Ω, we assume the distribution of the values in e
satisfies the Gaussian distribution (η, σ). Note that, the area

does not contain any occlusions or corruptions if the values

of the elements in e are all very close to zero. Therefore,

we have t = max(η + σ, β) (in our experiences, β = 0.1
works practically well). Then the update of Ω is done via:

if |ei| < t, Ωi = 1; Ωi = 0 otherwise. The procedure of

aligning a new frame is summarized in Algorithm 2. The

stopping criteria of Algorithm 2 are in the same spirit as

Algorithm 1.

2.3. Foreground Separation

So far, we have the recovered temporally aligned and

spatially rectified area and the associated error residual. If

our goal is only to recover a clean texture of the region,

remove the occluding foreground, and replace the region

with another texture throughout the sequence, then results

from the above two steps would be sufficient. However, if

we want to super-impose the occluding foreground back to

the edited region to achieve more realistic visual effect, we

have to precisely segment out the foreground. For images,

one pixel presents either background or foreground2. No-

tice that the error residual e that we have obtained from the

above robust alignment is not the foreground per se: it is

the difference between the original images and the back-

ground. Nevertheless, the error residual is very informative

about where the occluding foreground is: in general, we

2In this paper, we discuss the cases that the objects of both background

and foreground are opaque.

get large residual errors around occluding pixels; and small

ones around background pixels. Therefore, we can initially

assign a pixel to foreground if the error is above certain

threshold and to background if the error is small enough.

For all pixels whose errors fall between the two thresholds,

we label them as unknown. In this way, we obtain an initial

trimap for foreground segmentation. We then employ exist-

ing alpha matting methods [9][2][15] to obtain a more pre-

cise segmentation of the foreground from the image frames.

3. Simulations and Experiments

In this section, we demonstrate the efficacy of our

method on both simulated and real data. The free param-

eters in our framework consist of ω and λ in Eq. (2). Un-

less otherwise stated, the two parameters are fixed through

our experiments: ω = 5/n and λ = 3/
√
m, where n is the

number of the images used to construct the area basis and

m is the amount of pixels in the area of interest.

We first verify the ability of the batch frame alignment

Algorithm 1 to cope with varying levels of corruptions on

a (rectified) checker-board pattern with white, gray and

black blocks. Translation, rotation, skew, occlusion rate

and the number of images are the factors to be tested. The

task is to align and rectify the images to a 100 × 100
pixel canonical window. We synthetically perturb each of

the input images by affine transformations with skew level

s0, whose angles of rotation are uniformly distributed in

the range [−θ0/2, θ0/2], x- and y- translations are uni-

formly distributed in the range [−x0/2, x0/2] × 100 and

[−y0/2, y0/2] × 100 pixels respectively. Due to the com-

plex dependence of the algorithm on these factors, we test

them separately.

A case is considered successful if the average intersec-

tion rate between each of the transformed images and the

canonical is greater than 96%. Figure 4 shows the suc-

cessful probability map over 10 independent trials using

25 images. Figure 4 (a) is with θ0 = 0 and s0 = 0
fixed, and varying levels of translation x0 and y0. Our al-

gorithm always correctly finish the task when x-translation

and y-translation up to 20% and 50% respectively. Even

228522852287



Figure 5. Result comparison between RASL and our method on a real-world window case.

Figure 6. Qualitative results of the proposed single frame alignment method (Algorithm 2) with respect to translation, rotation, skew and

occlusion. The first picture is the reference. Every three pictures of the rest are in one group, which represent the deformed and polluted

version of the reference, the transformed result by our proposed and the corresponding residual, respectively.

x-translation grows to 30%, the successful rates are reason-

able with y-translations under 50%. Similarly, in Figure 4

(b), the results are obtained by fixing s0 = 0 and x0 = 10%,

and varying y0 and θ0. As can be seen in the figure, if y0
decreases to 0%, the algorithm can achieve the goal even

when the angle of rotation is up to 25◦. As both of y0 and

θ0 increase, the probability of success decreases. To take

into account the skew factor, we constantly set both x0 and

y0 to be 5%, and test θ0 and s0 with different values. The

results are shown in Fig. 4 (c). Notice that the algorithm

can tolerate up to 10◦ rotation and 0.2 skew level, expect

for the one of 10◦ rotation and 0.15 skew, which is with the

successful rate 80%.

We repeat the above procedure to further verify the per-

formance of the proposed algorithm with respect to differ-

ent levels of occlusion and the number of images. Figure 4

(d) shows the robustness of the proposed algorithm to ran-

dom occlusion and skew level with x0 = 5%, y0 = 10%
and θ0 = 10◦. It indicates that our algorithm can converge

well up to 15% random occlusion and 0.1 skew. Although

the case of 0.1 skew and 15% occlusion does not succeed

in every trial, it has 90% successful rate. Compared to Fig.

4 (d) that uses 25 images, the performance improves in Fig.

4 (e) where 35 images are used. This is because with more

images, the redundancy in the data is higher and hence, the

low-rank model fits better.

The comparison to RASL is shown in Fig. 5. The first

column shows the sample images of a window with various

transformations and occlusions. The second is the result of

aligned and rectified windows without removing occlusions

by our method. The third is the recovered clean regions B
by our method. The last two images are the results obtained

by the RASL code obtained from the authors [12]. Another

example is shown in Fig. 3 (a)-(c), which are the medians of

the input areas, clean versions processed by RASL and our

method, respectively. Furthermore, Figure 3 (d)-(e) sim-

ply demonstrate the advantage of the rectification operation

from the perspective of virtual reality.

Note that due to the limit of space, we do not quan-

titatively analyze the performance of the single frame

alignment Algorithm 2 here as it is designed in a simi-

lar spirit as Algorithm 1. The algorithm performs rather

well in practice, with respect to the transformation and

the occlusion. Figure 6 gives some qualitative results

of the algorithm. We synthesize deformed and pol-

luted images by controlling parameters (x-translation, y-

translation, angle of rotation, skew, occlusion fraction)

based on the reference, i.e. the first facade shown in Fig.

6. The three groups respectively correspond to the param-

eters (10%, 10%, 10◦, 0, 15%), (10%, 10%, 10◦, 0.1, 25%)

and (15%, 15%, 15◦, 0.15, 20%). From the results, we see

that the first two cases succeeded, while the last one failed

due to the simultaneously very large deformation and inten-

sive occlusion.

Figure 7 demonstrates improved robust alignment and

recovery results with occlusion detection (as discussed at

the end of Section 2.2). The top row is the recovery result

by using all the pixels in the region, and the middle row is

the result with occlusion detection and masking. Another

merit of our method is that it preserves all global illumina-

tion changes in the original frames, which can be seen from

the comparison with the median facade shown in the middle

of the bottom row. This property ensures that visual realism

of the original sequence can be maximally preserved. If

we directly use the area obtained by feature matching and

RANSAC estimation, the result will be less accurate and

unreal, like the example shown in the bottom row of Fig. 7.

Figure 8 shows an example of foreground separation

228622862288



Figure 7. Comparison of robust alignment results on an example

with deformation and large occlusion. Top and Middle rows: the

recovered results without and with occlusion detection. Bottom
row: the left is the result by feature matching and RANSAC, the

middle is the median area obtained from the area basis, and the

right is their residual.

from the recovered background and error residuals (as in

Section 2.3). It contains four images (from left to right: the

recovered residual, the trimap, the foreground mask, and

the foreground cutout respectively). From the residual, we

can determine which pixels are foreground. With the help

of texture cue, we can determine that the pixels in the orig-

inal image having similar textures with their corresponding

pixels in the recovered image are background. The rest is

classified as unknown. Hence, the trimap is automatically

constructed and used as the input to alpha matting. In this

example, we adopt dense SIFT to measure the texture sim-

ilarity between the original image and the recovered. The

alpha matting result is computed by using the technique in-

troduced in [9]. Readers can adopt other cues to determine

the background and unknown, and choose other texture sim-

ilarity measurements and alpha matting methods for the task

of foreground separation.

Finally, we apply our framework on several real-world

image sequences as shown in Fig. 9. In each of the three

cases, the first row displays sample images from the same

sequences, and the second gives the edited results by the

proposed method. The top case changes the building fa-

cade, the middle one changes the monitor background of

the laptop, and the bottom one repairs the building facade

texture as well as adding a new advertisement banner. In

all the three cases, the results preserve the photo realism

of the original sequence, including global lighting and re-

Figure 8. Illustration of automatic foreground separation.

flection on the monitor etc. The virtual reality achieved by

our method is also rather striking, not only the pose and ge-

ometry of the edited area are consistent throughout the se-

quence, but also all the occlusions in the original sequence

are correctly synthesized on the newly edited regions (e.g.
Top: the tree trunk and branches; Middle: the orange, the

toy, the box and the screen reflection; Bottom: the traffic

light poles). Using our system, the only human intervention

needed to achieve these tasks is to specify the edited area in

the first frame and provide the replacement texture.

4. Conclusion
We have presented a new framework that simultaneously

align and rectify image regions in a video sequence, as

well as automatically construct trimaps and segment fore-

grounds. Our framework leverages the recent advances in

robust recovery of a high-dimensional low-rank matrix de-

spite gross sparse errors. The system can significantly re-

duce the interaction from users for editing certain areas

in the video. The quantitative analysis revealed that our

method can be applied under a wide range of conditions.

The experiments on real world sequences also demonstrated

the robust performance of the proposed framework.
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